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Abstract

Nuclear segmentation and classification within Haematoxylin & Eosin stained

histology images is a fundamental prerequisite in the digital pathology work-

flow. The development of automated methods for nuclear segmentation and

classification enables the quantitative analysis of tens of thousands of nuclei

within a whole-slide pathology image, opening up possibilities of further analysis

of large-scale nuclear morphometry. However, automated nuclear segmentation

and classification is faced with a major challenge in that there are several dif-

ferent types of nuclei, some of them exhibiting large intra-class variability such

as the nuclei of tumour cells. Additionally, some of the nuclei are often clus-

tered together. To address these challenges, we present a novel convolutional

neural network for simultaneous nuclear segmentation and classification that

leverages the instance-rich information encoded within the vertical and horizon-

tal distances of nuclear pixels to their centres of mass. These distances are then

utilised to separate clustered nuclei, resulting in an accurate segmentation, par-

ticularly in areas with overlapping instances. Then, for each segmented instance

the network predicts the type of nucleus via a devoted up-sampling branch. We
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demonstrate state-of-the-art performance compared to other methods on mul-

tiple independent multi-tissue histology image datasets. As part of this work,

we introduce a new dataset of Haematoxylin & Eosin stained colorectal ade-

nocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with

associated class labels.

Keywords: Nuclear segmentation, nuclear classification, computational

pathology, deep learning

1. Introduction

Current manual assessment of Haematoxylin and Eosin (H&E) stained his-

tology slides suffers from low throughput and is naturally prone to intra- and

inter-observer variability (Elmore et al., 2015). To overcome the difficulty in

visual assessment of tissue slides, there is a growing interest in digital pathology5

(DP), where digitised whole-slide images (WSIs) are acquired from glass histol-

ogy slides using a scanning device. This permits efficient processing, analysis

and management of the tissue specimens (Madabhushi and Lee, 2016). Each

WSI contains tens of thousands of nuclei of various types, which can be fur-

ther analysed in a systematic manner and used for predicting clinical outcome.10

Here, the type of nucleus refers to the cell type in which it is located. For ex-

ample, nuclear features can be used to predict survival (Alsubaie et al., 2018)

and also for diagnosing the grade and type of disease (Lu et al., 2018). Also,

efficient and accurate detection and segmentation of nuclei can facilitate good

quality tissue segmentation (Sirinukunwattana et al., 2018; Javed et al., 2018),15

which can in turn not only facilitate the quantification of WSIs but may also

serve as an important step in understanding how each tissue component con-

tributes to disease. In order to use nuclear features for downstream analysis

within computational pathology, nuclear segmentation must be carried out as

an initial step. However, this remains a challenge because nuclei display a high20

level of heterogeneity and there is significant inter- and intra-instance variabil-

ity in the shape, size and chromatin pattern between and within different cell
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types, disease types or even from one region to another within a single tissue

sample. Tumour nuclei, in particular, tend to be present in clusters, which gives

rise to many overlapping instances, providing a further challenge for automated25

segmentation, due to the difficulty of separating neighbouring instances.

As well as extracting each individual nucleus, determining the type of each

nucleus can increase the diagnostic potential of current DP pipelines. For ex-

ample, accurately classifying each nucleus to be from tumour or lymphocyte

enables downstream analysis of tumour infiltrating lymphocytes (TILs), which30

have been shown to be predictive of cancer recurrence (Corredor et al., 2019).

Yet, similar to nuclear segmentation, classifying the type of each nucleus is diffi-

cult, due to the high variance of nuclear appearance within each WSI. Typically,

nuclei are classified using two disjoint models: one for detecting each nucleus and

then another for performing nuclear classification (Sharma et al., 2015; Wang35

et al., 2016). However, it would be preferable to utilise a single unified model

for nuclear instance segmentation and classification.

In this paper, we present a deep learning approach1 for simultaneous segmen-

tation and classification of nuclear instances in histology images. The network

is based on the prediction of horizontal and vertical distances (and hence the40

name HoVer-Net) of nuclear pixels to their centres of mass, which are subse-

quently leveraged to separate clustered nuclei. For each segmented instance, the

nuclear type is subsequently determined via a dedicated up-sampling branch.

To the best of our knowledge, this is the first approach that achieves instance

segmentation and classification within the same network. We present com-45

parative results on six independent multi-tissue histology image datasets and

demonstrate state-of-the-art performance compared to other recently proposed

methods. The main contributions of this work are listed as follows:

• A novel network, targeted at simultaneous segmentation and classification

of nuclei, where horizontal and vertical distance map predictions separate50

1Model code available at: https://github.com/vqdang/hover net
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clustered nuclei.

• We show that the proposed HoVer-Net achieves state-of-the-art perfor-

mance on multiple H&E histology image datasets, as compared to over a

dozen recently published methods.

• An interpretable and reliable evaluation framework that effectively quan-55

tifies nuclear segmentation performance and overcomes the limitations of

existing performance measures.

• A new dataset2 of 24,319 exhaustively annotated nuclei within 41 colorec-

tal adenocarcinoma image tiles.

2. Related Work60

2.1. Nuclear Instance Segmentation

Within the current literature, energy-based methods, in particular the

watershed algorithm, have been widely utilised to segment nuclear instances.

For example, Yang et al. (2006) used thresholding to obtain the markers and

the energy landscape as input for watershed to extract the nuclear instances.65

Nonetheless, thresholding relies on a consistent difference in intensity between

the nuclei and background, which does not hold for more complex images and

hence often produces unreliable results. Various approaches have tried to pro-

vide an improved marker for marker-controlled watershed. Cheng et al. (2009)

used active contours to obtain the markers. Veta et al. (2013) used a series70

of morphological operations to generate the energy landscape. However, these

methods rely on the predefined geometry of the nuclei to generate the mark-

ers, which determines the overall accuracy of each method. Notably, Ali and

Madabhushi (2012) avoided the trouble of refining the markers for watershed

2The CoNSeP dataset for nuclear segmentation is available at https://warwick.ac.uk/

fac/sci/dcs/research/tia/data/.
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by designing a method that relies solely on the energy landscape. They com-75

bined an active contour approach with nuclear shape modelling via a level-set

method to obtain the nuclear instances. Despite its widespread usage, obtaining

sufficiently strong markers for watershed is a non-trivial task. Some methods

have departed from the energy-based approach by utilising the geometry of the

nuclei. For instance, Wienert et al. (2012), LaTorre et al. (2013) and Kwak80

et al. (2015) computed the concavity of nuclear clusters, while Liao et al. (2016)

used eclipse-fitting to separate the clusters. However, this assumes a predefined

shape, which does not encompass the natural diversity of the nuclei. In ad-

dition, these methods tend to be sensitive to the choice of manually selected

parameters.85

Recently, deep learning methods have received a surge of interest due to

their superior performance in many computer vision tasks (Litjens et al., 2017;

Shen et al., 2017; LeCun et al., 2015). These approaches are capable of auto-

matically extracting a representative set of features, that strongly correlate with

the task at hand. As a result, they are preferable to hand-crafted approaches,90

that rely on a selection of pre-defined features. Inspired by the Fully Convo-

lutional Network (FCN) (Long et al., 2015), U-Net (Ronneberger et al., 2015)

has been successfully applied to numerous segmentation tasks in medical image

analysis. The network has an encoder-decoder design with skip connections to

incorporate low-level information and uses a weighted loss function to as-95

sist separation of instances. However, it often struggles to split neighbouring

instances and is highly sensitive to pre-defined parameters in the weighted loss

function. A more recently proposed method in Micro-Net (Raza et al., 2018)

extends U-Net by utilising an enhanced network architecture with weighted loss.

The network processes the input at multiple resolutions and as a result, gains100

robustness against nuclei with varying size. In Graham and Rajpoot (2018), the

authors developed a network that is robust to stain variations in H&E images

by introducing a weighted loss function that is sensitive to the Haematoxylin

intensity within the image.

Other methods exploit information about the nuclear contour (or bound-105
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ary) within the network, such as DCAN (Chen et al., 2016) that utilised a dual

architecture that outputs the nuclear cluster and the nuclear contour as two

separate prediction maps. Instance segmentation is then achieved by subtract-

ing the contour from the nuclear cluster prediction. Cui et al. (2018) proposed a

network to predict the inner nuclear instance, the nuclear contour and the back-110

ground. The network utilised a customised weighted loss function based on the

relative position of pixels within the image to improve and stabilise the inner nu-

clei and contour prediction. Some other methods have also utilised the nuclear

contour to achieve instance segmentation. For example, Kumar et al. (2017)

employed a deep learning technique for labelling the nuclei and the contours,115

followed by a region growing approach to extract the final instances. Khoshdeli

and Parvin (2018) used the contour predictions as input into a further net-

work for segmentation refinement. Zhou et al. (2019) proposed CIA-Net, that

utilises a multi-level information aggregation module between two task-specific

decoders, where each decoder segments either the nuclei or the contours. A Deep120

Residual Aggregation Network (DRAN) was proposed by Vu et al. (2018) that

uses a multi-scale strategy, incorporating both the nuclei and nuclear contours

to accurately segment nuclei.

There have been various other methods to achieve instance separation. In-

stead of considering the contour, Naylor et al. (2018) proposed a deep learning125

approach to detect superior markers for watershed by regressing the nuclear

distance map. Therefore, the network avoids making a prediction for areas

with indistinct contours.

In line with these developments, the field of instance segmentation within

natural images is also rapidly progressing and have had a significant influence130

on nuclear instance segmentation methods. A notable example is Mask-RCNN

(He et al., 2017), where instance segmentation approach is achieved by first

predicting candidate regions likely to contain an object and then deep learning

based segmentation within those proposed regions.
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2.2. Nuclear Classification135

As well as performing instance segmentation, it is desirable to determine the

type of each nucleus to facilitate and improve downstream analysis. It is pos-

sible for current models to differentiate between certain nuclear types in H&E,

however sub-typing of lymphocytes is an extremely hard task due to the high

levels of similarity in morphological appearance between T and B lymphocytes.140

Typically, classifying each nucleus is done via a two-stage approach, where the

first step involves either nuclear segmentation or nuclear detection. When seg-

mentation is used as the initial step, a series of morphological and textural

features are extracted from each instance, which are then used within a classi-

fier to determine the nuclei classes. For example, Nguyen et al. (2011) classified145

nuclei within H&E stained breast cancer images as either tumour, lymphocyte

or stromal based on their morphological features. Yuan et al. (2012) performed

nuclear segmentation and then classified each nucleus with AdaBoost classifier,

utilising the intensity, morphology and texture of nuclei as features. Otherwise,

detection is performed as an initial step and a patch centred at the point of150

detection is fed into a classifier, to predict the type of nucleus. Sirinukunwat-

tana et al. (2016) proposed a spatially constrained CNN, that initially detects

all nuclei and then for each nucleus an ensemble of associated patches are fed

into a CNN to predict the type to be either epithelial, inflammatory, fibroblast

or miscellaneous.155

3. Methods

Our overall framework for automatic nuclear instance segmentation and clas-

sification can be observed in Fig. 1 and the proposed network in Fig. 2. Here,

nuclear pixels are first detected and then, a tailored post-processing pipeline is

used to simultaneously segment nuclear instances and obtain the corresponding160

nuclear types. The framework is based upon the horizontal and vertical distance

maps, which can be seen in Fig. 3. In the figure, each nuclear pixel denotes

either the horizontal or vertical distance of pixels to their centres of mass.
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Figure 1: Overview of the proposed approach for simultaneous nuclear instance segmentation

and classification. When no classification labels are available, the network produces the in-

stance segmentation as shown in (a). The different colours of the nuclear boundaries represent

different types of nuclei in (b).

3.1. Network Architecture

In order to extract a strong and representative set of features, we employ165

a deep neural network. The feature extraction component of the network is

inspired by the pre-activated residual network with 50 layers (He et al., 2016)

(Preact-ResNet50), due to its excellent performance in recent computer vision

tasks (Deng et al., 2009) and robustness against input perturbation (Arnab

et al., 2017). Compared to the standard Preact-ResNet50 implementation, we170

reduce the total down-sampling factor from 32 to 8 by using a stride of 1 in

the first convolution and removing the subsequent max-pooling operation. This

ensures that there is no immediate loss of information that is important for per-

forming an accurate segmentation. Various residual units are applied through-

out the network at different down-sampling levels. A series of consecutive resid-175

ual units is denoted as a residual block. The number of residual units within

each residual block is 3, 4, 6 and 3 that are applied at down-sampling levels 1,

2, 4 and 8 respectively. For clarity, a down-sampling level of 2 means that the

input has a reduction in the spatial resolution by a factor of 2.
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Figure 2: Overview of the proposed architecture. (a) (Pre-activated) residual unit, (b) dense

unit. m indicates the number of feature maps within each residual unit. The yellow square

within the input denotes the considered region at the output. When the classification labels

aren’t available, only the up-sampling branches in the dashed box are considered.

Following Preact-ResNet50, we perform nearest neighbour up-sampling via180

three distinct branches to simultaneously obtain accurate nuclear instance seg-

mentation and classification. We name the corresponding branches: (i) nu-

clear pixel (NP) branch; (ii) HoVer branch and (iii) nuclear classification (NC)

branch. The NP branch predicts whether or not a pixel belongs to the nuclei or

background, whereas the HoVer branch predicts the horizontal and vertical dis-185

tances of nuclear pixels to their centres of mass. Then, the NC branch predicts

the type of nucleus for each pixel. In particular, the NP and HoVer branches

jointly achieve nuclear instance segmentation by first separating nuclear pixels

from the background (NP branch) and then separating touching nuclei (HoVer

branch). The NC branch determines the type of each nucleus by aggregating190

the pixel-level nuclear type predictions within each instance.

All three up-sampling branches utilise the same architectural design, which

consists of a series of up-sampling operations and densely connected units (Huang

et al., 2016) (or dense units). By stacking multiple and relatively cheap dense

units, we build a large receptive field with minimal parameters, compared to us-195
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ing a single convolution with a larger kernel size and we ensure efficient gradient

propagation. We use skip connections (Ronneberger et al., 2015) to incorporate

features from the encoder, but utilise summation as opposed to concatenation.

The consideration of low-level information is particularly important in segmen-

tation tasks, where we aim to precisely delineate the object boundaries. We use200

dense units after the first and second up-sampling operations, where the number

of units is 4 and 8 respectively. Valid convolution is performed throughout the

two up-sampling branches to prevent poor predictions at the boundary. This

results in the size of the output being smaller than the size of the input. As

opposed to using a dedicated network for each task, a shared encoder makes205

it possible to train the nuclear instance segmentation and classification model

end-to-end and therefore, reduce the total training time. Furthermore, a shared

encoder can also take advantage of the shared information across multiple tasks

and thus, help to improve the model performance on all tasks.

Finally, if we do not have the classification labels of the nuclei, only the210

NP and HoVer up-sampling branches are considered. Otherwise, we consider

all three up-sampling branches and perform simultaneous nuclear instance seg-

mentation and classification.

We display an overview of the network architecture in Fig. 2, where the

spatial dimension of the input is 270×270 and the output dimension of each215

branch is 80×80. The dashed box within Fig. 2 highlights the branches for

nuclear instance segmentation. Additionally, we also show a residual unit and a

dense unit within Fig. 2a and Fig. 2b. We denote m as the number of feature

maps within each convolution of a given residual unit. At each down sampling

level, from left to right, m=256, 512, 1024, 2048 respectively. We keep a fixed220

amount of feature maps within each dense unit throughout the two branches as

shown in Fig. 2c.

3.1.1. Loss Function

The proposed network design has 4 different sets of weights: w0, w1, w2

and w3 which refer to the weights of the Preact-ResNet50 encoder, the HoVer225
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Figure 3: Cropped image regions showing horizontal and vertical map predictions, with cor-

responding ground truth. Arrows highlight the strong instance information encoded within

these maps, where there is a significant difference in the pixel values.

branch decoder, the NP branch decoder and the NC branch decoder. These 4

sets of weights are optimised jointly using the loss L defined as:

L = λaLa + λbLb︸ ︷︷ ︸
HoVer Branch

+λcLc + λdLd︸ ︷︷ ︸
NP Branch

+λeLe + λfLf︸ ︷︷ ︸
NC Branch

(1)

where La and Lb represent the regression loss with respect to the output of the

HoVer branch, Lc and Ld represent the loss with respect to the output at the

NP branch and and finally, Le and Lf represent the loss with respect to the230

output at the NC branch. We choose to use two different loss functions at the

output of each branch for an overall superior performance. λa...λf are scalars

that give weight to each associated loss function. Specifically, we set λb to 2

and the other scalars to 1, based on empirical selection.

Given the input image I, at each pixel i we define pi(I, w0, w1) as the re-235

gression output of the HoVer branch, whereas qi(I, w0, w2) and ri(I, w0, w3)
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denote the pixel-based softmax predictions of the NP and NC branches respec-

tively. We also define Γi(I), Ψi(I) and Φi(I) as their corresponding ground truth

(GT). Ψi(I) is the GT of the nuclear binary map, where background pixels have

the value of 0 and nuclear pixels have the value 1. On the other hand, Φi(I) is240

the nuclear type GT where background pixels have the value 0 and any integer

value larger than 0 indicates the type of nucleus. Meanwhile, Γi(I) denotes the

GT of the horizontal and vertical distances of nuclear pixels to their correspond-

ing centres of mass. For Γi(I), we assign values between -1 and 1 to nuclear

pixels in both the horizontal and vertical directions. We assign the value of the245

background and the line crossing the centre of mass within each nucleus to be 0.

For clarity, we denote the horizontal and vertical components of the GT HoVer

map as horizontal map Γi,x and vertical map Γi,y respectively. Visual examples

of the horizontal and vertical maps can be seen in Fig. 3.

At the output of the HoVer branch, we compute a multiple term regression250

loss. We denote La as the mean squared error between the predicted horizontal

and vertical distances and the GT. We also propose a novel loss function Lb that

calculates the mean squared error between the horizontal and vertical gradients

of the horizontal and vertical maps respectively and the corresponding gradients

of the GT. We formally define La and Lb as:255

La =
1

n

n∑
i=1

(pi(I;w0,w1)− Γi(I))
2 (2)

Lb =
1

m

∑
i∈M

(∇x(pi,x(I;w0,w1))−∇x(Γi,x(I)))
2

+
1

m

∑
i∈M

(∇y(pi,y(I;w0,w1))−∇y(Γi,y(I)))
2

(3)

Within equation (3), ∇x and ∇y denote the gradient in the horizontal x and

vertical y directions respectively. m denotes total number of nuclear pixels

within the image and M denotes the set containing all nuclear pixels.

At the output of NP and NC branches, we calculate the cross-entropy loss260

(Lc and Le) and the dice loss (Ld and Lf ). These two losses are then added

together to give the overall loss of each branch. Concretely, we define the cross
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entropy and dice losses as:

CE = − 1

n

N∑
i=1

K∑
k=1

Xi,k(I) log Yi,k(I) (4)

Dice = 1−
2×

∑N
i=1(Yi(I)×Xi(I)) + ε∑N

i=1 Yi(I) +
∑N

i=1Xi(I) + ε
(5)

where X is the ground truth, Y is the prediction, K is the number of classes265

and ε is a smoothness constant which we set to 1.0e−3. When calculating Lc

and Ld for NP branch, for a given pixel i, we set Xi and Yi as qi(I, w0, w2)

and Ψi respectively. For Lc, we set K to be 2 within equation (4) because the

task of the branch is to perform binary nuclear segmentation. Similarly, for Le

and Lf at NC branch, for a given pixel i, we substitute Xi for Φi(I) and Yi for270

ri(I, w0, w3) in equations (4) and (5). K is set as 5 within equation (4) when

calculating Le, denoting the 4 types of nuclei that our model currently predicts

and the background. Note, the value of K is chosen to reflect the number of

nuclear types represented in the training set.

It must be noted that the NC branch loss Le and Lf are only calculated275

when the classification labels are available. In other words, as mentioned in

Section 3.1, the network performs only instance segmentation if there are no

classification labels given.

3.2. Post Processing

Within each horizontal and vertical map, pixels between separate instances280

have a significant difference. This can be seen in Fig. 3 and is highlighted by the

arrows. Therefore, calculating the gradient can inform where the nuclei should

be separated because the output will give high values between neighbouring

nuclei, where there is a significant difference in the pixel values. We define:

Sm = max(Hx(px), Hy(py)) (6)

where px and py refer to the the horizontal and vertical predictions at the output285

of the HoVer branch and Hx and Hy refer to the horizontal and vertical com-

ponents of the Sobel operator. Specifically, Hx and Hy compute the horizontal
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and vertical derivative approximations and are shown by the gradient maps in

Fig. 1. Therefore, Sm highlights areas where there is a significant difference

in neighbouring pixels within the horizontal and vertical maps. Therefore, ar-290

eas such as the ones shown by the arrows in Fig. 3 will result in high values

within Sm. We compute markers M = σ(τ(q, h) − τ(Sm, k)). Here, τ(a, b) is

a threshold function that acts on a and sets values above b to 1 or 0 other-

wise. Specifically, h and k were chosen such that they gave the optimal nuclear

segmentation results. σ is a rectifier that sets all negative values to 0 and q295

is the probability map output of the NP branch. We obtain the energy land-

scape E = [1 − τ(Sm, k)] ∗ τ(q, h). Finally, M is used as the marker during

marker-controlled watershed to determine how to split τ(q, h), given the energy

landscape E. This sequence of events can be seen in Fig. 1.

To perform simultaneous nuclear instance segmentation and classification, it300

is necessary to convert the per-pixel nuclear type prediction at the output of the

NC branch to a prediction per nuclear instance. For each nuclear instance, we

use majority class of the predictions made by the NC branch, i.e., the nuclear

type of all pixels in an instance is assigned to be the class with the highest

frequency count for that nuclear instance.305

Please refer to Appendix A for a full analysis on the contribution of our pro-

posed loss function, post-processing method and devoted classification branch.

4. Evaluation Metrics

4.1. Nuclear Instance Segmentation Evaluation

Assessment and comparison of different methods is usually given by an over-310

all score that indicates which method is superior. However, to further investigate

the method, it is preferable to break the problem into sub-tasks and measure the

performance of the method on each sub-task. This enables an in depth analy-

sis, thus facilitating a comprehensive understanding of the approach, which can

help drive forward model development. For nuclear instance segmentation, the315

problem can be divided into the following three sub-tasks:
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Figure 4: Examples highlighting the limitations of DICE2 and AJI with slightly different

predictions. For better visualisation, ground truth contours (red dash line) for each instance

have been overlaid on both the predictions and original images.

Table 1: Comparison between Prediction A and Prediction B from Fig.4 across various mea-

surements.

DICE2 AJI PQ

Prediction A 0.6477 0.4790 0.6803

Prediction B 0.9007 0.6414 0.6863

• Separate the nuclei from the background

• Detect individual nuclear instances

• Segment each detected instance

In the current literature, two evaluation metrics have been mainly adopted to320

quantitatively measure the performance of nuclear instance segmentation: 1)

Ensemble Dice (DICE2) (Vu et al., 2018), and 2) Aggregated Jaccard Index

(AJI) (Kumar et al., 2017). Given the ground truth X and prediction Y , DICE2

computes and aggregates DICE per nucleus, where Dice coefficient (DICE) is

defined as 2×(X∩Y )/(|X|+|Y |) and AJI computes the ratio of an aggregated325

intersection cardinality and an aggregated union cardinality between X and Y .

These two evaluation metrics only provide an overall score for the instance

segmentation quality and therefore provides no further insight into the sub-tasks

at hand. In addition, these two metrics have a limitation, which we illustrate
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in Fig. 4. From the figure, although prediction A only differs from predic-330

tion B by a few pixels, the DICE2 and AJI scores for B are inferior. These

scores are shown in Table 1. This problem arises due to over-penalisation of the

overlapping regions. By overlaying the GT segment contours (red dashed line)

upon the two predictions, we observe that, although the cyan-coloured instance

within prediction A overlaps mostly with the cyan-coloured GT instance, it also335

slightly overlaps with the blue-coloured GT instance. As a result, according to

the DICE2 algorithm, the predicted cyan instance will be penalised by pixels

not only coming from the dominant overlapping cyan-coloured GT instance, but

also from the blue-coloured GT instance. The AJI also suffers from the same

phenomenon. However, because AJI only uses the prediction and GT instance340

pair with the highest intersection over union, over-penalisation is less likely com-

pared to DICE2. Over-penalisation is likely to occur when the model completely

fails to detect the neighbouring instance, such as in Fig. 4. Nonetheless, when

evaluating methods across different datasets, specifically on samples containing

lots of hard to recognise nuclei such as fibroblasts or nuclei with poor staining,345

the number of failed detections may increase and therefore may have a negative

impact on the AJI measurement. Due to the limitations of DICE2 and AJI, it

is clear that there is a need for an improved reliable quantitative measurement.

Panoptic Quality: We propose to use another metric for accurate quan-

tification and interpretability to assess the performance of nuclear instance seg-350

mentation. Originally proposed by Kirillov et al. (2018), panoptic quality (PQ)

for nuclear instance segmentation is defined as:

PQ =
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

Detection Quality(DQ)

×
∑

(x,y)∈TP IoU(x, y)

|TP |︸ ︷︷ ︸
Segmentation Quality(SQ)

(7)

where x denotes a GT segment, y denotes a prediction segment and IoU denotes

intersection over union. Each (x,y) pair is mathematically proven to be unique

(Kirillov et al., 2018) over the entire set of prediction and GT segments if their355

IoU(x,y)>0.5. The unique matching splits all available segments into matched

pairs (TP), unmatched GT segments (FN) and unmatched prediction segments
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(FP). From this, PQ can be intuitively analysed as follows: the detection qual-

ity (DQ) is the F1 Score that is widely used to evaluate instance detection,

while segmentation quality (SQ) can be interpreted as how close each correctly360

detected instance is to their matched GT. DQ and SQ, in a way, also provide

a direct insight into the second and third sub-tasks, defined above. We be-

lieve that PQ should set the standard for measuring the performance of nuclear

instance segmentation methods.

Overall, to fully characterise and understand the performance of each method,365

we use the following three metrics: 1) DICE to measure the separation of all

nuclei from the background; 2) Panoptic Quality as a unified score for compar-

ison and 3) AJI for direct comparison with previous publications3. Panoptic

quality is further broken down into DQ and SQ components for interpretability.

Note, SQ is calculated only within true positive segments and should therefore370

be observed together with DQ. Throughout this study, these metrics are calcu-

lated for each image and the average of all images are reported as final values

for each dataset.

4.2. Nuclear Classification Evaluation

Classification of the type of each nucleus is performed within the nuclear in-375

stances extracted from the instance segmentation or detection tasks. Therefore,

the overall measurement for nuclear type classification should also encompass

these two tasks. For all nuclear instances of a particular type t from both the

ground truth and the prediction, the detection task d splits the GT and pre-

dicted instances into the following subsets: correctly detected instances (TPd),380

misdetected GT instances (FNd) and overdetected predicted instances (FPd).

Subsequently, the classification task c further breaks TPd into correctly classi-

fied instances of type t (TPc), correctly classified instances of types other than

type t (TNc), incorrectly classified instances of type t (FPc) and incorrectly

classified instances of types other than type t (FNc). We then define the Fc385

3Evaluation code available at: https://github.com/vqdang/hover net/src/metrics
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score of each type t for combined nuclear type classification and detection as

follows:

F t
c =

2(TPc + TNc)

2(TPc + TNc) + α0FPc + α1FNc + α2FPd + α3FNd
(8)

where we use α0 = α1 = 2 and α2 = α3 = 1 to give more emphasis to nuclear

type classification. Moreover, using the same weighting, if we further extend t

to encompass all types of nuclei T (t ∈ T ), the classification within TPd is then390

divided into a correctly classified set Ac and an incorrectly classified set Bc. We

can therefore disassemble F t
c into:

FT
c =

2Ac

2(Ac +Bc) + FPd + FNd
=

2(Ac +Bc)

2(Ac +Bc) + FPd + FNd
× Ac

Ac +Bc

= Fd × Classification Accuracy within Correctly Detected Instances

(9)

where Fd is simply the standard detection quality like DQ while the other term

is the accuracy of nuclear type classification within correctly detected instances.

In the case where the GT is not exhaustively annotated for nuclear type clas-395

sification, like in CRCHisto, an amount equal to the number of unlabelled GT

instances in each set is subtracted from Bc and FNc.

Finally, while IoU is utilised as the criteria in DQ for selecting the TP for

detection in instance segmentation, detection methods can not calculate the IoU.

Therefore, to facilitate comparison of both instance segmentation and detection400

methods for the nuclear type classification tasks, for F t
c , we utilise the notion

of distance to determine whether nuclei have been detected. To be precise, we

define the region within a predefined radius from the annotated centre of the

nucleus as the ground truth and if a prediction lies within this area, then it is

considered to be a true positive. Here, we are consistent with Sirinukunwattana405

et al. (2016) and use a radius of 6 pixels at 20× or 12 pixels at 40×.
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Table 2: Summary of the datasets used in our experiments. UHCW denotes University

Hospitals Conventry and Warwickshire and TCGA denotes The Cancer Genome Atlas. Seg

denotes segmentation masks and Class denotes classification labels.

CoNSeP Kumar CPM-15 CPM-17 TNBC CRCHisto

Total Number of Nuclei 24,319 21,623 2,905 7,570 4,056 29,756

Labelled Nuclei 24,319 0 0 0 0 22,444

Number of Images 41 30 15 32 50 100

Origin UHCW TCGA TCGA TCGA Curie Institute UHCW

Magnification 40× 40× 40× & 20× 40× & 20× 40× 20×

Size of Images 1000×1000 1000×1000 400×400 to 1000×600 500×500 to 600×600 512×512 500×500

Seg/Class Both Seg Seg Seg Seg Class

Number of Cancer Types 1 8 2 4 1 1

Kumar CoNSeP CPM-15 CPM-17 TNBC

Figure 5: Sample cropped regions extracted from each of the five nuclear instance segmentation

datasets used in our experiments. From left to right: Kumar (Kumar et al., 2017); CoNSeP;

CPM-15; CPM-17 (Vu et al., 2018) and TNBC (Naylor et al., 2018). The different colours of

nuclear contours highlight individual instances.
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Malignant/dysplastic	
epithelium

Normal	epithelium Inflammatory

Muscle

Fibroblast

MiscellaneousEndothelial

Figure 6: Sample cropped regions extracted from the CoNSeP datasets, where the colour of

each nuclear boundary denotes the category.

5. Experimental Results

5.1. Datasets

As part of this work, we introduce a new dataset that we term as the col-

orectal nuclear segmentation and phenotypes (CoNSeP) dataset4, consisting410

of 41 H&E stained image tiles, each of size 1,000×1,000 pixels at 40× objec-

tive magnification. Images were extracted from 16 colorectal adenocarcinoma

(CRA) WSIs, each belonging to an individual patient, and scanned with an

Omnyx VL120 scanner within the department of pathology at University Hos-

pitals Coventry and Warwickshire, UK. We chose to focus on a single cancer415

type, so that we are able to display the true variation of tissue within colorectal

adenocarcinoma WSIs, as opposed to other datasets that instead focus on using

a small number of visual fields from various cancer types. Within this dataset,

stroma, glandular, muscular, collagen, fat and tumour regions can be observed.

Beside incorporating different tissue components, the 41 images were also cho-420

4This dataset is available at https://warwick.ac.uk/fac/sci/dcs/research/tia/data/.
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sen such that different nuclei types were present, including: normal epithelial;

tumour epithelial; inflammatory; necrotic; muscle and fibroblast. Here, by type

we are referring to the type of cell from which the nucleus originates from.

Within the dataset, there are many significantly overlapping nuclei with indis-

tinct boundaries and there exists various artifacts, such as ink. As a result of the425

diversity of the dataset, it is likely that a model trained on CoNSeP will perform

well for unseen CRA cases. For each image tile, every nucleus was annotated by

one of two expert pathologists (A.A, Y-W.T). After full annotation, each anno-

tated sample was reviewed by both of the pathologists; therefore refining their

own and each others’ annotations. By the end of the annotation process, each430

pathologist had fully checked every sample and consensus had been reached.

Annotating the data in this way ensured that minimal nuclei were missed in the

annotation process. However, we can not avoid inevitable pixel-level differences

between the annotation and the true nuclear boundary in challenging cases.

In addition to delineating the nuclear boundaries, every nucleus was labelled435

as either: normal epithelial, malignant/dysplastic epithelial, fibroblast, muscle,

inflammatory, endothelial or miscellaneous. Within the miscellaneous category,

necrotic, mitotic and cells that couldn’t be categorised were grouped. For our

experiments, we grouped the normal and malignant/dysplastic epithelial nuclei

into a single class and we grouped the fibroblast, muscle and endothelial nuclei440

into a class named spindle-shaped nuclei.

Overall, six independent datasets are utilised for this study. A full summary

for each of them is provided in Table 2. Five of these datasets are used to

evaluate the instance segmentation performance which we refer to as: CoNSeP;

Kumar (Kumar et al., 2017); CPM-15; CPM-17 (Vu et al., 2018) and TNBC445

(Naylor et al., 2018). Example images from each of the five datasets can be

seen in Fig. 7. Meanwhile, we utilise CoNSeP and a further dataset, named

CRCHisto, to quantify the performance of the nuclear classification model. The

CRCHisto dataset consists of the same nuclei types that are present in CoNSeP.

It is also worth noting that the CRCHisto dataset is not exhaustively annotated450

for nuclear class labels.
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5.2. Implementation and Training Details

We implemented our framework with the open source software library Ten-

sorFlow version 1.8.0 (Abadi et al., 2016) on a workstation equipped with two

NVIDIA GeForce 1080 Ti GPUs. During training, data augmentation including455

flip, rotation, Gaussian blur and median blur was applied to all methods. All

networks received an input patch with a size ranging from 252×252 to 270×270.

This size difference is due to the use of valid convolutions in some architectures,

such as HoVer-Net and U-Net. Regarding HoVer-Net, we initialised the model

with pre-trained weights on the ImageNet dataset (Deng et al., 2009), trained460

only the decoders for the first 50 epochs, and then fine-tuned all layers for an-

other 50 epochs. We train stage one for around 120 minutes and stage two for

around 260 minutes. Therefore, the overall training time is around 380 min-

utes. Stage two takes longer to train because unfreezing the encoder utilises

more memory and therefore a smaller batch size needs to be used. Specifically,465

we used a batch size of 8 and 4 on each GPU for stage one and two respec-

tively. We used Adam optimisation with an initial learning rate of 10−4 and

then reduced it to a rate of 10−5 after 25 epochs. This strategy was repeated

for fine-tuning. On the whole, training of the network is stable, where the usage

of fully independent decoders helps the network to converge each time. The470

network was trained with an RGB input, normalised between 0 and 1.

5.3. Comparative Analysis of Segmentation Methods

Experimental Setting: We evaluated our approach by employing a full

independent comparison across the three largest known exhaustively labelled

nuclear segmentation datasets: Kumar; CoNSeP and CPM-17 and utilised the475

metrics as described in Section 4.1. For this experiment, because we do not

have the classification labels for all datasets, we perform instance segmentation

without classification. This enables us to fully leverage all data and allows us

to rigorously evaluate the segmentation capability of our model. In the same

way as Kumar et al. (2017), we split the Kumar dataset into two different sub-480

datasets: (i) Kumar-Train, a training set with 16 image tiles (4 breast, 4 liver,
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Table 3: Comparative experiments on the Kumar (Kumar et al., 2017), CoNSeP and CPM-17

(Vu et al., 2018) datasets. WS denotes watershed-based post processing.

Kumar CoNSeP CPM-17

Methods DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

Cell Profiler (Carpenter et al., 2006) 0.623 0.366 0.423 0.704 0.300 0.434 0.202 0.249 0.705 0.179 0.570 0.338 0.368 0.702 0.261

QuPath (Bankhead et al., 2017) 0.698 0.432 0.511 0.679 0.351 0.588 0.249 0.216 0.641 0.151 0.693 0.398 0.320 0.717 0.230

FCN8 (Long et al., 2015) 0.797 0.281 0.434 0.714 0.312 0.756 0.123 0.239 0.682 0.163 0.840 0.397 0.575 0.750 0.435

FCN8 + WS (Long et al., 2015) 0.797 0.429 0.590 0.719 0.425 0.758 0.226 0.320 0.676 0.217 0.840 0.397 0.575 0.750 0.435

SegNet (Badrinarayanan et al., 2017) 0.811 0.377 0.545 0.742 0.407 0.796 0.194 0.371 0.727 0.270 0.857 0.491 0.679 0.778 0.531

SegNet + WS (Badrinarayanan et al., 2017) 0.811 0.508 0.677 0.744 0.506 0.793 0.330 0.464 0.721 0.335 0.856 0.594 0.779 0.784 0.614

U-Net (Ronneberger et al., 2015) 0.758 0.556 0.691 0.690 0.478 0.724 0.482 0.488 0.671 0.328 0.813 0.643 0.778 0.734 0.578

Mask-RCNN (He et al., 2017) 0.760 0.546 0.704 0.720 0.509 0.740 0.474 0.619 0.740 0.460 0.850 0.684 0.848 0.792 0.674

DCAN (Chen et al., 2016) 0.792 0.525 0.677 0.725 0.492 0.733 0.289 0.383 0.667 0.256 0.828 0.561 0.732 0.740 0.545

Micro-Net (Raza et al., 2018) 0.797 0.560 0.692 0.747 0.519 0.794 0.527 0.600 0.745 0.449 0.857 0.668 0.836 0.788 0.661

DIST (Naylor et al., 2018) 0.789 0.559 0.601 0.732 0.443 0.804 0.502 0.544 0.728 0.398 0.826 0.616 0.663 0.754 0.504

CNN3 (Kumar et al., 2017) 0.762 0.508 - - - - - - - - - - - - -

CIA-Net (Zhou et al., 2019) 0.818 0.620 0.754 0.762 0.577 - - - - - - - - - -

DRAN (Vu et al., 2018) - - - - - - - - - - 0.862 0.683 0.811 0.804 0.657

HoVer-Net 0.826 0.618 0.770 0.773 0.597 0.853 0.571 0.702 0.778 0.547 0.869 0.705 0.854 0.814 0.697

4 kidney and 4 prostate) and (ii) Kumar-Test, a test set with 14 image tiles (2

breast, 2 liver, 2 kidney and 2 prostate, 2 bladder, 2 colon, 2 stomach). Note,

we utilise the exact same image split used by other recent approaches (Kumar

et al., 2017; Naylor et al., 2018; Zhou et al., 2019), but we do not separate the485

test set into two subsets. We do this to ensure that the test set is large enough,

ensuring a reliable evaluation. For CoNSeP, we devise a suitable train and test

set that contains 26 and 14 images respectively. The images within the test set

were selected to ensure the true diversity of nuclei types within colorectal tissue

are represented. For CPM-17, we utilise the same split that had been employed490

for the challenge, with 32 images in both the training and test datasets.

We compared our proposed model to recent segmentation approaches used in

computer vision (Long et al., 2015; Badrinarayanan et al., 2017; He et al., 2017),

medical imaging (Ronneberger et al., 2015) and also to methods specifically

tuned for the task of nuclear segmentation (Chen et al., 2016; Raza et al., 2018;495

Naylor et al., 2018; Zhou et al., 2019; Vu et al., 2018). We also compared

the performance of our model to two open source software applications: Cell

Profiler (Carpenter et al., 2006) and QuPath (Bankhead et al., 2017). Cell

Profiler is a software for cell-based analysis, with several suggested pipelines for
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Figure 7: Example visual results on the CPM-17, Kumar and CoNSeP datasets. For each

dataset, we display the 4 models that achieve the highest PQ score from left to right. The

different colours of the nuclear boundaries denote separate instances.

computational pathology. The pipeline that we adopted applies a threshold to500

the greyscale image and then uses a series of post processing operations. QuPath
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is an open source software for digital pathology and whole slide image analysis.

To achieve nuclear segmentation, we used the default parameters within the

application. FCN, SegNet, U-Net, DCAN, Mask-RCNN and DIST have been

implemented by the authors of the paper (S.G, Q.D.V). For Mask-RCNN, we505

slightly modified the original implementation by using smaller anchor boxes.

The default configuration is fine-tuned for natural images and therefore, this

modification was necessary to perform a successful nuclear segmentation. DIST

was implemented with the assistance of the first author of the corresponding

approach in order to ensure reliability during evaluation. This also enabled510

us to utilise DIST for further comparison in our experiments. For Micro-Net,

we used the same implementation that was described by Raza et al. (2018)

and was implemented by the first author of the corresponding paper (S.E.A.R).

For CNN3 and CIA-Net, we report the results on the Kumar dataset that are

given in their respective original papers. The authors of CIA-Net and DRAN515

provided their segmentation output, which meant that we were able to obtain

all metrics on the datasets that the models were applied to. Therefore, we

report results of CIA-Net on the Kumar dataset and results of DRAN on the

CPM-17 dataset. Note, for all self-implemented approaches we are consistent

with our pre-processing strategy. However, DRAN, CNN3 and CIA-Net results520

are directly taken from their respective papers and therefore we can’t guarantee

the same pre-processing steps. CNN3 and CIA-Net also use stain normalisation,

whereas other methods described in this paper do not.

Comparative Results: Table 3 and the box plots in Fig. 8a and 8b show

detailed results of this experiment. Within the box plots, we choose not to525

show AJI, due to its limitations as discussed in Section 4.1. A large variation in

performance between methods within each dataset is observed. This variation

is particularly evident in the Kumar and CoNSeP datasets, where there exists a

large number of overlapping nuclei. Both Cell Profiler (Carpenter et al., 2006)

and QuPath (Bankhead et al., 2017) achieve sub-optimal performance for all530

datasets. In particular, both software applications consistently achieve a low

DICE score, suggesting that their inability to distinguish nuclear pixels from
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(a) Kumar

(b) CoNSeP

Figure 8: Box plots highlighting the performance of competing methods on the Kumar and

CoNSeP datasets.
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the background is a major limiting factor. FCN-based approaches improve the

capability of models to detect nuclear pixels, yet often fail due to their inability

to separate clustered instances. For example, despite a higher DICE score than535

Cell Profiler and QuPath, networks built only for semantic segmentation like

FCN8 and SegNet suffer from low PQ values. Therefore, methods that incor-

porate strong instance-aware techniques are favourable. Within CPM-17, there

are less overlapping nuclei which explains why methods that are not instance-

aware are still able to achieve a satisfactory performance. We observe that540

the weighted cross entropy loss that is used in both U-Net and Micro-Net can

help to separate joined nuclei, but its success also depends on the capacity of

the network. This is reflected by the increased performance of Micro-Net over

U-Net.

DCAN is able to better distinguish between separate instances than FCN8,545

which uses a very similar encoder based on the VGG16 network. Therefore,

incorporating additional information at the output of the network can improve

the segmentation performance. This is also exemplified by the fairly strong

performances of CNN3, DIST, DRAN and CIA-Net. In a different way, Mask-

RCNN is able to successfully separate clustered nuclei by utilising a region550

proposal based approach. However, Mask-RCNN is less effective than other

methods at detecting nuclear pixels, which is reflected by a lower DICE score.

Due to the reasoning given in Section 4, we place a larger emphasis on PQ to

determine the success of different models. In particular, we consistently obtain

an improved performance over DIST, which justifies the use of our proposed555

horizontal and vertical maps as a regression target. We also report a better

performance than the winners of the Computational Precision Medicine and

MoNuSeg challenges (Vu et al., 2018; Zhou et al., 2019), that utlised the CPM-

17 and Kumar datasets respectively. Therefore, HoVer-Net achieves state-of-the

art performance for nuclear instance segmentation compared to all competing560

methods on multiple datasets that consist of a variety of different tissue types.

Our approach also outperforms methods that were fine-tuned for the task of

nuclear segmentation.
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5.4. Generalisation Study

Experimental Setting: The goal of any automated method is to perform565

well on unseen data, with high accuracy. Therefore, we conducted a large scale

study to assess how all methods generalise to new H&E stained images. To anal-

yse the generalisation capability, we assessed the ability to segment nuclei from:

i) new organs (variation in nuclei shapes) and ii) different centres (variation in

staining).570

The five instance segmentation datasets used within our experiments can be

grouped into three groups according to their origin: TCGA (Kumar, CPM-15,

CPM-17), TNBC and CoNSeP. We used Kumar as the training and validation

set, due to its size and diversity, whilst the combined CPM (CPM-15 and CPM-

17), TNBC and CoNSeP datsets were used as three independent test sets. We575

split the test sets in this way in accordance with their origin. Note, for this

experiment we use both the training and test sets of CPM-17 and CoNSeP to

form the independent test sets. Kumar was split into three subsets, as explained

in Section 5.1, and Kumar-Train was used to train all models, i.e. trained with

samples originating from the following organs: breast; prostate; kidney and580

liver. Despite all samples being extracted from TCGA, CPM samples come

from the brain, head & neck and lungs regions. Therefore, testing with CPM

reflects the ability for the model to generalise to new organs, as mentioned above

by the first generalisation criterion. TNBC contains samples from an already

seen organ (breast), but the data is extracted from an independent source with585

different specimen preservation and staining practice. Therefore, this reflects the

second generalisation criterion. CoNSeP contains samples taken from colorectal

tissue, which is not represented in Kumar-Train, and is also extracted from a

source independent to TCGA. Therefore, this reflects both the first and second

generalisation criteria. Also, as mentioned in Section 5.1, CoNSeP contains590

challenging samples, where there exists various artifacts and there is variation

in the quality of slide preparation. Therefore, the performance on this dataset

also reflects the ability of a model to generalise to difficult samples.

Comparative Results: The results are reported in Table 4, where we only
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Table 4: Comparative results, highlighting the generalisation capability of different models.

All models are initially trained on Kumar and then the Combined CPM (Vu et al., 2018),

TNBC (Naylor et al., 2018) and CoNSeP datasets are processed.

Combined CPM TNBC All CoNSeP

Methods DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

FCN8 + WS (Long et al., 2015) 0.762 0.531 0.669 0.722 0.487 0.726 0.506 0.662 0.723 0.480 0.609 0.247 0.345 0.688 0.240

SegNet + WS (Badrinarayanan et al., 2017) 0.791 0.583 0.738 0.755 0.561 0.758 0.559 0.734 0.750 0.554 0.681 0.315 0.449 0.733 0.332

U-Net (Ronneberger et al., 2015) 0.720 0.541 0.652 0.672 0.446 0.681 0.514 0.635 0.676 0.442 0.585 0.363 0.442 0.670 0.297

Mask-RCNN (He et al., 2017) 0.764 0.575 0.760 0.719 0.549 0.705 0.529 0.726 0.742 0.543 0.606 0.348 0.492 0.720 0.357

DCAN (Chen et al., 2016) 0.770 0.582 0.716 0.730 0.528 0.725 0.537 0.683 0.720 0.495 0.609 0.306 0.403 0.685 0.278

Micro-Net (Raza et al., 2018) 0.792 0.615 0.716 0.751 0.542 0.701 0.531 0.656 0.753 0.497 0.644 0.394 0.489 0.722 0.356

DIST (Naylor et al., 2018) 0.775 0.563 0.593 0.720 0.432 0.719 0.523 0.549 0.714 0.404 0.621 0.369 0.379 0.701 0.268

HoVer-Net 0.801 0.626 0.774 0.778 0.606 0.749 0.590 0.743 0.759 0.578 0.664 0.404 0.529 0.764 0.408

display the results of methods that employ an instance-based technique. We595

observe that our proposed model is able to successfully generalise to unseen

data in all three cases. However, some methods prove to perform poorly with

unseen data, where in particular, U-Net and DIST perform worse than other

competing methods on all three datasets. Both SegNet with watershed and

Mask-RCNN achieve a competitive performance across all three generalisation600

tests. However, similar to the results reported in Table 3, Mask-RCNN is not

able to distinguish nuclear pixels from the background as well as other competing

methods, which has an adverse effect on the overall segmentation performance

shown by PQ. On the other hand, SegNet proves to successfully detect nuclear

pixels, reporting a greater DICE score than HoVer-Net on both the TNBC and605

CoNSeP datasets. However, the overall segmentation result for HoVer-Net is

superior because it is better able to separate nuclear instances by incorporating

the horizontal and vertical maps at the output of the network.

5.5. Comparative Analysis of Classification Methods

Experimental Setting: We converted the top four performing nuclear in-610

stance segmentation algorithms, based on their panoptic quality on the CoNSeP

dataset, such that they were able to perform simultaneous instance segmentation

and classification. As mentioned in Section 5.1, the nuclear categories that we

use in our experiments are: miscellaneous, inflammatory, epithelial and spindle-
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shaped. Specifically, we compared HoVer-Net with Micro-Net, Mask-RCNN and615

DIST. For Micro-Net, we used an output depth of 5 rather than 2, where each

channel gave the probability of a pixel being either background, miscellaneous,

inflammatory, epithelial or spindle-shaped. For Mask-RCNN, there is a devoted

classification branch that predicts the class of each instance and therefore is

well suited to a multi-class setting. DIST performs regression at the output of620

the network and therefore converting the model such that it is able to classify

nuclei into multiple categories is non-trivial. Instead, we add an extra 1×1 con-

volution at the output of the network that performs nuclear classification. As

well as comparing to the aforementioned methods, we compared our approach

to a spatially constrained CNN (SC-CNN), that achieves detection and classi-625

fication. Note, because SC-CNN does not produce a segmentation mask, we do

not report the PQ for this method.

Comparative Results: We trained our models on the training set of the

CoNSeP dataset and then we evaluated the model on both the test set of CoN-

SeP and also the entire CRCHisto dataset. Table 5 displays the results of the630

multi-class models on the CoNSeP and the CRCHisto datasets respectively,

where the given metrics are described in Section 4.2. For CoNSeP, along with

the classification metrics, we provide PQ as an indication of the quality of in-

stance segmentation. However, in CRCHisto, only the nuclear centroids are

given and therefore, we exclude PQ from the CRCHisto evaluation because it635

can’t be calculated without the instance segmentation masks. We observe that

HoVer-Net achieves a good quality simultaneous instance segmentation and clas-

sification, compared to competing methods. It must be noted, that we should

expect a lower F1 score for the miscellaneous class because there are signifi-

cantly less nuclei represented. Also, there is a high diversity of nuclei types640

that have been grouped within this class, belonging to: mitotic; necrotic and

cells that are uncategorisable. Despite this, HoVer-Net is able to achieve a sat-

isfactory performance on this class, where other methods fail. Furthermore,

compared to other methods, our approach achieves the best F1 score for epithe-

lial, inflammatory and spindle classes. Therefore, due to HoVer-Net obtaining a645
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strong performance for both nuclear segmentation and classification, we suggest

that our model may be used for sophisticated subsequent cell-level downstream

analysis in computational pathology.

Table 5: Comparative results for nuclear classification on the CoNSeP and CRCHisto datasets.

Fd denotes the F1 score for nuclear detection, whereas Fe
c, Fi

c, Fs
c and Fm

c denote the F1

classification score for the epithelial, inflammatory, spindle-shaped and miscellaneous classes

respectively.

CoNSeP CRCHisto

Methods PQ Fd Fe
c Fi

c Fs
c Fm

c Fd Fe
c Fi

c Fs
c Fm

c

SC-CNN (Sirinukunwattana et al., 2016) - 0.608 0.306 0.193 0.175 0.000 0.664 0.246 0.111 0.126 0.000

DIST (Naylor et al., 2018) 0.372 0.712 0.617 0.534 0.505 0.000 0.616 0.464 0.514 0.275 0.000

Micro-Net (Raza et al., 2018) 0.430 0.743 0.615 0.592 0.532 0.117 0.638 0.422 0.518 0.249 0.059

Mask-RCNN (He et al., 2017) 0.450 0.692 0.595 0.590 0.520 0.098 0.639 0.503 0.537 0.294 0.077

HoVer-Net 0.516 0.748 0.635 0.631 0.566 0.426 0.688 0.486 0.573 0.302 0.178

6. Discussion and Conclusions

Analysis of nuclei in large-scale histopathology images is an important step650

towards automated downstream analysis for diagnosis and prognosis of cancer.

Nuclear features have been often used to assess the degree of malignancy (Gur-

can et al., 2009). However, visual analysis of nuclei is a very time consuming task

because there are often tens of thousands of nuclei within a given whole-slide

image (WSI). Performing simultaneous nuclear instance segmentation and clas-655

sification enables subsequent exploration of the role that nuclear features play

in predicting clinical outcome. For example, Lu et al. (2018) utilised nuclear

features from histology TMA cores to predict survival in early-stage estrogen

receptor-positive breast cancer. Restricting the analysis to some specific nu-

clear types only may be advantageous for accurate analysis in computational660

pathology.

In this paper, we have proposed HoVer-Net for simultaneous segmentation

and classification of nuclei within multi-tissue histology images that not only
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detects nuclei with high accuracy, but also effectively separates clustered nu-

clei. Our approach has three up-sampling branches: 1) the nuclear pixel branch665

that separates nuclear pixels from the background; 2) the HoVer branch that

regresses the horizontal and vertical distances of nuclear pixels to their centres

of mass and 3) the nuclear classification branch that determines the type of each

nucleus. We have shown that the proposed approach achieves the state-of-the-

art instance segmentation performance compared to a large number of recently670

published deep learning models across multiple datasets, including tissues that

have been prepared and stained under different conditions. This makes the

proposed approach likely to translate well to a practical setting due its strong

generalisation capacity, which can therefore be effectively used as a prerequi-

site step before nuclear-based feature extraction. We have shown that utilising675

the horizontal and vertical distances of nuclear pixels to their centres of mass

provides powerful instance-rich information, leading to state-of-the-art perfor-

mance in histological nuclear segmentation. When the classification labels are

available, we show that our model is able to successfully segment and classify

nuclei with high accuracy.680

Region proposal (RP) methods, such as Mask-RCNN, show great potential

in dealing with overlapping instances because there is no notion of separating

instances; instead nuclei are segmented independently. However, a major limita-

tion of the RP methods is the difficulty in merging instance predictions between

neigbouring tiles during processing. For example, if a sub-segment of a nucleus685

at the boundary is assigned a label, one must ensure that the remainder of the

nucleus in the neighbouring tile is also assigned the same label. To overcome

this difficulty, for Mask-RCNN, we utilised an overlapping tile mechanism such

that we only considered non-boundary nuclei.

Regarding the processing time, the average time to process a 1,000×1,000690

image tile over 10 runs using Mask-RCNN for segmentation and classification

was 106.98 seconds. Meanwhile, HoVer-Net only took an average of 11.04 sec-

onds to complete the same operation; approximately 9.7× faster. On the other

hand, the average processing time for DIST and Micro-Net was 0.600 and 0.832
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seconds respectively. Mask-RCNN inherently stores a single instance per chan-695

nel, which leads to very large arrays in memory when there are many nuclei in a

single image patch, which also contributes to the much longer processing time as

seen above. Overall, FCN methods seem to better translate to WSI processing

compared to Mask-RCNN or RPN methods in general. It must be stressed that

the timing is not exact and is dependent on hardware specifications and software700

implementation. With optimised code and sophisticated hardware, we expect

these timings to be considerably different. Additionally, the inference time is

also dependent on the size of the output. In particular, with a smaller output

size, a smaller stride is also required during processing. For instance, if we used

padded convolution in the up-sampling branches of HoVer-Net, then we observe705

5.6× speed up and the average processing time is 1.97 seconds per 1000×1000

image tile. For fair comparison, all models were processed on a single GPU

with 12GB RAM and we fixed the batch size to a size of one. Future work will

explore the trade-off between the efficiency of HoVer-Net and its potential to

accurately perform instance segmentation and classification.710

A major bottleneck for the development of successful nuclear segmentation

algorithms is the limitation of data; particularly with additional associated class

labels. In this work, we introduce the colorectal adenocarcinoma nuclear seg-

mentation and phenotypes (CoNSeP) dataset, containing over 24K labelled nu-

clei from challenging samples to reflect the true difficulty of segmenting nuclei in715

whole-slide images. Due to the abundance of nuclei with an associated nuclear

category, CoNSeP aims to help accelerate the development of further simultane-

ous nuclear instance segmentation and classification models to further increase

the sophistication of cell-level analysis within computational pathology.

We analysed the common measurements used to assess the true performance720

of nuclear segmentation models and discussed their limitations. Due to the

fact that these measurements did not always reflect the instance segmentation

performance, we proposed a set of reliable and informative statistical measures.

We encourage researchers to utilise the proposed measures to not only maximise

the interpretability of their results, but also to perform a fair comparison with725
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other methods.

Finally, methods have surfaced recently that explore the relationship of vari-

ous nuclear types within histology images (Javed et al., 2018; Sirinukunwattana

et al., 2018), yet these methods are limited to spatial analysis because the seg-

mentation masks are not available. Utilising our model for nuclear segmentation730

and classification enables the exploration of the spatial relationship between var-

ious nuclear types combined with nuclear morphological features and therefore

may provide additional diagnostic and prognostic value. Currently, our model is

trained on a single tissue type, yet due to the strong performance of our instance

segmentation model across multiple tissues, we are confident that our model will735

perform well if we were to incorporate additional tissue types. We observe a low

F1 classification score for the miscellaneous category in the classification model

because there are significantly less samples within this category and there exists

high intra-class variability. Future work will involve obtaining more samples

within this category, including necrotic and mitotic nuclei, to improve the class740

balance of the data.
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Appendix A. Ablation Studies

To gain a full understanding of the contribution of our method, we investi-750

gated several of its components. Specifically, we performed the following abla-

tion experiments: (i) contribution of the proposed loss strategy; (ii) Sobel-based

post processing technique compared to other strategies and (iii) contribution of
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the dedicated classification branch. Here, we utilised the Kumar and CoNSeP

datasets for (i) and (ii) due to the large number of nuclei present, whereas for755

(iii) we use CoNSeP and CRCHisto because we do not have the classification

labels for Kumar.

Loss Terms: We conducted an experiment to understand the contribution

of our proposed loss strategy. First, we used mean squared error (MSE) of the

horizontal and vertical distances La as the loss function of the HoVer branch and760

binary cross entropy (BCE) loss Lc as the loss function for the NP branch. We

refer to this combination as the standard strategy because MSE and BCE are the

two most commonly used loss functions for regression and binary classification

tasks respectively. Next, we introduced the MSE of the horizontal and vertical

gradients Lb to the HoVer branch and the dice loss Ld to the NP branch. The765

intuition behind our novel Lb is that it enforces the correct structure of the

horizontal and vertical map predictions and therefore helps to correctly separate

neighbouring instances. The dice loss was introduced because it can help the

network to better distinguish between background and nuclear pixels and is

particularly useful when there is a class-imbalance. We present the results in770

Table A1, where we observe an increase in all performance measures for our

proposed multi-term loss strategy. Therefore, the additional loss terms boost

the network’s ability to differentiate between nuclear and background pixels

(DICE) and separate individual nuclei (DQ and PQ). In particular, there is a

significant boost in the SQ for both Kumar and CoNSeP, which suggests that775

our proposed loss function Lb is necessary to precisely determine where nuclei

should be split.

Post Processing: Usually, markers obtained from applying a threshold to

an energy landscape (such as the distance map) is enough to provide a compet-

itive input for watershed, as seen by DIST in Table 3. Although HoVer-Net is780

not directly built upon an energy landscape, we devised a Sobel-based method

to derive both the energy landscape and the markers. To compare with other

methods, we implemented two further techniques for obtaining the energy land-

scape and the markers. We then exhaustively compared all energy landscape
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and marker combinations to assess which post processing strategy is the best.785

We start by linking HoVer to the distance map by calculating the square sum

χ2 + ϕ2, which can be seen as the distance from a pixel to its nearest nuclear

centroid. In other words, this is a pseudo distance map. Additionally, χ and ϕ

values can be interpreted as Cartesian coordinates with each nuclear centroid as

the origin. By thresholding the values between a certain range, we can obtain790

the markers. The results of all combinations are shown in Table A2. Note, our

gradient-based post processing technique is specifically designed for the HoVer

branch output.

Classification Branch: In order to assess the importance of a devoted

branch for concurrent nuclear segmentation and classification, we compared the795

proposed three branch setup of HoVer-Net to a two branch setup. Here, the

two branch setup extends the NP branch to a multi-class setting, by predicting

each nuclear type at the output. Then, to obtain the binary mask, the positive

channels are combined together after nuclear type prediction. Utilising three

branches decouples the tasks of nuclear classification and nuclear detection,800

where a separate branch is devoted to each task. For this ablation study, we

train on the CoNSeP training set and then process both the CoNSeP test set

and the entire CRCHisto dataset.

We report results in Table A3, where we observe that utilising a separate

branch devoted to the task of nuclear classification leads to an improved overall805

performance of simultaneous nuclear instance segmentation and classification in

both the CoNSeP and CRCHisto datasets. We can see that if the classification

takes place at the output of NP branch, then the network’s ability to determine

the nuclear type is compromised. This is because the task of nuclear classifica-

tion is challenging and therefore the network benefits from the introduction of810

a branch dedicated to the task of classification.
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Table A1: Ablation study highlighting the contribution of the proposed loss strategy.

Kumar CoNSeP

Strategy DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

Standard Loss 0.823 0.750 0.771 0.581 0.608 0.846 0.685 0.774 0.532 0.557

Proposed Loss 0.826 0.770 0.773 0.597 0.618 0.853 0.702 0.778 0.547 0.571

Table A2: Ablation study for post processing techniques: Sobel-based versus thresholding to

get markers and Sobel-based versus naive conversion to get energy landscape

Kumar CoNSeP

Energy Markers DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

χ2 + ϕ2 Threshold 0.825 0.597 0.705 0.764 0.541 0.850 0.543 0.602 0.761 0.459

χ2 + ϕ2 Sobel 0.826 0.613 0.766 0.768 0.591 0.853 0.561 0.694 0.770 0.535

Sobel Threshold 0.825 0.614 0.715 0.772 0.554 0.850 0.566 0.617 0.775 0.479

Sobel Sobel 0.826 0.618 0.770 0.773 0.597 0.853 0.571 0.702 0.778 0.547

Table A3: Ablation study showing the contribution of the classification branch in HoVer-Net

on the CoNSeP dataset. Fd denotes the F1 score for nuclear detection, whereas Fe
c, Fi

c, Fs
c

and Fm
c denote the F1 classification score for the epithelial, inflammatory, spindle-shaped and

miscellaneous classes respectively.

CoNSeP CRCHisto

Branches PQ Fd Fe
c Fi

c Fs
c Fm

c Fd Fe
c Fi

c Fs
c Fm

c

NP & HoVer 0.499 0.736 0.636 0.545 0.528 0.333 0.666 0.458 0.523 0.271 0.132

NP & HoVer & NC 0.516 0.748 0.635 0.631 0.566 0.426 0.688 0.486 0.573 0.302 0.178
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