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Declarative memory has been found to be sensitive to reward-related changes in the environment. The
reward signal can be broken down into information regarding the expected value of the reward, reward
uncertainty and the prediction error. Research has established that high as opposed to low reward values
enhance declarative memory. Research in neuroscience suggests that high uncertainty activates the
reward system, which could lead to enhanced learning and memory. Here we present the results of four
behavioural experiments that examined the role of reward uncertainty in memory, independently from
any other theoretically motivated reward-related effects. Participants completed motivated word learn-
ing tasks in which we varied the level of reward uncertainty and magnitude. Rewards were dependent
upon memory performance in a delayed recognition test. Overall the results suggest that reward uncer-
tainty does not affect episodic memory. Instead, only reward outcome appears to play a major role in
modulating episodic memory.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
Introduction

The ability to selectively encode and retrieve events is an adap-
tive feature of episodic memory (Castel, 2007; Nairne, 2014). Dur-
ing motivated learning people are able to prioritise the learning of
specific pieces of information to maximise reward. These effects
have been shown using a variety of episodic memory tests includ-
ing free and serial recall, and recognition memory (Adcock,
Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; Castel,
Benjamin, Craik, & Watkins, 2002; Eysenck & Eysenck, 1982;
Harley, 1965; Loftus & Wickens, 1970; Madan, Fujiwara, Gerson,
& Caplan, 2012; Spaniol, Schain, & Bowen, 2013; Weiner &
Walker, 1966). In addition, educators have a particular interest in
how rewards promote episodic memory in order to ‘‘gamify” the
learning environment (Gee, 2003; Howard-Jones, Demetriou,
Bogacz, Yoo, & Leonards, 2011; Howard-Jones, Jay, Mason, &
Jones, 2016) and there is some evidence that uncertainty of reward
may promote learning in classroom-based environments (Howard-
Jones & Jay, 2016; Ozcelik, Cagiltay, & Ozcelik, 2013).

The neuroscience of reward processing has guided research on
the relationship between reward and memory (Adcock et al.,
2006; Shohamy & Adcock, 2010; Wittmann, Dolan, & Düzel,
2011). Single-cell neurophysiology in non-human primates and
imaging work in humans strongly suggests that the dopaminergic
reward system responds to different components of reward:
expected value; outcome or prediction error; and uncertainty of
reward (Cromwell & Schultz, 2003; Fiorillo, Tobler, & Schultz,
2003; Hollerman & Schultz, 1998; Schultz, 1998, 2002; Schultz
et al., 2008; Tobler, Fiorillo, & Schultz, 2005). The aim of this paper
is to examine which aspects of the reward signal promote memory
performance in motivated learning. In particular, the key question
examined here is whether uncertainty about reward has effects
on episodic memory. We also assess more generally the role of
these different reward components in episodic memory. Across
the four experiments presented in this paper, we isolate and assess
the contributions of different aspects of reward to episodic mem-
ory encoding. The factors of interest are listed in Table 1. As we
review in the sections below, these reward components were
selected based on previous demonstrations that they are signalled
in reward-related brain areas (Cromwell & Schultz, 2003; Fiorillo
et al., 2003; Liu, Hairston, Schrier, & Fan, 2011; Preuschoff,
Bossaerts, & Quartz, 2006; Schultz, 2010) and/or have been shown
to affect reward-related learning (Adcock et al., 2006; Bunzeck,
Dayan, Dolan, & Duzel, 2010; Mather & Schoeke, 2011; Wittmann
et al., 2011).
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Table 1
Reward-related predictors of memory performance tested across the series of
experiments. The last column shows the experiments for which each predictor was
tested.

Predictor Description Experiment

Expected Value
(EV)

Probability of obtaining a reward multiplied
by the reward magnitude

1

Reward Outcome
(O)

Magnitude of the reward obtained 2, 3, 4

Prediction Error
(PE)

Expected value of the reward minus the
reward outcome

2, 3, 4

Reward
Uncertainty
(U)

A binary variable indicating the presence or
absence of uncertainty

1, 2, 3

The entropy �POPOlog2PO 4

Surprisal (S) The degree to which information has
changed after the outcome of an event
�log2ðPOÞ where PO is the event outcome
(reward or no reward)

4
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Dopamine signalling of reward cues, outcomes and uncertainty

Evidence from neuroscience (both single cell recordings in non-
human primates and neuroimaging in humans) suggests that the
reward system—comprising areas such as the ventral tegmental
area (VTA), the ventral striatum, the frontal cortex and amyg-
dala—show several changes in activity in response to rewards
and reward-predicting cues (Cromwell & Schultz, 2003; Fiorillo
et al., 2003; Paton, Belova, Morrison, & Salzman, 2006; Schultz,
1998, 2002). Dopaminergic neurons in the midbrain exhibit two
patterns of firing. The first, known as the phasic bursts, are tran-
sient responses to reward cues and outcomes. One view is that this
phasic response encodes the reward prediction error: if the reward
is smaller than expected the neurons respond below their baseline
firing rate, and if it is larger than expected the neurons fire above
their baseline rate (Fiorillo et al., 2003; Glimcher, 2011;
Hollerman & Schultz, 1998; Schultz, 1998, 2010; Tobler et al.,
2005). The second type of signal, tonic firing, refers to sustained
activity in response to anticipation and expectancy. This tonic fir-
ing has been linked to reward uncertainty (Hsu, Krajbich, Zhao, &
Camerer, 2009; Liu et al., 2011; Preuschoff et al., 2006;
Preuschoff, Quartz, & Bossaerts, 2008; Tobler et al., 2005; Tobler,
O’Doherty, Dolan, & Schultz, 2007). Uncertainty refers to the pre-
dictability of the outcome of an event. Whereas expected value
refers to a combination of reward magnitude and probability,
uncertainty refers to the spread of the reward probability distribu-
tion irrespective of the magnitude (Tobler et al., 2007). In the case
where there are two possible outcomes (e.g. reward vs. no reward),
uncertainty follows uncertainty follows an inverted U-shaped
function of probability of reward, so that it maximal at p = 0.5. A
common measure of uncertainty is entropy. Entropy is calculated
as minus the weighted sum of the logarithm of the probabilities
of each possible outcome. Unlike variance it is not dependent on
the reward magnitude (Preuschoff et al., 2006). An additional infor-
mation theoretic term we will examine is surprisal. Surprisal refers
to the information gained from an event when it occurs, (i.e., the
reduction in uncertainty) and is bigger for less probable events:
less probable events are more surprising when they do occur. Sur-
prisal differs from signed prediction error as a surprisingly good
and surprisingly bad outcome will generate the same surprisal
value, but will be associated with different prediction errors (pos-
itive vs negative).

While much of the work on reward uncertainty coding has been
conducted with non-human animals, separate responses to value
and uncertainty have also been observed in humans using fMRI
(D’Ardenne, Mcclure, Nystrom, & Cohen, 2008; Glimcher, 2011;
Hsu et al., 2009; Liu et al., 2011; Ludvig, Sutton, & Kehoe, 2008;
Preuschoff et al., 2006, 2008; Schultz et al., 2008; Tobler et al.,
2005, 2007). Using a monetary gambling task Preuschoff et al.
(2006) found evidence of neural encoding of expected value and
uncertainty in regions including the midbrain and ventral striatum.
In this study, and as similarly observed in other studies, the
authors find both a linear and quadratic components to the reward
signal (Cooper & Knutson, 2008; Dreher, Kohn, & Berman, 2006;
Rolls, McCabe, & Redoute, 2008). In summary, there is compelling
evidence indicating that expected value and uncertainty are repre-
sented by temporally distinct signals in the brain.

As we review next, there is both neurobiological and beha-
vioural evidence that these reward signals linked to reward cues
and outcomes are associated with enhanced memory consolidation
(Lisman & Grace, 2005; Lisman, Grace, & Duzel, 2011; Shohamy &
Adcock, 2010). However, there are no studies to date that directly
examine the role of reward uncertainty in memory.

Reward-related memory enhancements

Reward-related enhancements in memory have also been found
for items where memory is incidental. Under incidental learning
conditions, the rewards are not contingent upon memory but
instead rewards or reward cues are presented in close temporal
proximity to memory targets (Murayama & Kitagami, 2014;
Murayama & Kuhbandner, 2011; Wittmann et al., 2005). These
reward-related enhancements are only seen for items tested after
a delay (24 h) (Murayama & Kuhbandner, 2011; Wittmann et al.,
2011). This type of learning is thought to be supported by the func-
tional links between the reward circuitry in the brain and the hip-
pocampus (Lisman & Grace, 2005) and emerging evidence suggests
that dopaminergic activity modulates hippocampal encoding
(Shohamy & Adcock, 2010). Although studies have focused on the
potential role of dopamine, it is likely that other neurotransmitters
such as acetylcholine and noradrenaline are coreleased with dopa-
mine and play a critical role in reward processing and memory
consolidation (Clewett & Mather, 2014; Mather, Clewett, Sakaki,
& Harley, 2015; Murty, Labar, & Adcock, 2012; paper284,
Preuschoff, ’t Hart, & Einhauser,2011; Preuschoff et al., 2011;
Shaikh & Coulthard, 2013; Takeuchi et al., 2016).

The incidental learning literature has investigated—to a greater
degree than motivated learning—which aspects of the reward sig-
nal may be critical to the reward-related memory enhancement. A
key question has been whether the fidelity of the reward memory
enhancement is sufficient to reflect small changes in magnitude?
Wittmann et al. (2011) found that recognition memory for items
showed a non-linear effect of reward on memory performance
with only significant differences in memory performance between
cases where reward was delivered and where it was not, regardless
of the reward value. The focus has now shifted to the relationship
between reward cue and reward outcome (Bunzeck et al., 2010;
Mason, Ludwig, & Farrell, 2016; Mather & Schoeke, 2011).
Mather and Schoeke (2011) propose that the critical factor is the
reward outcome relative to expectation as opposed to absolute
amount of reward received on each trial. In their study participants
were presented with a reward cue indicating one of three trial
types (monetary loss and no outcome trial). Participants had to
respond as quickly as possible to a picture target after which the
reward outcome was revealed. The reward outcome could either
be congruent or incongruent with the reward cue meaning that tri-
als could be classified as either rewarded or loss avoided (regard-
less of actual reward outcome). Recognition memory
performance for the target pictures was significantly better for tri-
als resulting in a ‘‘hit” outcome, which includes trials where the
reward value may have been 0. Similarly in our recent direct repli-
cation (Mason et al., 2016) of findings by Bunzeck et al. (2010) we
found evidence that memory performance was primarily influ-
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enced by the relative reward magnitude, albeit in the opposite
direction to the original finding. The consistent evidence of an
effect of reward outcome on memory under incidental learning
conditions demonstrates that these reward-memory effects cannot
be explained by strategic encoding alone.

Murayama and Kitagami (2014) conducted an incidental learn-
ing task to provide direct evidence that reward-related memory
enhancements are not simply a result of increased engagement
or attention. The to-be-remembered items were presented prior
to the reward cue and therefore the reward cue was essentially
irrelevant to the memory stimuli. The results showed that items
that were followed by a reward cue were better remembered than
items that were followed by a neutral cue. These findings suggest a
post-presentation and retroactive effect of monetary incentives on
memory encoding which indicates that the effects may rely on
mechanisms of dopaminergic consolidation.

There also exist many situations where the individual has
expectations that some information will be more relevant, or that
there are reasons to actively prioritise the encoding of particular
information at the expense of other information. In educational
settings the contingency between performance and reward is often
explicit, either through classroom rewards such as points or
through the desire to achieve good grades (Howard-Jones & Jay,
2016). This type of learning is often referred to as motivated or
intentional learning as participants are explicitly informed that
each reward is only earned if the associated item is successfully
remembered in a later memory test (Adcock et al., 2006; Castel,
2007; Spaniol et al., 2013). Findings in the value-directed learning
literature that use a linear range of point values demonstrate better
memory in an immediate memory test for the higher compared to
lower value items (Ariel & Castel, 2014; Castel, 2007; Castel et al.,
2002; Cohen, Rissman, Suthana, Castel, & Knowlton, 2014, 2015;
Friedman & Castel, 2011; Madan et al., 2012).

Adcock et al. (2006) conducted the first study to directly exam-
ine the link between reward anticipation and motivated learning.
In this study the reward was presented prior to the stimulus. Par-
ticipants were asked to remember pictures in exchange for a high
reward ($5) or a low reward ($1), which they received upon suc-
cessful recognition of the word. The authors found that the expec-
tation of receiving a reward increased memory for high reward
items. It therefore appears that the reward-related memory
enhancement occurs when people directly prioritise rewarded
items as well as when they incidentally associate items with
rewards. Using fMRI, the authors found that higher activity in
reward-related areas at encoding predicted superior memory per-
formance. It is thought that dopaminergic consolidation processes
support reward-related motivated learning. However, it is likely
that in motivated learning, strategic learning also plays a critical
role.

Spaniol et al. (2013) conducted a motivated learning study to
address the contributions of strategic value-based learning and
dopaminergic consolidation to reward-related enhancements in
memory. In their task, a monetary incentive was presented before
the memoranda and the participant’s goal was to remember as
many items as possible in order to maximise earnings. The presen-
tation of each memoranda was followed by a simple distractor task
which served to reduce the chance of strategic rehearsal of the
individual memory items.

Spaniol et al. (2013) included a within-subject manipulation of
test interval (immediate vs. 24 h delay). The authors found that
higher reward increased memory performance only after a delay,
which suggests a greater role for consolidation processes com-
pared to selective rehearsal or increased attention which should
be evident at immediate test. It should be noted that the task used
by Spaniol et al. (2013) differed from those used in value-directed
learning studies in that it was fast paced, leaving little time for
effortful encoding and there was a large number of trials. There-
fore, it is likely that both value-directed learning and dopaminergic
consolidation contribute to explaining the reward-related
enhancements in motivated learning.

A possible role for reward uncertainty

The preceding discussion highlights the extensive investigation
of the role of reward in episodic memory. However as noted earlier,
the reward system also signals the uncertainty of reward delivery
following a reward cue. There is a notable absence of studies exam-
ining the influence of reward uncertainty on memory. Several
studies in the neuroscience and education literature have looked
at the potential influence of uncertainty on learning, but they con-
found reward uncertainty with other aspects of the reward envi-
ronment, such as expected value. For example, Ozcelik et al.
(2013) tested participants’ general knowledge in a game-like learn-
ing environment in which correct answers earned points and
incorrect answers lost points. A dice was rolled to indicate the
number of points available in each trial. There were two condi-
tions: a certain condition, under which a dice was rolled but the
points available remained the same; and an uncertain condition,
in which a dice was rolled but any value was possible. This design
means that expected value changes in the uncertain condition but
not in the certain condition and therefore the two variables are
confounded. The results indicated better performance in the uncer-
tain condition and increased self-reported motivation among play-
ers in the uncertain condition. However, it is not possible to
conclude from these results whether it is uncertainty of outcome,
or reward outcome value that is actually driving the increased
learning, as the design of the experiment confounded expected
value of reward and uncertainty.

Although they did not explicitly examine uncertainty in their
study, Howard-Jones et al. (2011) also noted the potential role of
uncertainty in driving learning in educational settings. Indeed,
there has been an increasing interest in game-based learning.
The gamification of the learning environment aims to motivate
and engage students by involving elements typically found in
video-games. The success of attempts to introduce gaming tech-
niques in classroom education is still debated (de Freitas &
Maharg, 2011; Perrotta, Featherstone, Aston, & Houghton, 2013).
The idea that chance-based games promote learning due to
increased reward activity in the brain suggests that a demon-
strated role of uncertainty in memory consolidation would have
potential application in educational settings (Howard-Jones et al.,
2014).

The current study

The primary goal of the study presented here was to test beha-
viourally if there is a memory-enhancing effect of reward uncer-
tainty. The information provided by reward uncertainty is
conceptually different from that provided by prediction error and
therefore the two signals may differentially affect memory. This
distinction is consistent with findings that uncertainty of reward
is signalled by the more tonic activity change (as opposed to phasic
bursting) of dopamine neurons (Fiorillo et al., 2003).

Alternatively, if the reward memory enhancement is driven
purely by the signal associated with reward value then there
should be no effect of uncertainty on memory. The effective reward
value signal might be the expected value, the actual reward out-
come or the prediction error. Prediction errors are an integral part
of reinforcement learning models (Sutton & Barto, 1998). In such
models, prediction errors are used to update the current belief
about the value of different actions in order to maximise future
rewards. It has been suggested that neurons in the dopaminergic



Fig. 1. Trial sequence for study phase in Experiment 1.
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system encode the prediction error term of these models (Schultz,
1998). Previous studies, particularly in incidental memory, have
not clearly distinguished between the effects of reward anticipa-
tion and outcome (Bialleck et al., 2011; Mather & Schoeke, 2011;
Wittmann et al., 2005). Memory enhancement could be attributed
to either reward anticipation or a post-encoding enhancement of
items after reward delivery (Murayama & Kitagami, 2014).

Finally, consideration of behavioural theories suggests that
uncertainty might even have a negative effect on memory. There
are many demonstrations of individuals’ tendency to be risk
averse, meaning that safer gambles are preferred to riskier gam-
bles, and this is observed even when riskier gambles have a higher
expected value (Kahneman & Tversky, 1979). Psychological theo-
ries of utility—such as prospect theory (Kahneman & Tversky,
1979)—typically incorporate risk aversion via a concave utility
function, which down weights the high value outcomes that would
be more likely under the riskier option. It may be that memory
encoding is driven not just by value (e.g., Castel, 2007) but by
expected utility incorporating a concave utility function, in which
case uncertainty will devalue items and make them less
memorable.
Experiment 1

The aim of Experiment 1 was to use a simple verbal memory
task to determine if uncertainty of reward enhances memory when
controlling for expected value of reward. Participants studied a list
of words in expectation of a delayed recognition memory test (see
Fig. 1). Each word was preceded by one of three reward cues: no
reward (0p), a certain reward (10p), or an uncertain reward cue
(0/20p), the two outcomes being equally probable of reward
(p = 0.5). The actual reward outcome was not shown. One notable
feature of this design is that the subjects encode the uncertain
0/20p condition as an expected value of 10p. This allows us to com-
pare certain and uncertain rewards with the same expected value.

A first concern was whether we would replicate the findings
that memory performance is enhanced by an associated reward
cue (Adcock et al., 2006). Our second, more critical interest was
in comparing memory performance under conditions of certainty
and uncertainty, to determine if reward uncertainty also has an
effect on memory performance. In this experiment uncertainty
persists for the duration of encoding and memory recognition, so
it is never resolved until the very end of the second session. Even
then, no individual rewards are tied to individual items.

Methods

Participants
A total of 30 participants took part in our study (age range 18–

36 years, mean 22.73 years, SD = 4.27; 9 males and 21 females). All
participants received a minimum £5 for their time. The rest of their
earnings were related to performance in the memory task, on
which they could earn up to an additional £6.40. All participants
were fluent English speakers and gave informed written consent
prior to the study, which was approved by University of Bristol
Ethics Committee.

Materials
A total of 204 words were selected from the pool of 400 words

used in Oberauer, Lewandowsky, Farrell, Jarrold, and Greaves
(2012). All words were concrete nouns, and were chosen to refer
to common objects that are larger or smaller than a soccer ball,
with the pool consisting of 102 objects rated as larger and 102
rated as smaller.
Procedure
Participants were required to attend two experimental sessions

approximately twenty-four hours apart. During the first session
participants were told that they would see a series of words and
that their memory for those words would be tested in the next
day’s session. Participants were not given details regarding the
type of memory test. Each word would be presented with a mon-
etary reward, such that participants would earn the reward upon
correct recognition of the word. There were three reward cues: a
certain 0p (no reward); a certain 10p; or uncertain (0/20p with
equal probability), where the actual outcome was determined
pseudo randomly by the computer. In the latter condition the par-
ticipants were told that the cue indicated that they would win
either 0p or 20p for a correct recognition. The certain 10p and
uncertain 0/20p conditions are equated for expected value, but dif-
fer in uncertainty.In each trial participants were presented with a
reward cue for 1500 ms, followed by the target word (4000 ms).
To ensure that the words presented were encoded—including those
that the cue indicated would not be rewarded—participants were
required to indicate whether the object was smaller or larger than
a soccer ball.

Participants used the left and right arrow keys (with their index
and middle fingers of their dominant hand) to input their response.
The word then changed from black to blue to show that their
response had been registered, but remained on the screen to con-
trol the word presentation time. There was an intertrial interval of
1500 ms between each trial during which a fixation cross was dis-
played in the centre of the screen. Participants completed a block
of 12 practice trials before starting the main part of the experi-
ment. The learning phase was then run as three blocks of 34 trials,
with optional breaks between blocks. There were an equal number
of each type of reward, randomly intermixed across the 102 trials.

During the second session on the following day, participants
completed a recognition test following the ‘‘remember/know” pro-
cedure (Tulving, 1985), which is often used in reward-related
memory studies (Bunzeck et al., 2010; Spaniol et al., 2013;
Wittmann, Bunzeck, Dolan, & Düzel, 2007; Wittmann et al.,
2005). Using the left/right arrow keys participants were first
required to make an old/new judgment. After ‘‘new” judgments
participants were asked to rate how confident they were about this
decision by deciding if the word was ‘‘certainly new” or ‘‘guess”.
After ‘‘old” decisions subjects were asked to indicate if they were
able to recollect something specific about seeing the word during
the study phase (‘‘remember”), or if they simply felt the word
was ‘‘familiar”. Alternatively, if they were unsure that they had
in fact seen the word they could select ‘‘guess”. Participants were
told that they would earn the reward associated with the word,
but if they classified a new word as old they would lose 7 pence
from their total earnings. The participants had up to 4 s to make
each of the two judgments and a response terminated each trial.
There was an inter-trial interval of 500 ms. Their total earnings
were revealed at the end of the test phase.
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There is a continued debate in recognition memory regarding
single or dual process models. Dual process models (Wixted &
Stretch, 2004; Yonelinas, 2002) propose that recognition memory
comprises of both recollection and familiarity, in contrast single
process models such as retrieving-effectively-from-memory
(REM) (Shiffrin & Steyvers, 1997) propose that items are stored
against a single continuum of familiarity or strength of evidence
(Dunn, 2004). Dunn (2004) demonstrated that ‘‘remember/know”
data can be explained by single processes as both options reflect
confidence in the choice as opposed to two distinct processes. Pro-
ponents of dual-process models argue that a distinct recollection
component must be included in recognition memory models in
order explain the findings in the recognition data (Diana, Reder,
Arndt, & Park, 2006). However, there is evidence to suggest that
both types of model account for the existing data, for example
see work by Malmberg, Zeelenberg, and Shiffrin (2004) on word-
frequency effects in recognition memory. We had no prior beliefs
concerning differential effects of uncertainty on recollection vs.
familiarity, but in line with other studies in the literature we col-
lected recollection and familiarity data as this is sometimes anal-
ysed in the literature. The confirmatory analysis focused on
correct recognition and given that there was no overall effect of
uncertainty, we did not feel justified in examining recollection
and familiarity separately. All our data is available on the Open
Science Framework at https://osf.io/bn5e8/.

Data analysis

For each of our experiments we tested 30 participants, with the
exception of Experiment 3 where we tested 50 participants. We are
using Bayesian statistics as our inferential framework, which
allows us to competitively test models and explicitly calculate a
strength of evidence for these models that is not systematically
biased by the sample size.

For all experiments a mixed-effects logistic regression was con-
ducted on individual trials. Firstly, this allowed us to accommodate
individual differences, at least in overall performance levels (by
way of a random subject factor). Secondly, this approach allowed
us to test the role of range of reward-related factors that were
not necessarily represented by single conditions in each experi-
ment. Our dependent variable was therefore each participants’
‘‘old/new” response to each of the studied words shown in the
experiment. The modelling of individual trials becomes particu-
larly important when different trial-types (e.g. low and high prob-
ability rewards in Experiment 4) occur with different frequencies.
In this case, an analysis of ‘‘by-participant summary statistics”,
such as the hit rate, using standard statistical approaches would
give equal weight to hit rates that were measured with very differ-
ent numbers of trials. We will plot the proportion of items cor-
rectly recognised based on reward cue and outcome in each
experiment so as to graphically represent the data. In addition, to
illustrate the goodness of fit, for each experiment we plot the pre-
dictions of each of the best models (model with the lowest BIC)
along side the data.

An additional and important benefit of our approach is that we
are able to make inferences in favour of the null. A Bayesian model
selection approach was used to assess the unique contribution of
predictors. For all experiments, models were fit using the ‘‘glmer”
function in the ‘‘lme4” package in ‘‘R” (Bates, Maechler, Bolker, &
Walker, 2015). The Bayesian Information Criteria (BIC) provided
by the ‘‘glmer” function can be converted to an approximation of
a Bayes Factor (with uninformative priors) according to the follow-
ing rule: BFM1 M2 ¼ expð�0:5 � ðBICM1 � BICM2ÞÞ (Raftery, 1995;
Wagenmakers, 2007). The unit information prior that the BIC
assumes is objective in that the researcher does not specify their
own prior. The BICś assumed prior is relatively uninformed, and
tends to be conservative (i.e., it can favour the null hypothesis
more than under an informed prior (Weakliem, 1999)).

For our model comparisons we first selected the model with the
lowest BIC value and we then compared each of the other models
to this model. The subscript of Bayes Factor indicates the direction
of the model comparison: the first element of the subscript repre-
sents the numerator; the second element represents the denomi-
nator. A Bayes Factor greater than 1 indicates that the model in
the numerator is better supported by the data than the model in
the denominator. A Bayes Factor less than 1 indicates that the
model in the denominator wins over the model in the numerator.
The parameter estimates and confidence intervals for all the mod-
els we ran are reported for each experiment in the appendix.

Table 1 lists the factors that were tested in each experiment; the
design of the experiments meant that not all factors could be
uniquely tested in all experiments. The BIC values for each model
in each experiments are presented in the subsequent tables, along
with a third column which compares the best model to each other
model (denoted as M). For example, if the EV model has the lowest
BIC value it is selected as the best model and a BF will be given pro-
viding a strength of evidence in favour of the EV model compared
to each other model (BFEV M).

The value of the BF indicates the relative evidence, provided by
the data, in favour of one statistical model over another. Although
this evidence is continuous, several authors have suggested heuris-
tics to interpret this evidence. Here it is useful to loosely follow the
interpretation scheme of Jeffreys (1961), who suggested that odds
greater than 3 can be interpreted as some evidence, odds greater
than 10 as strong evidence, and odds greater than 30 as very strong
evidence for a particular hypothesis compared to an alternative
(see also Wagenmakers, 2007).

Results

Fig. 2 shows the recognition memory rate for each of the reward
conditions in the experiment. The false alarm rate along with those
from the other three experiments can be seen in Table 2. The sum-
mary statistics indicate that memory performance was greater in
both of the rewarded conditions, certain and uncertain, compared
to no reward.

A mixed-effects logistic regression was run, with the outcome
variable being recognition accuracy of each of the old words (cor-
rect/incorrect). The baseline model was a model containing only
subject as a random effect. The predictors entered into the model
were expected value (0 or 10) and reward uncertainty, coded as
a binary variable indicating the presence or absence of uncertainty
(1 or 0, respectively). First each of the predictors was entered indi-
vidually into a model, along with subjects as a random effect.

The results from the model comparisons are shown in Table 3.
The first column depicts the predictors in each of the models that
were tested and the second column provides a BIC value for each of
these models. In the final column strength of evidence (as a Bayes
Factor) is provided for each of the models compared to the best
model. The BIC values for this experiment indicated that expected
value alone was the best predictor of recognition memory perfor-
mance. Therefore in column three of the table the BFs indicate
how much evidence there is in favour of this EV model compared
to each of the other models. In this case there is strong evidence
that EV alone is a better predictor of memory performance com-
pared to EV and reward uncertainty, or reward uncertainty alone.

Discussion

The results from Experiment 1 demonstrate a strong effect of a
reward-associated memory enhancement. Both uncertain and cer-
tain rewards improved memory performance for items associated

https://osf.io/bn5e8/


Fig. 2. Recognition memory performance in Experiment 1. Error bars show standard error of the mean (SEM) within-subject error bars calculated using the method in Morey
(2008). The symbols illustrate the predicted values for the best fitting model (EV).

Table 2
False-alarm rates for recognition memory across all four experiments.

Experiment False Alarm rate SEM

1 0.196 0.018
2 0.241 0.028
3 0.188 0.021
4 0.211 0.148

Table 3
Logistic regression model comparison for Experiment 1. The first column lists each of
the models we tested and the best model, with the lowest BIC value is highlighted in
bold. Each of the models (M) was compared to the best model and the third column
shows the BF comparisons.

Model (M) BIC BFEV M

Baseline (b) 3059.40 1.45E+12
EV 3003.40 1
U 3057.30 5.06E+11

EV + U 3010.00 2.71E+01
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with reward. There was, however, evidence against an effect of
uncertainty on memory performance. The model containing uncer-
tainty was only marginally better than the baseline model.
Expected value alone was a better predictor of memory perfor-
mance than a model containing both uncertainty and expected
value. One explanation for the results is that both the certain
reward (10p) and the uncertain reward (0/20p) were being pro-
cessed only in terms of expected value. This would either suggest
that the uncertainty signal does not in fact contribute to enhanced
memory performance and expected value alone can explain the
memory advantage, or that the design of the experiment did not
lead to an uncertainty signal. The majority of reward studies, both
looking at reward anticipation (Knutson, Adams, Fong, & Hommer,
2001) and the relationship between reward and memory perfor-
mance (Adcock et al., 2006; Wittmann et al., 2011, 2005), have
included a reward cue and reward outcome, thus creating an antic-
ipatory period for reward. Dopaminergic neurons show a tonic
response to reward uncertainty between reward cue and reward
outcome and therefore this anticipatory period may be critical
for encoding reward uncertainty (Fiorillo et al., 2003; Schultz
et al., 2008). However, in our experiment the outcome was never
revealed. On the one hand, this manipulation may ensure that
the uncertainty signal is around for a sufficiently long period to
influence the system. On the other hand, it may be that the reward
outcome needs to be revealed for the uncertainty signal to emerge.
Experiment 2 addresses this concern.

The results indicate a clear effect of reward on memory perfor-
mance and there was strong evidence against the role of uncertain
rewards. In Experiment 2 our aim was to address the concern that
in Experiment 1 we may not have induced a reward uncertainty
signal given that we did not reveal the reward outcome.
Experiment 2

The dopamine signal associated with uncertainty is thought to
emerge as a slow, sustained ramping between the reward cue
and delivery of the reward (Schultz et al., 2008). In our first exper-
iment uncertain rewards were cued but the reward outcome was
never revealed. To address this issue, in the second experiment
participants were informed of the outcome of the uncertain cues
following the presentation of each word.

Methods

Participants
A total of 30 participants took part in our study (age range 18–

44 years, mean 24.73 years, SD 5.72; 12 males and 18 females). All
participants received a minimum £5 for their time. The rest of their
earnings were related to performance in the memory task. They
could earn a total of £11.40. All participants were fluent English
speakers and gave informed written consent prior to the study,
which was approved by University of Bristol Ethics Committee.

Procedure
The procedure used in Experiment 1 was modified to include

reward outcomes. For all trials, the reward cue was presented
before the word (as in Experiment 1). For all cues (certain and
uncertain) the reward outcome was presented after the word for
1500 ms (see Fig. 3). For certain trials the reward value was
repeated and for uncertain trials (0/20p) each possible outcome
(0p or 20p) was presented an equal number of times across the
experiment. The rewards could then be obtained if the word was
successfully recognised the next day. A minor amendment was
made to the recognition test procedure so that participants had 5
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s to make each of the recognition test choices. This was done to
ensure that the recognition test was as similar as possible to others
in the literature (e.g. Bunzeck et al., 2010). Otherwise the proce-
dure was identical to that reported in Experiment 1.
Results

The recognition memory rates (proportion correct) for each of
the reward conditions are shown in Fig. 4. Memory performance
was higher in both the certain and uncertain conditions compared
to the no reward condition. In addition, the recognition hit rates in
the uncertain condition were greater than those in the in certain
condition. As can be seen in Fig. 4, enhanced memory performance
seems to be particularly associated with the uncertain 20p reward.

The delivery of outcomes in Experiment 2 allowed us to test the
following predictors: expected value, prediction error, outcome
and uncertainty. It should be noted that expected value, prediction
error and outcome are linearly dependent as prediction error is
equal to the reward outcome minus expected value.

We ran models consisting of all possible combinations of the
factors (models containing all three of the variables expected
value, outcome and prediction error could not be run due to the
linear dependence of factors).

The model with the lowest BIC is a model containing reward
outcome and uncertainty. This model was then compared to all
other models (see Table 4). There is little evidence that this model
is better than a model containing outcome alone. Therefore, we
have ambiguous evidence regarding the role of uncertainty. These
models reflect the finding that there was greater recognition per-
formance in the uncertain condition but that this enhancement
was linked to the reward outcome and was largely driven by
higher recognition rates associated with the uncertain 20p
outcome.
Discussion

Experiment 2 replicated the finding from Experiment 1 that
pairing a word with a higher reward improves memory perfor-
mance. We found the strongest evidence in favour of a model that
contained reward uncertainty and reward outcome, but the evi-
dence for uncertainty alone was ambiguous, the Bayes Factors
showing approximately equal evidence for a model including both
uncertainty and reward outcome, and a model containing only out-
come as a predictor. These results do not allow us to drawn any
conclusion—positive or negative—about the effect of uncertainty
on episodic memory. The model comparisons do, however, clearly
point to a role of outcome such that words associated with higher
outcomes were better remembered.

Rather than run additional participants on this design to gather
more discriminating evidence on the role of uncertainty, we chose
to run an additional experiment with a large number of partici-
pants that also utilised a more balanced factorial design.
Experiment 3

The main purpose of Experiment 3 was to provide more diag-
nostic evidence regarding the roles of reward uncertainty and
reward outcome. To more carefully pick apart the contributions
(or lack thereof) of expected value, reward outcome, prediction
error and uncertainty, a factorial crossing of reward cue (uncertain
vs. certain) and reward outcome (0, 10 and 20 pence) was used. In
addition, we ran 50 participants on this design; given all predictors
were varied within-subjects, and the use of a mixed-effects analy-
sis, a clear result on the role of uncertainty was anticipated.
Methods

Participants
A total of 50 participants took part (age range 18–36 years,

mean = 21.24 years, SD 2.81; 20 males and 30 females). Partici-
pants were recruited for paid participation via adverts on the
University of Bristol School of Experimental Psychology web page.
Five additional participants were tested for one session, but did not
complete the entire study, either due to an error with the computer
hardware or a failure to attend the second session. All participants
were fluent English speakers and gave informed written consent
prior to the study, which was approved by University of Bristol
Ethics Committee.

Procedure
The procedure of the experiment followed that of Experiment 2.

The design of this experiment was factorial, with the main factors
being reward value (0p, 10p or 20p) and reward uncertainty (cer-
tain or uncertain—with each outcome occurring an equal number
of times). The recognition test followed the same procedure out-
lined in Experiments 1 and 2.

The total number of trials and the timings were kept the same.
Reward cues were either certain or uncertain (0/10/20 pence).
Across the experiment there were 34 trials for each reward out-
come, 17 signalled by a certain reward cue and 17 (for each value)
by the uncertain reward cue. All participants received a minimum
£3 for their time. The rest of their earnings were related to perfor-
mance in the memory task. Participants could earn a maximum
total of £13.20.

Results

The proportion of items correctly recognised in each of the con-
ditions in the experiment are plotted in Fig. 5.

We ran a series of all possible models to test the contribution of
the following factors: expected value, prediction error, reward out-
come and reward uncertainty. Our results suggest that the best
model of the data contains only reward outcome as a predictor.
We compared the evidence in favour of the reward outcome model
to each of the other possible models and the results can be seen in
Table 5. The model comparisons indicate that none of the other
models were competitive.

Fig. 5 visually suggests a potential role for uncertainty at least
for the 0p and 20 p outcomes. Our model comparisons illustrate
that there is some evidence against a model containing both
reward outcome and uncertainty. Accordingly, the evidence sug-
gests that the visually apparent difference is more likely due to
chance than a non-trivial effect.

Discussion

In Experiment 2 we were unable to provide clear evidence for or
against reward uncertainty. The design of Experiment 3 allowed a
more powerful examination of the effects of uncertainty across
three different reward values. The results from Experiment 3 pro-
vide evidence against an additional effect of uncertainty. Instead,
the findings suggest that reward outcome is the strongest single
predictor of memory performance.
Experiment 4

Experiments 1–3 all found evidence in favour of expected value
or, when available, reward outcome. In Experiments 1 and 3 we
found evidence against reward uncertainty. In Experiment 2 we
were not able to distinguish between the roles of uncertainty



Fig. 3. Trial sequence for Experiment 2 and Experiment 3 study phase.

Fig. 4. Recognition memory performance in Experiment 2 as a function of reward cue. Error bars show SEM within-subject error bars calculated using the method in Morey
(2008). The symbols illustrate the predicted values for the best fitting model (Outcome).

Table 4
Experiment 2: the first column lists each of the models we tested and the best model,
with the lowest BIC value is highlighted in bold. Each of the models (M) was
compared to the best model and the third column shows the BF comparisons.

Model (M) BIC BFU&O Model

Baseline (b) 3288.9 2080.78
U&O 3273.62 1

O 3274.05 1.24
U 3276.77 4.84

EV 3278.54 11.73
U&PE 3279.08 15.35
U&EV 3279.18 16.15
PE&EV 3279.38 17.78
PE&O 3279.91 23.27
EV&O 3279.91 23.27

PE&EV&O 3281.49 51.19
PE&EV&Un 3281.49 51.19
O&EV&Un 3281.49 51.19

PE 3289.32 2561.89
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and outcome. To lend some additional confidence to the emerging
conclusion that uncertainty does not affect recognition memory, a
fourth experiment was conducted in which uncertainty was varied
over a greater range (rather than just the comparison between no
and maximal uncertainty). Experiment 4 also aimed to generalise
the findings of Experiments 1–3 to a different paradigm that
includes a variation of reward probabilities rather than magnitude
of reward. This paradigm is closer to that used in human imaging
studies that have shown separable midbrain responses to value
and uncertainty (Preuschoff et al., 2006; Schultz et al., 2008;
Tobler et al., 2007).
Recording of brain activity in primates and humans suggests
that the activity of a number of brain regions varies as a function
of different aspects of uncertainty (Hsu et al., 2009; Preuschoff
et al., 2006, 2008; Schultz et al., 2008; Tobler et al., 2005; Tom,
Fox, Trepel, & Poldrack, 2007). Particularly relevant here is the
finding that the variance of the probability distribution across dif-
ferent reward values relates to changes in activity in posterior pari-
etal cortex (PPC) (Mohr, Biele, & Heekeren, 2010; Symmonds,
Wright, Bach, & Dolan, 2011), while varying the probability of a
fixed reward produces uncertainty-related activity in areas such
as ventral striatum (Preuschoff et al., 2006). Symmonds et al.
(2011) suggested that uncertainty-related changes in activity in
the PPC might be related to another function of PPC, namely the
representation of magnitude more generally. Experiments 1–3
here used a binary manipulation of the uncertainty about the size
of the reward, and this may not have been effective in producing an
uncertainty-related response sufficient to produce a concomitant
effect on memory performance.

Given that reward-related activity in striatum is predictive of
episodic memory performance (Adcock et al., 2006; Bunzeck
et al., 2010; Wittmann et al., 2005), and that varying probability
of reward is known to produce uncertainty-related activation in
striatum (Liu et al., 2011; Preuschoff et al., 2006; Schultz et al.,
2008; Tobler et al., 2005, 2007), in Experiment 4 the probability
of obtaining a reward of fixed magnitude was varied. Reward prob-
ability is related to both expected value and uncertainty, and the
two factors can be disentangled by parametrically varying reward
probability (Preuschoff et al., 2006; Schultz et al., 2008; Tobler
et al., 2007). Reward value was fixed at 20 pence and for each trial
the probability of reward was visually signalled to participants;



Fig. 5. Recognition memory performance in Experiment 3 as a function of the certainty of the cue (certain vs. uncertain) and the reward outcome. Error bars show SEM
within-subject error bars calculated using the method in Morey (2008). The symbols illustrate the predicted values for the best fitting model (Outcome).

Table 5
Experiment 3: the first column lists each of the models we tested and the best model,
with the lowest BIC value is highlighted in bold. Each of the models (M) was
compared to the best model and the third column shows the BF comparisons.

Model (M) BIC BFO Model

Baseline (b) 4834.49 1.40E+12
O 4778.55 1

U&O 4781.60 4.61
PE&EV 4786.36 4.96E+01
PE&O 4786.36 4.96E+01
O&EV 4786.36 4.96E+01

PE 4817.38 2.70E+08
PE&U&O 4789.88 2.89E+02

PE&U&EV 4789.88 2.89E+02
O&EV&Un 4789.88 2.89E+02

EV 4803.69 2.88E+05
U&EV 4808.31 2.91E+06
U&PE 4819.23 6.82E+08

U 4837.62 6.73E+12
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accordingly, the design is similar to other studies finding
uncertainty-related activity in striatum (Preuschoff et al., 2006;
Schultz et al., 2008). In order to ensure continuity with our previ-
ous experiments, we kept the timings and other aspects of the
experiment as similar as possible to those in Experiments 1–3.
1 For interpretation of colour in ‘Fig. 6’, the reader is referred to the web version of
is article.
Methods

Participants

A total of 31 participants took part in our study (age range 18–
36 years, mean 22.73 years, SD = 4.27; 9 males and 21 females). All
participants received a minimum £3 for their time. The rest of their
earnings were related to performance in the memory task. They
could earn a total of £11. All participants were fluent English
speakers and gave informed written consent prior to the study,
which was approved by University of Bristol Ethics Committee.
During one testing session the network crashed, so data from this
participant was incomplete. One participant did not attend the sec-
ond experimental session and so their data could not be used.
Procedure

In this experiment participants were told that for each word
they could earn a reward with a given probability. The reward
was fixed to 20 pence, and the probability of reward varied from
0.1 to 0.9 in increments of 0.2. There were an equal number of tri-
als for each reward probability, however, the outcomes were calcu-
lated pseudo-randomly for each participant. This means that for
each probability and reward outcome there will necessarily be a
different number of trials per condition. The probability of earning
a reward was illustrated by a rectangle filled with a green bar that
increased in size the higher the probability of the reward. Before
starting the experiment participants were told which size bar
mapped to each probability. During the trial a yellow ball was
dropped randomly onto the rectangle. This was done by randomly
sampling from the height and width of the green area and placing
the ball at that point. The outcome on each trial was determined
randomly with the predicted probability. If the ball landed in the
green area this indicated that a reward could be earned for correct
memory performance (see Fig. 6).

In each trial participants were presented with a green1 bar
indicating the probability of earning a reward (1500 ms) followed
by the target word (4000 ms). To ensure that the words presented
were encoded participants were required to make a size judgment
about the word. They were asked to judge if the object was smaller
or larger than a football. They used the left and right arrow keys (and
their right index and middle fingers) to input their response and the
word changed from black to white to show that their response had
been registered. The green bar indicating probability of reward
was shown again (500 ms) before a yellow ball dropped into the
th



Fig. 6. Trial sequence for study phase in Experiment 4. The bar initially represents
the probability that the upcoming word will be rewarded at recognition. The yellow
ball drops in the grey area to indicate that there was no reward on the current trial.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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rectangle and either landed in the grey area (no reward) or in the
green area (reward) (1500 ms).

There was an inter-stimulus interval of 1500 ms between each
trial during which a fixation cross was displayed in the centre of
the screen. Participants completed a block of 12 practice trials
before starting the learning phase of the experiment. The experi-
mental session was then run as three blocks, with a total of 100 tri-
als and a 15 s break between each block. The recognition test
followed the same procedure as in the previous experiments.
Results

Fig. 7 shows memory accuracy as a function of reward probabil-
ity and reward outcome (note that different numbers of data
points contribute to the different cells). Memory performance
was higher for outcomes resulting in a reward compared to no
reward. There also appears to be some effect of unexpected out-
comes on memory performance. Memory performance is higher
when the reward outcome is unexpected: a reward when the prob-
ability is low (p = 0.1) and the absence of a reward when the prob-
ability is high (p = 0.9), again note that the number of trials where
this occurs for each participant is very low. This effect will be
tested in our modelling by including a predictor ‘‘surprisal”, as
described below.

The factors of interest for the logistic regression were expected
reward value, reward outcome, prediction error and uncertainty of
reward. In addition, the design of Experiment 4 allowed us to exam-
ine an additional predictor: surprisal. Surprisal can be calculated by
�log2ðPÞ, where P is the prior probability of the event occurring. Sur-
prisal is particularly relevant here as it represents an interaction
between reward outcomeand expected value. That is,when the out-
come is positive, but has a lowprior probability (e.g. 0.1), surprisal is
high (�log2ð0:1Þ ¼ 3:32). When the outcome is positive and has a
high prior probability (e.g. 0.9), surprisal is low (�log2ð0:9Þ ¼
0:15). However, when the prior probability is high (e.g. 0.9), the
probability of not getting a reward is low and surprisal is high again
(�log2ð1� 0:9Þ ¼ 3:32). As seen in Fig. 7, memory performance
appears to be relatively enhanced for those points representing
low-probability outcomes. The inclusion of surprisal in our model
allows for a statistical evaluation of this pattern.

Table 6 gives the modelling results for Experiment 4. A model
containing only reward outcome as a predictor was most favoured
by the data. There was strong evidence against adding the factor
surprisal BFO O&S = 19.81, and very strong evidence against all other
models. Most relevant here is that the model including only out-
come was strongly supported over the model that contained
uncertainty as an additional predictor (Uncertainty + Outcome),
BFO O&Un = 44.08.
Discussion

Our results indicate that reward outcome is the best single pre-
dictor of memory performance. Fig. 7 suggested that memory may
be improved for rewarded items when the reward probability is
low, and non-rewarded items when the reward probability is high.
To allow the model to capture this possible effect, we added a new
predictor of surprisal to our models. We found some evidence
against an effect of surprisal, meaning that memory was not partic-
ularly good for unexpected outcomes. Our regression analysis
therefore suggests that the apparent boost in memory performance
for unexpected outcomes is either very small and not worth the
additional model complexity of an extra parameter or is due to
noise as these means are, by definition, based on fewer data points.
General discussion

The experiments presented in this paper aimed to identify
which properties of reward contribute to the reward-related
enhancements observed in motivated learning (Adcock et al.,
2006; Bunzeck et al., 2010; Castel, 2007; Mather & Schoeke,
2011; Murayama & Kuhbandner, 2011; Murayama & Kitagami,
2014; Wittmann et al., 2007, 2005). In particular, we focused on
the previously unaddressed role of reward uncertainty. We
designed this series of experiments to disentangle the role of some
of the properties of the reward signal: expected value, linked to
phasic dopamine, and reward uncertainty, linked to tonic dopa-
mine (Schultz et al., 2008). We were also able to assess the contri-
bution of other factors including, prediction error, reward outcome
and surprisal.

Across all of our experiments participants were required to
learn a series of words, in exchange for monetary incentives. In
Experiment 1 we used certain and uncertain reward cues. There
was no additional effect of uncertainty on memory performance,
beyond expected value. A potential issue with the design of this
experiment was that we did not reveal a reward outcome, meaning
that the uncertain cue may not have been treated as such by the
participants. Participants may have interpreted the uncertain
reward cue as equivalent to the certain 10p cue, or may have men-
tally simulated an outcome. In order to address this issue, we intro-
duced outcomes to the reward cues to the design for both
Experiments 2 and 3. In Experiment 4 we manipulated uncertainty
and expected value through a variation of reward probability,
keeping reward magnitude constant. Across all these experiments
we consistently found evidence in favour of reward outcome. In
Experiments 1, 3 and 4 we found evidence against an effect of
reward uncertainty. Experiment 2 returned ambiguous informa-
tion on the role of uncertainty: the best fitting model included both
uncertainty and outcome as predictors, but this model was essen-
tially indistinguishable in penalised fit from a model including only
outcome as a predictor. In aggregate, the results point against an
effect of uncertainty on episodic memory.

One caveat is that model selection based on the BIC punishes
models that are more complex (i.e. have more parameters)
(Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016). If
the effect is very small, a very large amount of data will be needed
to find evidence for that effect. As a result, the alternative model is
more complex and flexible, and incurs a penalty for this additional
complexity. If the effect is so small that a null model provides a



Fig. 7. Recognition memory performance for each reward probability based on the reward outcome. Error bars show SEM within-subject error bars calculated using the
method in Morey (2008).The symbols illustrate the predicted values for the best fitting model (Outcome).

Table 6
Experiment 4: the first column lists each of the models we tested and the best model,
with the lowest BIC value is highlighted in bold. Each of the models (M) was
compared to the best model and the third column shows the BF comparisons.

Model (M) BIC BFO M

Baseline (b) 2723.30 4.89E+11
O 2669.43 1

O&S 2675.40 19.81
PE&EV 2676.66 37.11
PE&O 2676.66 37.11
EV&O 2676.66 37.11
U&O 2677.00 44.08

U&O&S 2681.92 516.20
PE&S&EV 2682.85 823.04
PE&S&O 2682.85 823.04
EV&S&O 2682.85 823.04
PE&U&O 2684.09 1524.62

PE&U&EV 2684.09 1524.62
O&U&EV 2684.09 1524.62

PE&S&U&EV 2689.26 2.02E+04
PE&S&U&O 2689.26 2.02E+04
EV&S&U&O 2689.26 2.02E+04

PE 2695.33 4.21E+05
PE&S 2700.01 4.38E+06
PE&U 2703.10 2.05E+07

EV 2703.82 2.93E+07
PE&S&U 2706.68 1.23E+08

EV&U 2708.52 3.08E+08
EV&U&S 2714.44 5.93E+09

S 2728.44 6.51E+12
U 2731.06 2.41E+13

S&U 2735.28 2.00E+14
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reasonable fit to the data, a very large amount of data will be
needed to overcome the penalty associated with the more complex
model. This means that the most generous conclusion for the
reward uncertainty effect here is that the effect is very small,
and substantially more data would be needed to detect the effect
(Wagenmakers, 2007). The parameter estimates for each of the
models ran across all four experiments can be seen in the appen-
dix. It is worth noting that across the four experiments, when look-
ing at best-fitting model that includes uncertainty, the parameter
estimates for uncertainty are just as often negative as they are
positive.

We had prior theoretical reasons to expect a relationship
between reward uncertainty at encoding and subsequent memory
performance. Dopaminergic neurons in the midbrain are thought
to exhibit two patterns of firing. The first, known as the phasic
bursts, are transient responses to reward cues and outcomes. The
second signal, tonic firing, refers to sustained activity in response
to anticipation and expectancy. This tonic firing has been linked
to encoding of reward uncertainty (Hsu et al., 2009; Liu et al.,
2011; Preuschoff et al., 2006, 2008; Tobler et al., 2005, 2007). Evi-
dence from imaging studies has shown that dopaminoceptive areas
respond to reward uncertainty (Preuschoff et al., 2006; Tobler
et al., 2007), and that this is connected to hippocampal activity
(Shohamy & Adcock, 2010). We found no behavioural evidence
for such a relationship. Instead, our results are consistent with a
model in which the phasic bursts of activity are the primary pre-
dictors of memory performance. In particular we find that reward
outcome or, equivalently a combination of expected value and pre-
diction error, is the best predictor of memory.

One reason for specifically looking at motivated learning is the
potential applied benefits of reward in educational settings.
Research has found that game-like learning environments that
contain reward uncertainty lead to better learning than those
where rewards are fixed (Howard-Jones et al., 2016). However,
previous studies did not dissociate uncertainty from other reward
factors such as expected value (Howard-Jones et al., 2011; Ozcelik
et al., 2013). It is possible that reward uncertainty makes the envi-
ronment as whole more engaging. Most studies in the reward
learning literature deliver rewards with a probability of about
80% in order to keep participants engaged (Wittmann et al.,
2011). However, our results suggest that reward uncertainty does
not influence memory on an item by item basis, and suggests
any apparent classroom benefits of reward uncertainty may
require alternative explanations (Devonshire et al., 2014). How-
ever, our study is the first in this area to examine the independent
role of reward uncertainty. Although we find no evidence to sup-
port its role in promoting memory, this does not rule out conduct-
ing controlled experiments in a classroom setting as the
uncertainty linked to the reward environment (and therefore act-
ing over longer timescales) may be more strongly represented in
the classroom environment than in a lab-based setting.

One obvious explanation for the lack of effect of uncertainty is
that our manipulation may not have induced a state of uncertainty
at the time of encoding. Across the four experiments we tested two
types of uncertainty. In Experiment 1 we looked at uncertainty that
persisted for the duration of encoding and recall and in Experi-
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ments 2–4 uncertainty was resolved after encoding but before
recall (this could have led to post-encoding and rehearsal effects
of reward outcome which we will discuss later). Given that our
experimental design did not include an independent measure of
uncertainty, we cannot rule this explanation out. However, there
are good reasons to assume that varying states of uncertainty
levels were induced in paradigm. Neuroimaging studies, on which
our paradigms were based, have reported uncertainty-related acti-
vation in dopaminoceptive areas of the midbrain (Cooper &
Knutson, 2008; Preuschoff et al., 2006, 2008; Tobler et al., 2007).
Our experiments use a very similar manipulation to the above
studies. In all of our studies, as is common in the literature, the ini-
tial reward cue indicated expected value of reward and the degree
of uncertainty associated with that reward. In Experiments 1–3
reward uncertainty was maximal, whereas in Experiment 4 the
level of reward uncertainty varied across trials as a function of
reward probability in a similar manner to the task used by
Preuschoff et al. (2006). Although the reward outcomes in our
experiments were anticipatory (i.e. delivered the next day and
dependent upon correct recognition performance), there is neu-
roimaging evidence suggesting that midbrain dopamingeric neu-
rons show a robust signal to anticipatory rewards and this signal
is linked to memory performance (Adcock et al., 2006). While there
are some methodological differences regarding how the probabil-
ity of reward was conveyed in our studies and those looking at
reward-related uncertainty, these are relatively small and have to
do with the nature of the cues and communication of reward out-
comes. The stimulus differences should be considered relatively
incidental and if the neural uncertainty signal depends on such
incidental features of the design, it would suggest that the neural
response to uncertainty is rather fragile.

It should, however, be noted that we manipulated uncertainty
within the context of small financial gains in motivated learning,
therefore our results can only be interpreted within this context.
One could argue that uncertainty may differentially affect inciden-
tal and motivated learning and that there could be an effect of
reward uncertainty on memory when the conditions of learning
do not allow for strategic learning to take place. In this vein, it is
important to highlight that the mechanisms affecting motivated
and incidental learning are likely to be different as motivated
learning involves the complex interplay between strategic memory
encoding and dopaminergic consolidation. Recent research has
begun to manipulate the degree to which participants can apply
effective encoding strategies in order to dissociate the two learning
mechanisms (Cohen, Rissman, Hovhannisyan, Castel, & Knowlton,
2017; Spaniol et al., 2013). There is also the possibility that people
could show sensitivity to reward uncertainty in the domain of
gains and losses (Tversky & Kahneman, 1981). Recent research in
the decision-making literature has also demonstrated that people
show better memory for the extreme outcome in both risky gains
and risky losses (Madan, Ludvig, & Spetch, 2014, 2016). So
although we do not see evidence of an effect of reward uncertainty
on memory with respect to small gains, it is possible that we would
see an interaction between uncertainty and outcome with respect
to losses or larger gambles.

In addition to dopaminergic consolidation effects on memory,
strategic value-directed learning processes contribute to better
encoding of and memory for items with higher outcomes. Individ-
uals may allocate more time and resources at encoding to items
linked to a higher monetary value (Ariel & Castel, 2014; Castel
et al., 2002; Loftus & Wickens, 1970). The results from our experi-
ments concerning reward outcome could be explained by strategic
influences of value on memory, either in the form of enhanced pro-
cessing of high-value items (Castel, Murayama, Friedman,
McGillivray, & Link, 2013; Cohen et al., 2014, Cohen, Rissman,
Suthana, Castel, & Knowlton, 2015) or directed forgetting of low-
value items (Fawcett & Taylor, 2008; Friedman & Castel, 2011;
Hayes, Kelly, & Smith, 2013; Lehman & Malmberg, 2009; Wylie,
Foxe, & Taylor, 2008). These effects may occur alongside dopamin-
ergic consolidation and the two processes could serve to
strengthen each other. For example, the consolidation process
itself could be strengthened by strategic influences, and these
strategic influences—i.e. signalling an item as ‘‘high-value”— may
be mediated by an enhanced dopamine response. Friedman and
Castel (2011) found that participants were able to predict accu-
rately which items they would remember and forget, and this
was directly linked to the item’s value. It has also been suggested
that memory selectivity could occur due to differences in semantic
processing of high and low value words (Cohen et al., 2014, 2015).
This is supported by recent findings from fMRI studies showing dif-
ferences in activity in the fronto-temporal network, associated
with semantic processing, during processing of high and low value
words (Cohen et al., 2014, 2015).

Overall, the results from our experiments add weight to find-
ings from the incidental learning literature (Bunzeck et al., 2010;
Mason et al., 2016; Mather & Schoeke, 2011; Murayama &
Kitagami, 2014; Wittmann et al., 2011) that stress the importance
of reward outcomes and are consistent with findings from value-
directed learning where a range of reward values are used
(Castel, 2007; Cohen et al., 2014, 2015). Our findings further high-
light the need for memory models to explain the processes at work
for post-encoding memory enhancements across a range of reward
outcomes.

The post-encoding effect of reward outcome can be explained
as the removal or suppression of items within the framework of
several existing memory models, usually focused on directed for-
getting (Malmberg, 2006; Norman, Newman, & Detre, 2007;
Oberauer et al., 2012). In the framework of the Search of Associa-
tion Memory Theory (SAM) model Malmberg (2006) suggested
that directed forgetting is accomplished by shifting the context
with which new memories are associated. By shifting the context
of to-be-forgotten items away from the context used to cue for
items at test, those items will be less activated at recall and are less
likely to be recalled. In the case of item directed forgetting, where
the ‘‘forget” cue is presented after each item to be forgotten, it is
assumed that people shift attention away from items to be forgot-
ten by thinking about recently presented items to be remembered,
thus giving those items additional rehearsal and making them
more likely to be retrieved at a later time. Accordingly, people
might respond to reward values here by treating high reward as
a ‘‘remember” cue, and a low/absent reward as a ‘‘forget” cue.
Other models assume that forgetting occurs due to the synaptic
weakening of memory traces for items. For example, according to
a neural network model of retrieval-induced forgetting (Norman
et al., 2007) items in episodic memory tasks are forgotten due to
the weakening of memory traces in the hippocampal layer of the
network (Anderson, 2003; Norman et al., 2007). Similarly, the for-
getting of the unrewarded or lower reward items could occur by a
process of unlearning. Models such as SOB-CS (Oberauer et al.,
2012) assume that irrelevant information is removed from mem-
ory by unlearning the association between that information and
the current context in memory. Although a model of working
memory tasks, SOB-CS could be extended to explain episodic mem-
ory tasks [see e.g., Farrell 2012], including the effects of reward
seen here.

Not all items can be promoted in memory, but rewards poten-
tially serve the purpose of promoting memory for important items.
Rewards do not simply enhance memory for all items, instead
some items are prioritised over others (Castel, 2007; Castel et al.,
2013). Our series of experiments suggest that reward outcome is
the over-riding factor that leads to items being selectively
enhanced in memory.
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Appendix A

See Tables A1–A4.
Table A1
Experiment 1: parameter estimates and confidence intervals for models.

Model (M) EV U

EV&U 0.083 �0.141
[0.060, 0.105] [�0.378, 0.096]

EV 0.075 –
[0.057, 0.094] –

U – 0.313
– [0.118, 0.509]

Table A2
Experiment 2: parameter estimates and confidence intervals for models.

Model (M) O Un PE EV

O 0.028
[0.016, 0.039]

PE&EV �0.020 0.038
[�0.035, �0.005] [0.020, 0.056]

PE&O 0.038 0.018
[0.020, 0.056] [�0.006, 0.041]

EV&O 0.020 0.018
[0.005, 0.035] [�0.006, 0.041]

O&U 0.021 0.295
[0.009, 0.034] [0.095, 0.496]

PE&O&U 0.025 0.280 0.005
[0.004, 0.045] [0.064, 0.496] [�0.021, 0.031]

U&PE&EV 0.280 �0.019 0.025
[0.064, 0.496] [�0.035, �0.004] [0.004, 0.045]

EV&O&U 0.019 0.280 0.005
[0.004, 0.035] [0.064, 0.496] [�0.021, 0.031]

PE �0.021
[�0.036, �0.006]

PE&U 0.405 �0.019
[0.217, 0.593] [�0.035, �0.004]

EV 0.039
[0.021, 0.057]

EV&U 0.299 0.025
[0.083, 0.514] [0.004, 0.045]

U 0.424
[0.237, 0.611]

Table A3
Experiment 3: parameter estimates and confidence intervals for models.

Model (M) O U PE EV

O 0.036 – – –
[0.027, 0.045] – – –

U&O 0.036 0.17 – –
[0.027, 0.045] [0.029, 0.32] – –

PE&EV – – 0.032 0.04
– – [0.020, 0.045] [0.028, 0.05]

O&PE 0.04 – �0.01 –
[0.028, 0.053] – [�0.025, 0.010] –

O&EV 0.032 – – 0.01
[0.020, 0.045] – – [�0.001, 0.030]

PE – – 0.032 –
– – [0.012, 0.045] –

PE&U&O – 0.166 0.034 0.039
– [0.026, 0.051] [0.021, 0.312] [�0.023, 0.013]

PE&U&EV – 0.166 0.034 0.039
– [0.021, 0.311] [0.021, 0.047] [0.026, 0.051]

O&EV&Un 0.034 0.166 – 0.005
[0.021, 0.047] [0.021, 0.312] – [�0.013, 0.022]

EV – – – 0.040
– – – [0.027, 0.052]

U&EV – 0.15 – 0.038
– [0.002, 0.290] – [0.026, 0.051]

U&PE – 0.190 0.034 –
– [0.046, 0.334] [0.021, 0.047] –

U – 0.170 – –
– [0.027, 0.312] – –



Table A4
Experiment 4: parameter estimates and confidence intervals for models.

Model (M) O U PE EV S

O 3.888 – – – –
[2.908, 4.867] – – – –

O&S 3.866 – – – 0.099
[2.886, 4.846] – – – [�0.039, 0.238]

PE&EV – – 3.588 0.901 –
– – [2.396, 4.779] [0.558, 1.244] –

PE&O 4.506 – �0.918 – –
[2.793, 6.219] – [�3.001, 1.165] – –

EV&O 3.588 – – 0.184 –
[2.396, 4.780] – – [�0.234, 0.601] –

U&O 3.897 �0.140 – – –
[2.917, 4.877] [�0.568, 0.288] – – –

U&O&S 3.878 �0.283 – – 0.133
[2.897, 4.858] [�0.744, 0.179] – – [�0.020, 0.286]

PE&S&EV – – 3.601 0.876 0.094
– – [2.383, 4.819] [0.532, 1.220] [�0.045, 0.233]

PE&S&O 4.380 – �0.779 – 0.094
[2.660,6.099] – [�2.915, 1.357] – [�0.045, 0.233]

EV&S&O 3.601 – – 0.156 0.094
[2.383, 4.819] – – [�0.271, 0.583] [�0.045, 0.233]

PE&U&O 4.578 �0.161 �1.001 – –
[2.836, 6.320] [�0.592, 0.270] [�3.112, 1.109] – –

PE&U&EV – �0.161 3.577 0.916 –
– [�0.592, 0.270] [2.389, 4.765] [0.567, 1.264] –

O&U&EV 3.577 �0.161 – 0.200 –
[2.389, 4.764] [�0.592, 0.270] – [�0.222, 0.622] –

PE&S&U&EV – �0.295 3.581 0.893 0.128
– [�0.758, 0.168] [2.361, 4.802] [0.543, 1.242] [�0.025, 0.282]

PE&S&U&O 4.463 �0.295 �0.882 – 0.128
[2.717, 6.209] [�0.758, 0.168] [�3.050, 1.287] – [�0.025, 0.282]

EV&S&U&O 3.581 �0.295 – 0.176 0.128
[2.361, 4.802] [�0.758, 0.168] – [�0.258, 0.611] [�0.025, 0.282]

PE – – 3.616 – –
– – [2.428, 4.804] – –

PE&S – – 3.751 – 0.129
– – [2.518, 4.984] – [�0.012, 0.269]

PE&U – �0.096 3.609 – –
– [�0.521, 0.330] [2.424, 4.794] – –

EV – – – 0.910 –
– – – [0.568, 1.252] –

PE&S&U – �0.268 3.764 – 0.162
– [�0.728, 0.192] [2.529, 4.999] – [0.006, 0.317]

EV&U – �0.155 – 0.924 –
– [�0.583, 0.274] – [0.577, 1.271] –

EV&U&S – �0.339 – 0.944 0.168
– [�0.803, 0.126] – [0.597, 1.292] [0.014, 0.322]

S – – – – 0.116
– – – – [�0.022, 0.254]

U – �0.089 – – –
– [�0.512, 0.334] – – –

S&U – �0.247 – – 0.147
– [�0.703, 0.210] – – [�0.006, 0.299]
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