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neuRipp: neural network 
identification of RiPP precursor 
peptides
emmanuel L.c. de los Santos  

Significant progress has been made in the past few years on the computational identification 
of biosynthetic gene clusters (BGCs) that encode ribosomally synthesized and post-translationally 
modified peptides (RiPPs). This is done by identifying both RiPP tailoring enzymes (RTEs) and RiPP 
precursor peptides (PPs). However, identification of PPs, particularly for novel RiPP classes remains 
challenging. To address this, machine learning has been used to accurately identify PP sequences. 
Current machine learning tools have limitations, since they are specific to the RiPPclass they are trained 
for and are context-dependent, requiring information about the surrounding genetic environment of 
the putative PP sequences. NeuRiPP overcomes these limitations. It does this by leveraging the rich 
data set of high-confidence putative PP sequences from existing programs, along with experimentally 
verified PPs from RiPP databases. NeuRiPP uses neural network archictectures that are suitable for 
peptide classification with weights trained on PP datasets. It is able to identify known PP sequences, 
and sequences that are likely PPs. When tested on existing RiPP BGC datasets, NeuRiPP was able to 
identify PP sequences in significantly more putative RiPP clusters than current tools while maintaining 
the same HMM hit accuracy. Finally, NeuRiPP was able to successfully identify PP sequences from novel 
RiPP classes that were recently characterized experimentally, highlighting its utility in complementing 
existing bioinformatics tools.

Specialized metabolites from bacteria have been a source of bioactive chemical compounds with myriad applica-
tions especially in the pharmaceutical and agrochemical industries1. Advances in DNA sequencing technology 
and the development of computational tools to identify putative biosynthetic gene clusters (BGCs) have led to a 
renewed interest in exploring specialized metabolites from microbes as a potential source of novel compounds. 
Sequencing information has suggested that a large fraction of the biosynthetic potential of these microorgan-
isms remains untapped and undetectable under normal laboratory conditions2,3. Ribosomally synthesized and 
post-translationally modified peptides (RiPPs) constitute a diverse class of natural products with a variety of dif-
ferent bioactivities. In contrast to peptide natural products from assembly-line non-ribosomal peptide synthetase 
(NRPS) pathways, RiPPs are derived from a ribosomally-encoded precursor peptide (PP) that is extensively 
modified by RiPP tailoring enzymes (RTEs)4,5. Beginning from ribosomally-encoded peptides makes RiPPs an 
attractive target for bioengineering as RTEs can be highly selective for recognition sequences in the PP while pro-
miscuously processing other regions of the sequence6. Putative BGCs encoding RiPPs are identified computation-
ally by looking for regions in a genome where there are co-occurences of RTEs and PPs. This makes it relatively 
easy to identify RiPP BGCs of known RiPP classes by looking for co-localization of RTEs specific to the particular 
RiPP class. Identification of putative PP sequences is more challenging as they are frequently missed in genome 
annotation due to their short size6. However, proper identification of PPs is an important aspect of in silico RiPP 
BGC analysis as knowledge of the PP sequence can aid in structure elucidation and provide information on the 
molecular interactions between the RTEs and the PP5. To this end, several methods have been developed to 
identify putative PPs in regions in proximity to RTEs. This typically involves a two-step process where sequences 
to be screened are first identified either through the use of gene-finding software5,7, or from identifying open 
reading frames (ORFs) of specified length in the proximity of RTEs6,8. The likelihood of these sequences to be 
PPs is then evaluated by different methods such as assessing their similarity to known PPs by BLAST7 or hidden 
Markov models (HMMs)5,9, or machine learning approaches such as Support Vector Machine (SVM) classifiers 
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that are trained to identify likely PPs for different classes based on characteristics of PPs in the specified class6,10. 
While successful in identifying PP sequences even some that are different from known PPs of a specified RiPP 
class, these approaches are class-specific or context-dependent on the genes surrounding the putative PP and only 
recognize similar enough sequences to known PPs. These limitations hinder the development of bioinformatic 
workflows to identify novel RiPP classes.

One approach to potentially discover novel RiPP classes is to begin by identifying putative PP sequences 
before exploring the genetic context surrounding the PP sequences for similar sets of RTEs. Due to the large 
amount of genomic information to process, this method requires a context and class-independent way of iden-
tifying likely PP sequences. Because there is no genetic window to focus a search, using ORFs to specify the 
sequences to be classified would result in a large number of sequences and false positives as ORFs do not nec-
essarily correspond to coding sequences particularly in organisms whose GC-content is skewed. A recent study 
presented a pipeline for identifying new RiPP clusters that included a modified version of the gene-finding soft-
ware prodigal11, prodigal-short. Prodigal-short was used to find putative PPs in proximity to RTEs, and peptide 
similarity network analysis of the identified PPs was used to identify new RiPP classes5. This demonstrated the 
potential of using gene-finding software as a starting point for identifying novel RiPPs; however, the number 
of likely coding sequences from this approach was still large. The researchers used proximity to known RTEs, 
restricting searches by phylogeny, and looking at only large similarity networks to reduce the number of putative 
BGCs to a size where manual curation was tractable. A few of these steps could be avoided if a further context and 
class-independent step were present to discriminate between likely PPs and false positives. The success of SVM 
classifiers has led to an increase in the number of high-confidence sequences that are likely to be PPs for several 
different classes of RiPPs. The wealth of high-confidence PP predictions, along with the increasing number of 
experimentally verified PP sequences, led me to hypothesize that a positive dataset of reasonable size and quality 
could be constructed to train a deep neural network (DNN) to classify peptide sequences on their likelihood of 
being PPs.

DNNs have been successfully employed in image classification problems12 and text sentiment analysis13,14, 
problems that could be analogous to peptide classification problems. Neural networks are also gaining popularity 
in their application to biological systems. Some examples of these in the context of biological sequences are DNNs 
trained to identify lab origin given a DNA sequence15, identify whether a sequence of DNA is plasmid or chromo-
somal in origin16, and predicting protein-protein interactions between two proteins17.

In this study, I explore whether DNN architectures successful in image and text classifiers are suitable for the 
problem of identifying putative PPs. I demonstrate that NeuRiPP, a DNN classifier trained on high-confidence PP 
sequences, is able to provide discriminatory power and enrich for likely PP sequences. NeuRiPP is implemented 
in Python and is thus easily integratable into existing bioinformatics workflows. It allows for the identification of 
putative RiPP BGCs starting with the PP instead of the RTEs. The success of the DNN models in discriminating 
PPs also suggests the suitability of these models for discriminating other types of peptides using the training 
module of NeuRiPP.

Methods
Datasets. Positive Set. The positive dataset was constructed by collating peptide sequences from different 
sources that could be identified as PPs either through experimental validation, or by existing bioinformatics tools 
with a reasonably high degree of confidence. These included precursor peptide sequences of various different 
RiPP classes from PRISM18, thiopeptide sequences from Thiofinder19, lassopeptide6 and thiopeptide20 sequences 
identified by SVM classifiers developed for RODEO. Lassopeptide and thiopeptide sequences that were identi-
fied by RiPPER5 and confirmed by RODEO, previously identified microviridin sequences that were confirmed 
by RiPPER, and sequences in RiPPER that were positive HMM hits to known precursor domains from Refseq9 
were also included. To further supplement the positive set, high scoring lanthipeptide, sactipeptide, thiopep-
tide, and lassopeptide sequences that had positive RODEO scores from the antiSMASH database version two21 
were added. Table S1 summarizes the number of sequences from each of the sources. The dataset was derepli-
cated as the sources contained overlapping sequences. After dereplication, the final positive set consisted of 2726 
unique sequences. This was queried using the set of precursor peptide HMMs consolidated for RiPPER and PP 
HMMs from antiSMASH22, consisting of a total of 59 different precursor peptide HMMs. 67% of the positive set 
were also PP HMM hits. A summary of the different PP HMM models can be found in Table S2.

Negative Set. The negative set consisted of sequences that were identified not to be lassopeptide precursors by 
the RODEO SVM in their lassopeptide study6 and a set of short peptide sequences that were not PPs from Marnix 
Medema (personal communication) that was previously used as a negative test set to train SVMs, filtered to 
include only sequences between 20–120 amino acids. This set was collated and checked against the positive set for 
overlaps. The final negative set consisted of 19224 sequences of which 0.02% were HMM hits.

Preparation of the sequence data as neural network input. A maximum length of 120 amino acids 
was used as the input for the neural network, this was done to match the approach in RiPPER which considered 
sequences between 20–120 amino acids as PPs. Any sequences longer than 120 residues were truncated after the 
120th amino acid. Amino acids were represented as a single hot-vector of size 20 where the values in the vector 
are all 0 except for the amino-acid represented which would have a value of 1 (Fig. 1a). Sequences that were less 
than 120 residues in length were padded with vectors containing all zeros. This resulted in a uniform input of a 
20 × 120 matrix for the neural network. Positive sequences were tagged with a 1 and negative sequences with a 0. 
The neural networks were constructed to have a 2 × 1 output representing the probability that its input is in class 
0 or 1 respectively.
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Models. Five different DNN architectures were tested. These were inspired by model architectures that were 
successful in text classification problems13,23,24. All models were implemented in Python 3 using Tensorflow 2.025. 
To prevent overfitting, a Dropout layer with a 0.5 dropout rate was added between the final densely connected 
layer and the classification layer. Dropout randomly sets the weights of a set number of nodes (half in this case) to 
zero preventing the network from becoming reliant on any one node during the training step26,27. The last layer of 
all of the network designs, the classification layer, was a dense layer with a sigmoidal activation function that out-
puts a 2 × 1 vector that sums to 1. This could be interpreted as the probability that a given input sequence is a PP. 
The designs consisted of either long short-term memory recurrent neural network (LSTM) layers, convolutional 
neural network (CNN) layers, or a combination of both (Fig. 1b). Specifically, the five architectures tested were:

•	 LSTM – Single Bi-directional LSTM with 0.15 dropout and 60 cells. This is followed by a densely connected 
layer of 60 units and finally, the classification layer.

•	 Linear CNN – Three successive CNN layers with varying filter and kernel sizes, following the last CNN layer, 
values are max pooled in groups of 2 before a 40 unit dense layer and the classification layer.

•	 Parallel CNN – Input is fed in parallel to two CNN layers each of 3 different kernel sizes (6 CNNs total) with 
max pooling occurring between each of the two layers before concatenating the results. This is fed into a final 
CNN layer with 150 filters and a kernel size of 3. The output is max pooled in groups of 3 before being fed into 
a 60 unit Dense Layer and the classification layer.

•	 Linear CNN + LSTM – Identical to the Linear CNN, with a 60 cell LSTM layer before the dense and classifi-
cation layer.

•	 Parallel CNN + LSTM – Identical to the Parallel CNN, with a 60 cell LSTM layer before the dense and clas-
sification layer.

training. Figure 2 summarizes the procedure used to train the neural network. Because the negative dataset 
was about 7 times larger than the positive dataset, the negative set was subsampled by 35% in order to prevent 
overtraining of the model on negative data. This resulted in a dataset consisting of 9454 sequences per training 
cycle. 85% of this set was used to train the neural network using sparse cross-entropy as the loss function and 
adam28 as the weight optimization algorithm. After weight optimization, the remaining 15% of the dataset was 
used to test the neural network using total accuracy as the metric. If the round of optimization improved the 
accuracy of the network, the weights were saved at the end of the training cycle. The negative dataset was resam-
pled every 5 rounds to ensure that the neural network was exposed to the entire negative test set. Weight optimi-
zation was halted either if there was no improvement in model accuracy after 50 rounds, or after 200 rounds of 
training. Final model accuracy was measured on the entire dataset.

Testing. antiSMASH database version 2.0. antiSMASH 529 was run on genbank files downloaded from the 
antiSMASH database version 221 corresponding to RiPP and bacteriocin clusters. RODEO precursor peptide 
predictions were extracted from the json file output of the antiSMASH runs. To obtain candidate sequences for 

Figure 1. NeuRiPP Workflow and Model Architectures. (a) Peptide sequences between 20–120 amino acids 
long are converted into a 20-by-120 matrix, this serves as an input to a deep neural network with different 
architectures (see (b)), which determines whether or not the sequence is a likely precursor peptide. (b) Five 
different model architectures were tested, a Long Short-Term Memory Recurrent Neural Network (LSTM), two 
different Convolutional Neural Network (CNN) layouts, and a combination of the CNN layouts with an LSTM 
layer.
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NeuRiPP to classify, prodigal-short5, a modified version of the prodigal11,30 gene finding software was run in “–
meta” mode on the fasta sequences of the RiPP clusters identified by antiSMASH from the antiSMASH database. 
These sequences were classified by the “classify.py” module of NeuRiPP. Comparison to RODEO predictions was 
done by a custom python script. BGCs were separated into the different RiPP classes using the antiSMASH clas-
sification rules22, or in the case of the thiopeptide class, stricter classification rules using HMMs from a bioinfor-
matic analysis of the thiopeptides20. If the cluster was identified to be of more than one class by the classification 
rules, it was counted in both of the RiPP classes.

RiPPER Thioviramide predictions. Peptide sequences corresponding to potential thioviramide precursor pep-
tides were obtained from the supplemental information from the “all peptides” section of the RiPPER publica-
tion5. The NeuRiPP classifier was run on the sequences and the predictions were compared to the 30 sequence 
similarity networks analyzed using a custom python script.

Results and Discussion
NeuRiPP is able to classify peptides in the training set with high accuracy. Table 1 summarizes 
the best accuracy obtained for each model architecture on the entire training set. Because the training set con-
tained significantly more negative sequences, it was important to examine the accuracy of the classifier in the 
negative and positive set separately as an 87.6% total accuracy could be achieved by simply classifying the entire 
test set as non-PP sequences. All of the models were able to achieve a degree of accuracy higher than this on the 
training data and were able to distinguish between PP and non-PP sequences at a level above this 87.6%  baseline. 
The parallel CNN architecture was the most accurate with a total accuracy of 99.84%. In order to check that the 
high accuracy was not simply due to the neural network being overfit to the data (i.e. that the model would only 
be able to classify peptide sequences it was trained on), the models were also trained on a dataset that randomly 
excluded 15% of the positive dataset (550 sequences), and 8.6% of the negative set (1650 sequences). The dif-
ferent architectures were trained on the remaining 19750 sequences as previously described. Tables S3 and S4 
summarize the accuracy of the architectures on the set of excluded peptides, and the entire training set. When 
trained with the smaller set, the neural network is less accurate. On the set of sequences that was excluded for 
training, the LSTM architecture was the most accurate at 98.37% total accuracy. However, when the accuracy was 
evaluated on the entire training set, the parallel CNN still achieved the highest accuracy at 99.37%. These results 

Figure 2. NeuRiPP Training Procedure. Every model architecture was subjected to two hundred rounds of 
weight optimization. For each round of weight optimization, the entire positive training set, and a randomly 
subsampled portion of the negative training set is used. 85% of this set is used to optimize the weights of the 
neural network using adam as an optimizer and cross entropy as the loss function. The remaining 15% was used 
to test the accuracy of the model. If the weights increased the accuracy of the model, these were stored. The 
negative set was resampled every five rounds of training.

Network
Positive Set 
Accuracy

Negative Set 
Accuracy

Total 
Accuracy

LSTM 92.00% 99.66% 98.71%

Linear CNN 99.60% 99.43% 99.45%

Parallel CNN 99.96% 99.82% 99.84%

Linear CNN + LSTM 97.36% 99.76% 99.46%

Parallel CNN + LSTM 97.80% 99.48% 99.27%

Table 1. Accuracy of different network architectures on training set.
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suggest that the network is able to capture features in the sequences that are distinct to PPs. The improvements in 
accuracy when more data are given exhibit the suitability of the tested network architectures for sequence-based 
peptide classification. Importantly, this shows that NeuRiPP’s performance can be improved as the number of 
high-confidence PPs increases, both from improvements in class-specific PP identifiers and experimental verifi-
cation of new RiPPs.

Given the high accuracy and quick training time (Table S5) of the parallel CNN, this was selected as the 
default model architecture. The weights that were used were obtained when the model was trained with the entire 
training set. This was so the network would take advantage of all of the information available when asked to 
identify putative PPs.

Sequences identified by NeuRiPP are enriched with HMM hits for known precursor peptides.  
In order to evaluate NeuRiPP’s role in an existing genome mining workflow, the latest version of antiSMASH29 
was run on sequences from the antiSMASH database version 221. This is a common first step in a genome min-
ing pipeline and ensured that the predictions for RiPP and bacteriocin classes were up-to-date. This process 
resulted in 35477 RiPP clusters covering 16 classes of RiPPs (Fig. 3, Table S6). Running prodigal-short on these 
clusters yielded a total of 150366 peptide sequences between 20–120 amino acids, 250 of these were excluded for 
classification as their sequences contained unknown amino acids (“X”). This left a total of 150116 peptides for 
NeuRiPP to classify. Because these sequences are taken from the public databases and have not been verified, the 
accuracy of NeuRiPP in classifying these sequences could not be directly measured. In order to assess NeuRiPP’s 
performance, it was compared to existing tools that are used for PP identification. NeuRiPP was first assessed 
on its ability to enrich a set of sequences for known PP HMM hits. An HMM hit would indicate similarity to a 
known PP sequence and would give an increase in confidence in the classification. The peptide sequences from 
prodigal-short were queried against HMMs for PPs used in the RiPPER5 and antiSMASH29 pipelines before and 
after classification by NeuRiPP. Before classification by NeuRiPP, 9958 sequences or 6.6% were identified as HMM 
hits. NeuRiPP classified 34579, or around 20%, of these sequences as putative PPs with 8485 or 25% of them as 
HMM hits, a four-fold enrichment from the unclassified set. In contrast, there are 1457 (1%) HMM hits on the 
sequences classified as negatives by NeuRiPP (Fig. 3a, Table 2).

Figure 3. NeuRiPP predictions on RiPP BGCs in the antiSMASH v2 database. (a) Classification of peptide 
sequences from prodigal-short by NeuRiPP, sequences classified as putative precursor peptides by NeuRiPP 
(green) are enriched for known PP HMM hits (solid colors) as compared to sequences that are not classified 
to be precursor peptides (red). (b) Breakdown of RiPP clusters in the antiSMASH v2 database by RiPP class. 
NeuRiPP is able to identify putative PPs in all of the RiPP classes in the antiSMASH database.

Set Sequences HMM Hits % of Set

Prodigal-short (Unclassified) 150116 9959 6.63%

NeuRiPP Positives 34579 8485 24.54%

NeuRiPP Negatives 115537 1474 1.28%

RODEO Predictions 8780 2773 31.58%

NeuRiPP (RODEO-type clusters) 15403 5553 36.05%

Table 2. Summary of Precursor Peptide HMM Hits from Different Classifiers.
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NeuRiPP identifies putative precursor peptide sequences in RiPP classes it was not trained on.  
Figure 3b summarizes the composition of RiPP classes in the database, and whether or not NeuRiPP identified 
candidates as PPs in the cluster. NeuRiPP makes predictions on PPs in any RiPP BGC regardless of class. It identi-
fies putative PP sequences in 19939 (56.20%) of the RiPP BGCs in the antiSMASH database. Unsurprisingly, it is 
able to identify putative PPs in a large percentage of clusters in the microviridin, lanthipeptide, lassopeptide, and 
sactipeptide classes as these constitute a large fraction of the classes in the positive training dataset. In the case 
of thiopeptides, NeuRiPP fails to identify putative PPs in a majority of the thiopeptide clusters in the database. 
This could be related to the lower accuracy a generic RiPPER search also has in identifying PPs in the thiopeptide 
class5. It is possible that thiopeptide PPs are more diverse than other RiPP classes, or BGCs classified as thiopep-
tides are incorrectly classified and belong to different RiPP classes that still have not been well-characterized. A 
bioinformatic study on the thiopeptides that used RODEO to expand the thiopeptide class and discover new 
thiopeptides developed custom HMMs for the identification of thiopeptide BGCs. Using these HMMs to identify 
thiopeptide BGCs instead of the default antiSMASH detection rules resulted in a smaller subset (489 of 4104 
thiopeptide-labeled BGCs) being identified as thiopeptide clusters (“thiopeptide strict”)20. NeuRiPP is able to 
identify potential PPs in a larger fraction of the strict thiopeptide set. Encouragingly, NeuRiPP is also able to 
identify potential PP sequences in other RiPP classes. This presents an opportunity for improvement of NeuRiPP 
as training with a richer, more diverse set of positive PP sequences from different classes could improve overall 
performance in general and allow it to identify even more putative PPs in uncharacterized RiPP classes.

NeuRiPP predictions complement RODEO predictions for RODEO-type clusters in the antiS-
MASH database. NeuRiPP performance was next compared to RODEO predictions for PPs. RODEO is 
widely used as it is integrated into the antiSMASH pipeline, and is also available as a downloadable standalone 
tool. While RODEO contains features such as the prediction of cleavage sites and a visual interface, one of its core 
features is the identification of putative PP sequences using SVMs trained for specific RiPP classes. It was for these 
reasons that RODEO was chosen for comparison as to the best of my knowledge it is the most similar download-
able tool that is able to perform putative PP identification on a large number of gene sequences.

The antiSMASH pipeline incorporates RODEO to identify putative PP sequences for the classes of RiPPs 
which have SVMs trained for them: lanthipeptides, sactipeptides, thiopeptides, andlassopeptides. The antiS-
MASH database contains 12741 “RODEO-type clusters”. RODEO identifies 8780 peptides (6058 unique 
sequences) in 4681 (37%) RODEO-type clusters as putative PPs. 32% of these PPs are HMM hits. In comparison, 
NeuRiPP identifies 15403 peptides (9869 unique sequences) as PPs in 12475 (98%) RODEO-type clusters, with 
an HMM hit rate of 36% (Table 2). NeuRiPP is thus able to identify a greater number of putative PP sequences 
than RODEO in RiPP classes where they both identify PPs while maintaining a similar HMM hit rate. Figure 4a 
summarizes the NeuRiPP and RODEO predictions in the RODEO-type clusters in the antiSMASH database. 
Interestingly, neither NeuRiPP nor RODEO are able to provide PP predictions for a majority of the thiopeptide 
clusters when classified using the default antiSMASH rules, this discrepancy is resolved when stricter classifica-
tion rules are used (“thiopeptide strict”)20, highlighting the need for further characterization and classification 
even in known RiPP classes.

When NeuRiPP is compared to the 4681 clusters that RODEO has predictions on, NeuRiPP identifies puta-
tive PPs in 4415 (94.32%) of these clusters. When looking at the actual peptide predictions, 5180 (3134 unique 
sequences, 52%) of the RODEO predicted PPs are identified by NeuRiPP as putative PPs (Table S7). This was 
partly because a portion of the ORFs (2610 sequences, 30%) that were classified by RODEO were not identified by 
prodigal-short to be coding sequences, a potential limitation of using gene finding software. However, NeuRiPP 
is still able to identify potential PP sequences in a majority of the clusters where RODEO identifies PPs. In 4084 
(92.05%) of these clusters there is at least one peptide that overlaps between the NeuRiPP and RODEO prediction. 
In 3330 (71.14%) of the clusters, all of the RODEO predictions correspond to NeuRiPP hits, and in 2142 (45.76%) 

Figure 4. NeuRiPP comparison to RODEO predictions. (a) Breakdown by RiPP cluster type of clusters where 
NeuRiPP and RODEO make precursor peptide predictions. NeuRiPP and RODEO predictions are largely 
congruent. NeuRiPP is able to predict PP sequences in a greater number of RODEO-type RiPP BGCs while 
maintaining a high HMM hit rate. (b) Comparison of NeuRiPP and RODEO precursor peptide predictions in 
BGCs where RODEO makes predictions for PP sequences. NeuRiPP predictions largely align with RODEO’s.
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of the clusters, the RODEO and NeuRiPP predictions match exactly. In 331 clusters, NeuRiPP predicts a different 
set of sequences as the PPs for the cluster (Fig. 4b).§§

It is important to note that a portion (35%) of the RODEO PP sequences that had high RODEO scores in the 
antiSMASH database were used as part of the positive training set; however, NeuRiPP identified an additional 
2205 PPs that it was not trained on. Taken together, these show that NeuRiPP is able to provide additional dis-
criminatory power in identifying putative PPs. At worst, NeuRiPP is able to complement RODEO predictions 
in a computational pipeline, sequences predicted by both NeuRiPP and RODEO can be accepted with a higher 
confidence. However, in clusters where RODEO is unable to make predictions, the relatively high HMM hit rate 
suggests that the PP predictions that NeuRiPP makes on its own can be taken as potential PP sequences.

NeuRiPP identifies novel thioamidated peptides identified by RiPPER. In order to identify new 
families of thioamidated peptides, researchers who developed the RiPPER methodology employed it to analyze 
regions of DNA in proximity to co-occurences of a YcaO-domain containing protein and a TfuA-like protein in 
Streptomyces genomes5. RiPPER retrieved 743 peptides which were further analyzed using peptide similarity 
networking. The genetic environment surrounding the thirty peptide similarity networks containing at least four 
sequences was examined for gene conservation and Pfam31 domain composition in order to determine whether 
or not the similarity networks represented likely precursor peptides. With this analysis, they labeled twelve of 
the peptide similarity networks as “yes” concerning whether or not they contained likely PPs. These included the 
peptide similarity networks that contained thioviramide, a known thioamidated RiPP, and thiovirsolin, a novel 
thioamidated RiPP that was part of a new thioamidated RiPP family, predicted using the RiPPER workflow, puri-
fied and characterized. Five of the remaining peptide similarity networks were labeled “maybe” as likely precursor 
peptides.

To further demonstrate NeuRiPP’s utility in a genome mining pipeline for discovering novel RiPPs, the 743 
peptides retrieved using RiPPER for creating the thioamidated PP similarity networks were classified by NeuRiPP. 
Unlike the training set, NeuRiPP had been previously unexposed to these sequences, with the exception of the 
thioviramide sequence that was included in PRISM18 and a second sequence that was previously identified by 
Thiofinder as a thiopeptide precursor19. NeuRiPP identified 91 of these sequences as likely PPs. Eight of the 
thioamidated peptide similarity networks analyzed in RiPPER contained multiple NeuRiPP hits (Table S8), these 
included the similarity networks that contained thioviramide (Network 5) and thiovarsolin (Network 22). Seven 
of these networks were determined to be likely precursor peptide sequences, while the other network that con-
tained multiple NeuRiPP hits was thought to be possibly a PP sequence network. While NeuRiPP did not have 
multiple hits in the other five similarity networks that were thought to be likely precursor peptide sequences, 
there is a much greater chance that a similarity network containing multiple NeuRiPP hits is a likely PP. This 
suggests that a workflow where sequences extracted by RiPPER, then classified by NeuRiPP, before generating 
the peptide similarity networks will be enriched for likely PPs and RiPP BGCs. This is beneficial as it reduces the 
amount of clusters that have to be manually examined and further analyzed. Only 12% of the sequences obtained 
by RiPPER were NeuRiPP hits, but a large fraction of the likely RiPP BGCs identified from the peptide similarity 
networking analysis would still have been found.

Conclusions
NeuRiPP is a fast, convenient tool that is able to predict putative PP sequences in a class-independent manner. 
It is able to complement existing RiPP bioinformatics tools by either confirming their predictions, or offering 
predictions in BGCs where other tools are unable to make predictions. Peptide sequences classified as NeuRiPP 
hits show a similar or higher HMM hit rate to precursor peptide predictions in existing tools. NeuRiPP is easily 
integratable into the antiSMASH and RODEO workflows. It also fits well with the RiPPER methodology by add-
ing an additional filtering step before peptide similarity networking, reducing the amount of manual analysis and 
curation that needs to be done, while maintaining a high hit rate of likely PP sequences.

The increased selectivity and discrimination of NeuRiPP along with its class-independence also allow for a 
RiPP mining methodology that is independent of preliminary knowledge of RTEs, allowing for the discovery 
of novel RiPP classes. Most existing bioinformatics tools for RiPP mining, such as BAGEL8, RODEO32, antiS-
MASH29, RiPP Miner10 and PRISM18, provide a wealth of information on well-characterized RiPP classes by iden-
tifying putative RiPP BGCs based on the set of conserved protein domains responsible for the biosynthesis of the 
specific RiPP class. They provide further information often by  predicting the mass, cleavage sites, potential mod-
ifications, and the sequence of mature peptides. RiPPER5 works well as a complement to these tools by allowing 
the user to specify the gene clusters and types to be examined. However, there is still a large number of sequences 
retrieved by RiPPER based on prodigal-short, requiring some sort of filtering step that reduces the number of 
sequences to examine. This is often dependent on prior knowledge about a specific class of enzymes that could 
potentially be involved in RiPP biosynthesis which biases searches towards “known unknowns”. By providing an 
additional filtering step, NeuRiPP can potentially overcome this, allowing peptide and gene similarity networks 
to be constructed without first having to specify a search space with a specific enzyme or domain as a seed. While 
NeuRiPP is limited in the fact that it will be biased towards the precursor peptide classes in its training set, having 
multiple RiPP classes as exemplars can possibly overcome some of these biases, allowing the neural network to 
discern common characteristics in PP sequences across different RiPP classes. By not starting with RTEs as seeds 
for the search, NeuRiPP can potentially identify BGCs that contain novel combinations of known RTEs distinct 
from the classes it was trained on, or possibly even completely new sets of RTEs.

Finally, the neural network structure of NeuRiPP allows for flexibility and offers potential for further improve-
ments. NeuRiPP model weights can be retrained to improve its performance on a specific RiPP class that is of 
particular interest. As more RiPP classes are discovered and experimentally verified, PP sequences from these can 
be added to the positive training set which should improve NeuRiPP’s general performance. Training weights for 
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the NeuRiPP models is neither a time-intensive nor computationally demanding task (Table S5). The optimized 
weights of the parallel CNN model used in this study were trained on a laptop computer in a few hours. While 
NeuRiPP was trained on PPs, the neural network architecture may be suitable for other peptide classification 
problems. The training module is flexible and only requires fasta files of positive and negative examples of amino 
acid sequences, allowing the possible extension of NeuRiPP as a general protein classifier.

Data Availability
NeuRiPP is available at: https://github.com/emzodls/neuripp under the GNU AGPL v3. The repository contains 
the training sets described in the study, along with the optimized weights for each of the model architectures. The 
train module can be used to create a custom set of model weights, while the classify module can be used with the 
pre-trained weights or new weights to identify PP sequences.
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