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Abstract
The belief-bias effect is one of the most-studied biases in reasoning. A recent study of the phenomenon using the signal
detection theory (SDT) model called into question all theoretical accounts of belief bias by demonstrating that belief-
based differences in the ability to discriminate between valid and invalid syllogisms may be an artifact stemming from the
use of inappropriate linear measurement models such as analysis of variance (Dube et al., Psychological Review, 117(3),
831–863, 2010). The discrepancy between Dube et al.’s, Psychological Review, 117(3), 831–863 (2010) results and the
previous three decades of work, together with former’s methodological criticisms suggests the need to revisit earlier results,
this time collecting confidence-rating responses. Using a hierarchical Bayesian meta-analysis, we reanalyzed a corpus of
22 confidence-rating studies (N = 993). The results indicated that extensive replications using confidence-rating data are
unnecessary as the observed receiver operating characteristic functions are not systematically asymmetric. These results were
subsequently corroborated by a novel experimental design based on SDT’s generalized area theorem. Although the meta-
analysis confirms that believability does not influence discriminability unconditionally, it also confirmed previous results
that factors such as individual differences mediate the effect. The main point is that data from previous and future studies
can be safely analyzed using appropriate hierarchical methods that do not require confidence ratings. More generally, our
results set a new standard for analyzing data and evaluating theories in reasoning. Important methodological and theoretical
considerations for future work on belief bias and related domains are discussed.
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The ability to draw necessary conclusions from given
information constitutes one of the building blocks of
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knowledge acquisition. Without deduction, there would be
no science, no technology, and no modern society (Johnson-
Laird & Byrne, 1991). Over a century of research has
demonstrated that people can reason deductively, albeit
imperfectly so (e.g., Störring, 1908; Wilkins, 1929). One
key demonstration of the imperfect nature of deduction is
a phenomenon known as belief bias, which has inspired an
impressive amount of research and has been considered to
be a key explanandum for any viable psychological theory
of reasoning (for reviews, see Dube et al., 2010; Evans,
2002; Klauer et al., 2000). Consider the following syllogism
(Markovits & Nantel, 1989):

All flowers have petals.

All roses have petals.

Therefore, all roses are flowers.

This syllogism is logically invalid, as the conclusion
(i.e., the sentence beginning with “Therefore”) does not
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necessarily follow from the two premises, assuming the
premises are true (i.e., the conclusion is possible, but
not necessary). However, the fact that this syllogism’s
conclusion states something consistent with real-world
knowledge leads many individuals to endorse it as
logically valid. More generally, syllogisms with believable
conclusions are more often endorsed than structurally
identical syllogisms that include unbelievable conclusions
instead (e.g., “no roses are flowers”). At the heart of
the belief bias effect is the interplay between individuals’
attempts to rely on the rules of logic and their general
tendency to incorporate prior beliefs into their judgments
and inferences (e.g., Bransford & Johnson, 1972; Cherubini
et al., 1998; Schyns & Oliva, 1999). Although a reliance on
prior belief is believed to be desirable and adaptive in many
circumstances (Skyrms, 2000), it can be detrimental in cases
where the goal is to assess the form of the arguments (e.g.,
in a court of law). Moreover, beliefs are often misguided and
logical reasoning is necessary to determine if and when this
is the case.

These detriments are likely to be far reaching in our
lives, as highlighted by early work focusing on the social-
psychological implications of belief bias (e.g., Feather,
1964; Kaufmann & Goldstein, 1967). Batson (1975), for
example, found that presenting evidence that contradicts
stated religious belief sometimes increases the intensity of
belief. Motivated reasoning effects of this sort have been
reported in hundreds of studies (Kunda, 1990), including,
appropriately, on the Wason selection task (Dawson et al.,
2002). Indeed, one of the foundational observations in
the reasoning literature is the tendency for people to
confirm hypotheses rather than disconfirm them (Wason,
1960, 1968; Wason & Evans, 1974), often referred to as
confirmation bias (Nickerson, 1998) or attitude polarization
(Lord et al., 1979). What makes belief bias notable is
that, unlike in studies of motivated reasoning or attitude
polarization, the beliefs that bias syllogistic reasoning are
not of particular import to the reasoner (such as the “all
roses are flowers” example above). Moreover, syllogistic
reasoning offers a very clear logical standard by which
to contrast the effect of belief bias. Thus, in a certain
sense, developing a good account of belief bias in reasoning
is foundational to understanding motivated reasoning and
attitude polarization.

Theoretical accounts of belief bias

In the last three decades, several theories have been
proposed to describe how exactly beliefs interact with
reasoning processes (e.g., Dube et al., 2010; Evans et
al., 1983, 2001; Klauer et al., 2000; Markovits & Nantel,
1989; Newstead et al., 1992; Oakhill & Johnson-Laird,

1985; Quayle & Ball, 2000). For example, according
to the selective scrutiny account (Evans et al., 1983),
individuals uncritically accept arguments with a believable
conclusion, but reason more thoroughly when conclusions
are unbelievable. In contrast, proponents of a misinterpreted
necessity account (Evans et al., 1983; Markovits & Nantel,
1989; Newstead et al., 1992) argue that believability only
plays a role after individuals have reached conclusions that
are consistent with, but not necessitated by, the premises (as
in the example above).

Alternatively, mental-model theory (Johnson-Laird,
1983; Oakhill & Johnson-Laird, 1985) proposes that
individuals evaluate syllogisms by generating mental
representations that incorporate the premises. When the
conclusion is consistent with one of these representations,
the syllogism tends to be perceived as valid. However,
when the conclusion is seen as unbelievable, the individual
is assumed to engage in the creation of alternative mental
representations that attempt to refute the conclusion (i.e.,
counterexamples). Only when a model is found wherein the
(unbelievable) conclusion is consistent with these alternative
representations, is the syllogism perceived to be valid.

Another account, transitive-chain theory (Guyote &
Sternberg, 1981) proposes that reasoners encode set-subset
relations between the terms of the syllogism inspired by the
order in which said terms are encountered when reading the
syllogism. These mental representations are then combined
according to a set of matching rules with different degrees
of exhaustiveness. The theory predicts that unbelievable
contents add an additional burden to this information
processing, leading to worse performance compared to
syllogisms with believable contents.

Yet another account, selective processing theory (Evans
et al., 2001), proposes that individuals use a conclusion-
to-premises reasoning strategy. Participants are assumed to
first evaluate the believability of the conclusion, after which
they conduct a search for additional evidence. Believable
conclusions trigger a search for confirmatory evidence,
whereas unbelievable conclusions induce a disconfirmatory
search. For valid problems the conclusion is consistent with
all possible representations of the premises, so believability
will not have a large effect on reasoning. By contrast,
for indeterminately invalid problems a representation
which is inconsistent with the premises can typically be
found with a disconfirmatory search, leading to increased
logical reasoning accuracy for unbelievable problems. Most
recently, the model has been extended to predict that
individual differences in thinking ability mediate these
effects, such that more able thinkers are more likely to
be influenced by their prior beliefs (Stupple et al., 2011;
Trippas et al., 2013).

This brief description does not exhaust the many
theoretical accounts proposed in the literature, each of
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them postulating distinct relationships between reasoning
processes and prior beliefs (e.g., Newstead et al., 1992;
Quayle & Ball, 2000; Polk & Newell, 1995; Thompson
et al., 2003; for reviews see Dube et al., 2010; Klauer et
al., 2000). However, irrespective of the precise interplay
between beliefs and reasoning processes, a constant feature
of these theories is that the ability to discriminate between
logically valid and invalid syllogisms is predicted to be
higher when conclusions are unbelievable (although the
opposite prediction has also been made by transitive-
chain theory). In sum, virtually all theories propose that
beliefs have some effect on reasoning ability, the latter
having been operationalized in terms of the ability to
discriminate between valid and invalid syllogisms. In this
manuscript we test if believability affects discriminability
using a mathematical model based on signal detection
theory. Before describing this model in detail, it is important
to consider the motivation behind this quite prevalent
assumption.

The experimental design most commonly used in modern
studies on the belief bias was popularized by the seminal
work of Evans et al. (1983). They used a 2 × 2
design that orthogonally manipulated the logical status of
syllogisms (Logic: valid vs. invalid syllogisms) along with
the believability of the conclusion (Belief : believable vs.
unbelievable syllogisms) while controlling for a number of
potential confounds concerning the structure of syllogisms
(e.g., figure and mood; for a review, see Khemlani &
Johnson-Laird, 2012). Based on this Logic × Belief
experimental design, one can compare the endorsement
rates (using binary response options “valid” and “invalid”)
associated with the different levels of each factor. Table 1
provides a summary of this design.

The endorsement rates obtained with such a 2 × 2
design can be decomposed in terms of the contributions of
logical validity (i.e., logic effect), conclusion believability

(i.e., belief effect), and their interaction, as would be
done with a linear model such as multiple regression.
Taking Table 1 as an example, there is an effect of logical
validity, with valid syllogisms being more strongly endorsed
overall than their invalid counterparts ((.92 + .46)/2 −
(.92 + .08)/2 > 0). There is also an effect of conclusion
believability, as syllogisms with believable conclusions
were endorsed at a much greater rate than syllogisms with
unbelievable conclusions ((.92 + .92)/2 − (.46 + .08)/2 >

0). Finally, there is an interaction between validity and
believability (Logic × Belief interaction): the difference in
endorsement rates between valid and invalid syllogisms is
much smaller when conclusions are believable than when
they are unbelievable ((.92 − .92) − (.46 − .08) = −.38).
At face value, the negative interaction emerging from these
differences suggests that individuals’ reasoning abilities are
reduced when dealing with syllogisms involving believable
conclusions (although the effect is typically interpreted the
other way around, such that people reason better when
syllogisms have unbelievable conclusions; e.g., Lord et al.,
1979). Since Evans et al. (1983), the interaction found in
Logic × Belief experimental designs like the one illustrated
in Table 1 is usually referred to as the interaction index.

Overall, these results suggest three things: First, that
individuals can discriminate valid from invalid arguments,
albeit imperfectly (i.e., individuals can engage in deductive
reasoning). Second, that people are more likely to endorse
syllogisms as valid if their conclusions are believable (i.e.,
consistent with real-world knowledge) than if they are
not. Third, that people are more likely to discriminate
between logically valid and invalid conclusions when those
conclusions are unbelievable. In contrast with the main
effects of logical validity and believability, which are not
particularly surprising from a theoretical point of view
(Evans & Stanovich, 2013), the Logic × Belief interaction
has been the focus of many research endeavors and is

Table 1 The design of Evans et al. (1983, Experiment 1), example syllogisms, and endorsement rates

Conclusion

Syllogism Believable Unbelievable

Valid No cigarettes are inexpensive. No addictive things are inexpensive.

Some addictive things are inexpensive. Some cigarettes are inexpensive.

Therefore, some addictive things are not Therefore, some cigarettes are not addictive.

cigarettes.

P(“valid”) = .92 P(“valid”) = .46

Invalid No addictive things are inexpensive. No cigarettes are inexpensive.

Some cigarettes are inexpensive. Some addictive things are inexpensive.

Therefore, some addictive things are not Therefore, some cigarettes are not addictive.

cigarettes.

P(“valid”) = .92 P(“valid”) = .08
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considered to be a basic datum that theories of the belief bias
need to explain in order to be viable (Ball et al., 2006; Evans
& Curtis-Holmes, 2005; Morley et al., 2004; Newstead
et al., 1992; Quayle & Ball, 2000; Shynkaruk & Thompson,
2006; Stupple & Ball, 2008; Thompson et al., 2003; Roberts
& Sykes, 2003).

Researchers’ reliance on the interaction index to gauge
changes in reasoning abilities was the target of extensive
criticisms by Klauer et al. (2000) and Dube et al. (2010).
Both Klauer et al. and Dube et al. demonstrated that the
linear-model-based approach used to derive the interaction
index hinges on questionable assumptions regarding the
way endorsement rates for valid and invalid syllogisms
relate to each other. They argued that any analysis
of the belief-bias effect rests upon some theoretical
measurement model whose core assumptions need to be
checked before any interpretation of the results can be
safely made. Using extended experimental designs that
go beyond the traditional Logic × Belief design (e.g.,
introducing response-bias manipulations, payoff matrices,
the use of confidence-rating scales) and including extensive
model-validation tests, Klauer et al. and Dube et al.
showed that the assumptions underlying the linear-model-
based approach are incorrect, raising doubts about studies
that take the interaction index as a direct measure of
change in reasoning abilities. But whereas Klauer et al.’s
results were still in line with the notion that conclusion
believability affects the ability to discriminate between
valid and invalid syllogisms, the work by Dube et al.
(2010) argued that conclusion believability does not affect
individuals’ discrimination abilities at all. Instead, their
account suggests that conclusion believability affects only
the general tendency towards endorsing syllogisms as valid
(irrespective of their logical status). Dube et al.’s results are
therefore at odds with most theories of deductive reasoning
(but see Klauer & Kellen, 2011 and the response by Dube
et al., 2012).1

The results of Dube et al. (2010) can be interpreted
as calling for the establishment of a new standard for
methodological and statistical practices in the domain
of syllogistic reasoning and deductive reasoning more
generally (Heit & Rotello, 2014). Simply put, the use
of flawed reasoning indices should be abandoned in
favor of extended experimental designs that allow for the
testing of the assumptions underlying the data analysis

1Dube et al. (2010) explain their results in terms of a criterion-
shift account (“it’s a response bias effect”). However, as shown in
detail below and elsewhere (Wickens & Hirshman, 2000; Singmann
& Kellen, 2013), this interpretation is not entirely justified due to an
identifiability problem in their model. In the current article, we will
therefore refrain from adopting this interpretation and only consider
whether or not we find differences in discriminability between
believable and unbelievable syllogisms.

method. Specifically, their simulation and experimental
results suggest moving from requesting binary judgments
of validity to the use of experimental designs that request
participants to report their judgments using a confidence-
rating scale (e.g., a six-point scale from 1: very sure invalid
to 6: very sure valid). These data can then be used to obtain
receiver operating characteristic (ROC) functions and fit
signal detection theory (SDT), a prominent measurement
model in the literature that has been successfully applied in
many domains (e.g., memory, perception; for introductions,
see Green & Swets, 1966; Kellen & Klauer, 2018;
Macmillan & Creelman, 2005). The parameter estimates
provided by the SDT model can inform us on the exact
nature of the observed differences in endorsement rates.
Although experimental data from previous studies could
potentially be reanalyzed with a version of SDT—known
as the equal variance SDT model—which does not require
confidence ratings, there is evidence from simulations
suggesting that reliance on this simpler version of SDT
would hardly represent an improvement over the interaction
index (Heit & Rotello, 2014): a more extensive version of
SDT—known as the unequal variance SDT model–appears
to be necessary.2

Taken at face value, the implications of Dube et al. (2010)
work are severe and far-reaching, as they suggest that the
majority of the work published in the last 30 years on belief
bias must be conducted anew with extended experimental
designs in order to determine whether the original findings
can be validated with SDT (see also Rotello et al., 2015,
for a similar suggestion in other psychological domains).
However, there are legitimate concerns that Dube et al.’s
results could have been distorted by their reliance on
aggregated data. And if this is indeed the case, then it is
possible that the implications are less severe. Aggregation
overlooks the heterogeneity that is found among participants
and stimuli. The problems associated with data aggregation,
which have been long documented in the psychological
literature (e.g., Estes, 1956; Estes & Todd Maddox, 2005;
Judd et al., 2012), also hold for the case of ROC data
(e.g., DeCarlo, 2011; Malmberg & Xu, 2006; Morey et
al., 2008; Pratte & Rouder, 2011; Pratte et al., 2010). But
to the best of our knowledge, these concerns have only
been mentioned before in the context of the belief bias
effect (e.g., Dube et al., 2010; Klauer et al., 2000), but
have not been directly addressed. In order to address these
concerns head on, we relied on a hierarchical Bayesian
implementation of the unequal variance SDT model that
takes into account differences across stimuli, participants,

2It is worth noting that Klauer et al. (2000) also advocates the use of
extended experimental designs that yield data that are to be fitted with
an unconstrained model.
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and studies. Using this model, we were able to conduct
a meta-analysis over a confidence-rating ROC data corpus
comprised of over 900 participants coming from 22 studies.
To the best of our knowledge, this corpus contains the vast
majority of published and unpublished research on belief
bias in syllogistic reasoning for which confidence ratings
were collected. The results obtained from this meta-analysis
will allow us to answer the following questions:

• Can the equal variance SDT model provide a sensible
account of the data, dimissing the need for extended
experimental designs?

• Does the believability of conclusions affect people’s
ability to discriminate between valid and invalid syllogisms?

In addition to these main questions, we will also briefly
revisit the evidence for the role of individual differences in
belief bias for a subset of the data for which this information
is available. Our results discussed below show that the
confidence-rating data are very much in line with the
predictions made by the equal variance SDT model which
can be applied without the availability of confidence ratings,
suggesting that previously published belief bias studies can
be reanalyzed using a probit or logit regression. The results
also suggest that despite the heterogeneity found among
participants and stimuli, the believability of conclusions
does not generally affect people’s ability to discriminate
between valid and invalid syllogisms when considered
across the entire corpus, partially confirming (Dube et al.,
2010) original account. However, a closer inspection
using individual covariates suggest a relationship between
people’s reasoning abilities and the way they are affected by
beliefs, as suggested by Trippas et al. (2013, 2014, 2015).
Altogether, these results suggest that syllogistic reasoning
should be analyzed using hierarchical statistical methods
together with additional individual covariates. In contrast,
the routine collection of confidence ratings with the aim of
modeling data, while certainly a possibility, is by no means
necessary.

The remainder of this manuscript is organized as follows:
First, we will review some of the problems associated with
traditional analyses of the belief-bias effect based on a linear
model, followed by an introduction to SDT and the analysis
of ROC data. We then turn to the risks associated with
the aggregation of heterogeneous data across participants
and stimuli and how they can be sidestepped through the
use of hierarchical Bayesian methods. In addition to the
meta-analysis, we report a series of validation checks that
corroborate our findings. Next, we present data from a new
experiment using a K-alternative forced choice task which
corroborates the main conclusion from our meta-analysis.
Finally, we discuss potential future applications for the data-
analytic methods used here and theoretical implications for
belief bias.

Implicit linear-model assumptions
and SDT-based criticisms

In order to understand the problems associated with the
linear-model approach, it is necessary to describe in greater
detail how it provides a linear decomposition of the
observed endorsement rates in terms of simple effects and
interactions. The probability of an endorsement (responding
“valid”) in a typical 2×2 experimental design with factors of
Logic (L: invalid = -1; valid =1) and Belief (B: unbelievable
= -1, believable = 1) is given by:

P(“valid”|L,B) = β0 + LβL + BβB + LBβLB, (1)

where parameters β0, βL, βB , and βLB denote, in order,
the intercept (i.e., the grand mean propensity to endorse
syllogisms), the main effects of Logic and Belief (βL and
βB actually only represent 1

2 times the main effects), and
the interaction between the latter two (LB = L × B). It is
assumed that there is a linear relationship between a latent
construct, which we will refer to as “reasoning ability”, and
the effects of Logic and Belief (Evans et al., 1983; Evans
& Curtis-Holmes, 2005; Newstead et al., 1992; Roberts &
Sykes, 2003; Stupple & Ball, 2008).

A first problem with this linear-model approach is the
fact that it does not respect the nature of the data it
attempts to characterize. The parameters can take on any
values, enabling predictions that are outside of the unit
interval in which proportions are represented. Another
concern relates with the way that the indices/parameters are
typically interpreted, in particular the interaction index βLB .
Specifically, negative interactions like the one described in
Table 1 do not necessarily imply a diminished reasoning
ability but may simply reflect the existence of a non-
linear relationship between this latent construct and the
factors of the experimental design (see Wagenmakers et al.,
2012). This point was made by Dube et al. (2010), who
highlighted the fact that the relationship between the latent
reasoning ability and the factors of the experimental design
can be assessed by means of receiver operating characteristic
(ROC) functions. In the case of syllogistic reasoning, ROCs
plot the endorsement rates of invalid syllogisms (false alarm
rate; FAR) on the x-axis, and the endorsement rates of valid
syllogisms (hit rate; HR) on the y-axis (e.g., Fig. 1).

First, consider an experimental design without believabil-
ity manipulation in which only the syllogisms’ logical valid-
ity is manipulated. According to the linear model described
in Eq. 1, predicted hit and false-alarm rates are given by:

FAR = P(“valid”|L = −1) = β0 − βL, (2)

HR = P(“valid”|L = 1) = β0 + βL. (3)

It is easy to see that the hit rate and false-alarm rate
are related in a linear fashion. Consider for example an
observation with β0 = .5 and βL = .25. This results in a
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Fig. 1 Left Panel: Examples of ROCs predicted by the linear model.
Center Panel: Illustration of how differences in response bias and dis-
criminability in the linear model are expressed in terms of ROCs.
Right Panel: Example of data that according to the linear model imply

differences in discriminability for believable and unbelievable syllo-
gisms, but could be described in terms of different response biases if
the predicted ROC was curvilinear

FAR = .25 and HR = .75 (i.e., a logic effect of .5), denoted
A in Fig. 1 (left panel). Now consider we increase the mean
endorsement rate, but not the effect of validity, by .15 such
that β0 = .65 and βL = .25. This results in a FAR = .4
and HR = .9, denoted B. Next, consider we manipulate
the effect of validity, but not the mean endorsement rate,
in reference to point A such that β0 = .5 and βL = .1.
This gives us FAR = .4 and HR = .6 denoted as C. Finally,
we manipulate both the mean endorsement and the effect
of validity in reference to point A such that β0 = .65 and
βL = .1. This gives us FAR = .55 and HR = .75 denoted D.
As can be easily seen, A and B are connected by a linear
ROC with unit slope (i.e., slope = 1) and ROC-intercept
equal to the main effect of logic, 2βL = .5. Likewise, C and
D are connected by a linear ROC with unit slope and ROC-
intercept 2βL = .2. This allows two simple conclusions
(see center panel of Fig. 1): (1) Manipulations that affect
the discriminability between valid and invalid syllogism
affect the ROC-intercept and create different ROC lines. (2)
All data points resulting from manipulations that affect the
average endorsement rate, but not the ability to discriminate
between valid and invalid syllogism, lie on the same linear
ROC with unit slope. Manipulations within one item class
(e.g., believable syllogisms) that leave the discriminability
unaffected are also called response bias.

Now consider a full experimental design with in which
both validity and believability are manipulated. This gives
us the following linear model:
FARunbelievable = P(“valid”|L = −1, B = −1) = β0 − βL − βB + βLB, (4)

HRunbelievable = P(“valid”|L = 1, B = −1) = β0 + βL − βB − βLB, (5)

FARbelievable = P(“valid”|L = −1, B = 1) = β0 − βL + βB − βLB, (6)

HRbelievable = P(“valid”|L = 1, B = 1) = β0 + βL + βB + βLB . (7)

From these equations it is easy to see that in the absence
of an interaction (i.e., βLB = 0) all data points would fall

on the same unit-slope ROC. The only change for each pair
of FAR and HR for each believability condition is that the
same value is either subtracted (for unbelievable syllogisms)
or added (for believable syllogisms). And adding a constant
to both x- and y-coordinates only moves a point along
a unit slope. In contrast, what the interaction does is to
alter the Logic effect for each believability condition; it
creates separate ROCs. For example, negative values of
βLB increase the Logic effect for unbelievable syllogisms
and decrease the Logic effect for believable syllogisms.
Hence, if βLB �= 0 the two believability conditions would
fall on two separate ROCs, with the ROC for unbelievable
syllogisms above the one for believable syllogisms for
negative values of βLB .

The assumption that ROCs are linear (with slope 1) is
questionable, given that the ROCs obtained across a wide
range of domains tend to show a curvilinear shape (Green
& Swets, 1966; Dube & Rotello, 2012); but see Kellen
et al. (2013). The possibility of ROCs being curvilinear
is problematic for the linear model given that it can
misinterpret differences in response bias as differences in
discriminability. For example, in the right panel of Fig. 1 we
illustrate a case in which the discriminability for believable
syllogisms is found to be lower than for unbelievable
syllogisms (negative interaction index βI ), despite the fact
that according to SDT (dashed curve) the observed ROC
points can be understood as differing in terms of response
bias alone. Moreover, potentially curvilinear ROC shapes
are theoretically relevant given that they are considered a
signature prediction of signal detection theory (SDT).

Signal detection theory

According to the SDT model, the validity of syllogisms is
represented on a continuous latent-strength axis, which in
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the present context we will simply refer to as argument
strength (Dube et al., 2010). The argument strength of a
given syllogism can be seen as the output of a participant’s
reasoning processes (e.g., Chater & Oaksford, 1999;
Oaksford & Chater, 2007). A syllogism is endorsed as valid
whenever its argument strength is larger than a response
criterion τ . When the syllogism’s argument strength is
smaller than the response criterion, the syllogism is deemed
as invalid. This response criterion is assumed to reflect
an individual’s general bias towards endorsement: more
lenient individuals will place the response criterion at lower
argument-strength values than individuals who tend to be
quite conservative in their endorsements. Different criteria
have consequences for the amount of correct and incorrect
judgments that are made: for example, conservative criteria
lead to less false alarms than their liberal counterparts but
also lead to less hits.

A common assumption in SDT modeling is that the
argument strengths of valid and invalid syllogisms can be
described by Gaussian distributions with some mean μ

and standard deviation σ . These distributions reflect the
expectation and variability in argument strength that is
associated with valid and invalid syllogisms. The farther
apart these two distributions are—that is, the smaller
their overlap—the better individuals are in discriminating
between valid and invalid syllogisms. Figure 2 (top
panel) illustrates a pair of evidence strength distributions
associated with valid and invalid syllogisms and a response
criterion.

From the postulates of SDT, it follows that the
probabilities of endorsing valid (V) and invalid (I) syllo-
gisms correspond to the areas of the two distributions that
are to the right side of the response criterion τ . Formally,

FAR = P(“valid”|L = −1) = �

(−τ + μI

σI

)
, (8)

HR = P(“valid”|L = 1) = �

(−τ + μV

σV

)
, (9)

where μI and σI correspond to the mean and standard
deviation of the distribution for invalid syllogisms, and μV

and σV are their counterparts for valid syllogisms. The
function �(·) corresponds to the cumulative distribution
function of the standard Gaussian distribution, which
translates values from a latent argument-strength scale (with
support across the real line) onto a probability scale between
0 and 1. This translation ensures that the model predictions
are in line with the nature of the data they attempt to
characterize.

The lower-left panel of Fig. 3 show how the differences in
the position of the response criteria are expressed in terms of
hits and false alarms. Note that the illustration of the latent
distributions postulated by SDT in Fig. 2 does not specify
the origin nor the unit of the latent argument–strength axis.

Invalid

Syllogisms
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Syllogisms

Argument Strength

μI μV

{ }σI σV

Response

Criterion τ
"Respond Invalid" "Respond Valid"

Argument Strength

"1: Very Sure
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"3: Unsure

Invalid"

"4: Unsure
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"5: Sure
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"6: Very Sure

Valid"

τ1 τ2 τ3 τ4 τ5

Fig. 2 Illustration of the Gaussian SDT model. The top panel shows
argument strength distributions for valid and invalid syllogisms (and
their respective parameters) in the case of binary choices. The bottom
panel illustrates the same model in the case of responses in a six-point
confidence-rating scale (for clarity, some parameters and labels are
omitted here)

In order to establish both the origin and unit, it is necessary
to fix some of the model’s parameters. It is customary to fix
the standard deviation σI to 1 and the mean μI to either 0 or
−μV . When these restrictions are imposed, one can simply
focus on the parameters for valid syllogisms, μV and σV

(but alternative restrictions are possible, one of which will
be used later on). It is important to note that these scaling
restrictions do not affect the performance of the model in
any way. The overall ability to discriminate between valid
and invalid syllogisms can be summarized by an adjusted
distance measure da (Simpson & Fitter, 1973):

da = √
2 × μV − μI√

σ 2
V + σ 2

I

(10)

If one would assume the parametrization in which μI =
−μV and σI = 1, the similarity between Eqs. 2 and 3
of the linear model and Eqs. 8 and 9 of the SDT model
becomes obvious. Response criterion τ plays the same role
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Fig. 3 Illustration of SDT predictions. The top row illustrates how
ROC predictions change across values of μV (with μI = 0 and σI =
1). The middle row illustrates how ROC predictions change across
values of σV . The bottom-left panel shows how hits and false alarms

change due changes in the response criterion. The bottom-right panel
illustrates how confidence-rating ROCs (4-point scale) are based on
the cumulative probabilities associated with the different confidence
responses

as the intercept β0, in that both determine the endorsement
rate for invalid syllogisms. Meanwhile, the mean μV plays
the role of βL by capturing the effect of Logic (L)—
i.e., a reflection of reasoning aptitude, with a value of 0

suggesting an inability to discriminate between valid and
invalid arguments. From this standpoint, the differences
between the linear model and SDT models essentially
boil down to the latter assuming a parameter σV that
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modulates how the response-criterion τ affects the hit rate,
and the use of the non-linear function �(·) which translates
the latent argument-strength values into manifest response
probabilities (DeCarlo, 1998) and maps the real line onto
the probability scale. Although these differences may seem
minor or even pedantic, they are highly consequential, as
they ultimately lead both models to yield rather distinct
interpretations of the same data (see the right panel of Fig.
1). Figure 3 shows ROCs generated by the SDTmodel under
different parameter values: as the ability to discriminate
between valid and invalid syllogisms increases (e.g., μV

increases), so does the area under the ROC. Moreover,
parameter σV affects the symmetry/asymmetry of the ROC
relative to the negative diagonal, with ROCs only being
symmetrical when σV = σI . Note that all these ROCs
are curvilinear, in contrast with the unit-slope linear ROCs
predicted by the ANOVA model (compare with the left
panel of Fig. 1).

Dube et al. (2010) showed that the linear model can
produce an inaccurate account of the data simply due to the
mismatch between the model’s predictions and the observed
ROC data. Specifically, if the ROCs are indeed curved
as predicted by SDT, then the linear model is likely to
incorrectly interpret these data as evidence for a difference
in discrimination. This difference in discrimination would
be captured by a statistically significant interaction index.
For example, consider the right panel of Fig. 1, which
illustrates a case where the hit and false-alarm rates
observed across believability conditions all fall on the same
curved ROC, a pattern indicating that these conditions
only differ in terms of the response bias being imposed

(i.e., these rates reflect the same ability to discriminate
between valid and invalid syllogisms): the linear model
cannot capture both ROC points in the same unit-slope
line, which yields the erroneous conclusion that there is
a difference in the level of valid/invalid discrimination
for believable and unbelievable syllogisms (a difference
captured by the interaction index βI ). Note that this
erroneous conclusion does not vanish by simply collecting
more data—in fact, additional data will only reinforce the
conclusion, an aspect that can lead researchers to a false
sense of reassurance. Rotello et al. (2015) discussed how
researchers tend to be less critical of the interpretation of
their measurements when they are replicated on a regular
basis. Given that negative interaction indices are regularly
found in syllogistic-reasoning studies, very few researchers
have considered evaluating the measurement model that
underlies this index (the exceptions are Dube et al., 2010;
Klauer et al., 2000).

In order to assess the shape of syllogistic-reasoning
ROCs and compare them with the predictions coming from
the linear and SDT models, Dube et al. (2010) relied on
an extended experimental design in which confidence-rating
judgments were also collected. In the SDT framework,
confidence ratings can be modeled via a set of ordered
response criteria (for details, see Green & Swets, 1966;
Kellen & Klauer, 2018). For instance, according to SDT,
in the case of a six-point scale ranging from “1: very
sure invalid” to “6: very sure valid”, the probability of a
confidence rating 1 ≤ k ≤ 6 can be obtained by establishing
five response criteria τk , with τk−1 ≤ τk for all 2 ≤ k ≤ 6,
as illustrated in the lower panel of Fig. 2:

P(“k”|Logic = −1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(

τk−μI

σI

)
, when k = 1,

�
(

τk−μI

σI

)
− �

(
τk−1+μI

σI

)
, when 2 ≤ k ≤ 5,

1 − �
(

τk−1−μI

σI

)
, when k = 6,

(11)

P(“k”|Logic = 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(

τk−μV

σV

)
, when k = 1,

�
(

τk−μV

σV

)
− �

(
τk−1−μV

σV

)
, when 2 ≤ k ≤ 5,

1 − �
(

τk−1−μV

σV

)
, when k = 6,

(12)

Cumulative confidence probabilities can then be used
to construct confidence-rating ROCs (for an example, see
the bottom-right panel of Fig. 3). Dube et al.’s (2010)
confidence-rating ROCs were found to be curvilinear,
closely following the SDT model’s predictions. Moreover,
Dube et al. showed that the belief-bias effect did not
affect discriminability, in contrast with the large body of
work based on the interaction index that attributed such an
effect to differences in discriminability. Figure 4 provides
a graphical depiction of this result, with both ROCs for

believable and unbelievable syllogisms following a single
monotonic curve. Overall, it turned out that the degree
of overlap between the distributions for valid and invalid
syllogisms was not affected by the believability of the
conclusions. Moreover, Dube et al. showed that the linear-
model-based approach tends to misattribute the belief-
bias effect to individuals’ ability to discriminate between
syllogisms, simply due to its failure to accurately describe
the shape of the ROC. These issues were further fleshed
out by Heit and Rotello (2014) in a series of simulations



2150 Psychon Bull Rev (2018) 25:2141–2174

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Dube et al. (2010, Exp. 2)

False Alarms

H
it
 R
a
te

Syllogisms

Believable

Unbelievable

Fig. 4 ROC data from Dube et al. (2010, Exp. 2)

and experimental studies showing that different measures
that do not hinge on ROC data tend to systematically
mischaracterize the differences found between believable
and unbelievable syllogisms.

SDT’s point measure d’: A more efficient,
equally valid approach?

Due to a general reliance on the interaction index, there
is a real possibility that much of the literature on the
belief bias effect is founded on an improper interpretation
of an empirical finding. Ideally, this situation could be
easily resolved by simply reanalyzing the existing binary
data obtained from the commonly used Logic × Belief
paradigm with an alternative SDT model that could provide
parameter estimates with such data, to see if the conclusions
regarding reasoning ability hold up. The equal-variance
SDT (EVSDT) model, which fixes σV and σI to be equal to
the same value seems like an ideal candidate in this respect
as it is able to estimate discrimination (μV ) directly from a
single pair of hit and false-alarm rates. This discrimination
estimate is widely known in the literature as d ′ (Green
& Swets, 1966). When, without loss of generality, we fix
μI = 0 and σV = σI = 1:

d ′ = �−1(HR) − �−1(FAR) = −τ + μV + τ = μV , (13)

where �−1(·) is the inverse of the Gaussian cumulative
distribution function.

One important aspect of the EVSDT model is that it is
formally equivalent to probit regression, with Logic and
Belief factors (and their interaction):

P(“valid”|L,B) = �(β0 + LβL + BβB + LBβLB). (14)

A key difference between the linear model previously
discussed (see Eq. 1) and probit regression is that the latter
includes a link function�(·) that maps the linear model onto
a 0-1 probability scale (DeCarlo, 1998). If this simplified
model is deemed appropriate, then one could keep relying
on a logic × belief interaction index to assess the impact of
beliefs on reasoning abilities.3

Like SDT, the simpler EVSDT model also predicts
curvilinear ROCs, however they are all constrained to
be symmetrical with respect to the negative diagonal.
This additional constraint raises questions regarding the
suitability of EVSDT: do the EVSDT’s predictions match
the ROC data? And if not to which extent does this
mismatch affect the characterization of the belief-bias
effect? In other domains such as recognition memory and
perception, ROCs have been found to be asymmetrical,
with σV > σI (see Dube & Rotello, 2012; Starns
et al., 2012). When applied to these asymmetric ROCs,
d ′ provides distorted results, with discriminability being
overestimated in the presence of stricter response criteria,
and underestimated for more lenient criteria (for an
overview, see Verde et al., 2006). Similar results have
been found in the case of syllogistic reasoning, with
asymmetrical ROCs speaking strongly against the EVSDT
model. Dube et al. (2010) found the restriction σV = σI

to yield predictions that systematically mismatch the ROC
data.

These shortcomings were corroborated in a more
comprehensive evaluation by Heit and Rotello (2014). They
reported a simulation showing that, if anything, the use
of d ′ only amounts to a small improvement over the
interaction index. Specifically, data were generated via a
bootstrap procedure and discrimination for syllogisms with
believable and unbelievable conclusions were assessed with
d ′ and the interaction index. Both measures were found
to be strongly correlated and very often reached the same

3Recasting the EVSDT model as a probit regression model highlights
an important identifiability issue in SDT. In 2 × 2 designs involving
two pairs of distributions, SDT cannot distinguish between a shift in
responses bias from a shift of a pair of distributions. Specifically, note
that βB can be understood as a shift in argument strength imposed
on the distributions for believable valid and invalid syllogisms (for
unbelievable syllogisms, μI = 0 and μV = βL; for believable,
μI = βB and μV = βL + βB ), or alternatively, interpreted as
a shift of the response criterion (for unbelievable syllogisms, τ =
β0; for believable, τ = β0 + βB ). For a detailed discussion on
this issue, see Singmann (2014) and Wickens and Hirshman (2000).
This identifiability constraint in SDT also implies that the interaction
parameter βLB captures changes in discriminability, as discussed
above for the linear model.
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incorrect conclusion. The only difference was that d ′ led to
incorrect conclusions slightly less often than the interaction
index. Overall, the use of the EVSDTmodel and its measure
d ′ does not seem to constitute a reasonable solution for
the study of the belief-bias effect. These results suggest
that researchers need to rely on extended designs (e.g.,
confidence ratings) whenever possible (Heit & Rotello,
2014, p. 90). But as it will be shown below, the dismissal of
the EVSDT model and d ′ is far from definitive. In fact, it
is entirely possible that this dismissal is the byproduct of an
unjustified reliance on ROC data that aggregate responses
across heterogeneous participants and stimuli.

The problem of aggregating data
from heterogeneous sources

One of the challenges experimental psychologists regularly
face is the sparseness of data at the level of individuals
as well as stimuli. Typically, one can only get a small
number of responses from each participant, only have a
small set of stimuli available, and can only obtain one
response per participant-stimulus pairing. In the end, only
very little data is left to work with. A typical solution to
this sparseness problem consists of aggregating data across
stimuli or participants. Although previous work has shown
that although data aggregation is not without merits (Cohen
et al., 2008), its use implies the assumption that that there
are no differences between participants nor stimuli. In the
presence of heterogeneous participants and stimuli, this
assumption can lead to a host of undesirable effects. One
classic demonstration of the risks of data aggregation in the
social sciences is Condorcet’s Paradox (Condorcet, 1785),
which demonstrates how preferences (e.g., between political
candidates) aggregated across individuals might not reflect
properties that hold for any individual. In this specific
case, it is shown that aggregated preferences often violate
a fundamental property of rational preferences known as
transitivity (e.g., if option A is preferred to B, and option B
is preferred to C, then optionA is preferred to C), even though
all of the aggregated individual preferences were actually
transitive (for a discussion, see Regenwetter et al., 2011).

In the case of traditional data-analytic methods such
as linear models, the aggregation of data coming from
heterogeneous participants and stimuli often leads to
distorted results and severely inflated type I errors.
These distortions can also compromise the replication
and generalization of findings (for an overview, see Judd
et al., 2012). Other approaches which do not rely on
aggregation, for instance analyzing the data for each
participant individually prior to summarizing them, is
also not ideal given that this approach may seriously
inflate the probability of type 2 errors due to the data

sparseness. The problems associated with data aggregation
and pure individual-level analysis have led to a growing
reliance on statistical methods that do not rely exclusively
on either, but a compromise between both, effectively
establishing a new standard in terms of data analysis
(e.g., Baayen et al., 2008; Barr et al., 2013; Snijders &
Bosker, 2012). Some of these methods have been adopted
in recent work on probabilistic and causal reasoning (e.g.,
Haigh et al., 2013; Rottman & Hastie, 2016; Singmann
et al., 2016, 2014; Skovgaard-Olsen et al., 2016), but
these methods have not been applied to the study of
the measurement assumptions underlying belief bias. For
example, for a very long time it was established in the
literature that the effects of practice in cognitive and
motor skills were better characterized by a power function
than by an exponential function (Newell et al., 1981).
However, this finding was based on functions aggregated
across participants. Later simulation work showed that
when agregated across participants, exponential practice
functions were better accounted for by a power function
(Anderson & Tweney, 1997; Heathcote et al., 2000).
In an analysis involving data from almost 500 participants,
Heathcote et al. showed that non-aggregated data were
better described by an exponential function, a result that
demonstrates how a reliance on aggregate data can lead
researchers astray for several decades. Another example
can be found in the domain of cognitive neuroscience,
where it is common practice to aggregate across multiple
participants’ fMRI-data. In contrast to the prevailing
assumption in the field, individual patterns of brain
activity are not exclusively driven by external or measurement
noise, but are potentially linked to systematic inter-
individual differences in strategy use (Miller et al., 2002).

Aggregating across heterogeneous stimuli

Let us now describe some of the distortions that could
be caused by the unaccounted presence of heterogeneous
participants and stimuli (for similar scenarios, see Morey et
al., 2008; Pratte et al., 2010): First, consider the judgments
from a single individual who was requested to evaluate
a list of valid and invalid syllogisms. Let us assume that
these judgments are perfectly in line with the SDT model.
Furthermore, assume that among the valid syllogisms, half
were easy, μV,easy = 3, and the other half were hard,
μV,hard = 1 (with μI = 0). Moreover, assume that
all argument-strength distributions have the same standard
deviation, with σV,easy = σV,hard = σI = 1. These
distributions are illustrated on the left panel of Fig. 5.

When the researcher must aggregate across easy and hard
syllogisms because they cannot be differentiated a priori,
one would hope to obtain parameter estimates that are in line
with the average of the distributions’ parameters, namely
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Fig. 5 Illustration of the effects caused by the aggregation of responses across heterogeneous participants and stimuli

μV = 2 and σV = 1. Note that this average would respect
the fact that all distributions have the same variances,
yielding symmetric ROCs. Unfortunately, the parameter
estimates one obtains from aggregating across stimuli does
not produce such a result. Instead, the parameter estimates
obtained underestimate μV and inflate σV . The problem
here is that the average of both distributions will have a
greater standard deviation than the average of σV,easy and
σV,hard. In this particular example, data aggregation led to
an asymmetric ROC (see the center panel of Fig. 5) with
estimates μV = 1.88 and σV = 1.32.4 Based on these
estimates, a researcher would erroneously conclude that
ROCs are asymmetric and that one is required to estimate
σV (perhaps using a confidence-rating task) in order to
accurately characterize the data. To make matters worse
these distortions are asymptotic in the sense that they would
not vanish by simply having more data. On the contrary,
they only reinforce the distorted results. These results show
that a scenario in which the rejection of EVSDT is driven
by the use of heterogeneous stimuli is far from unlikely,
given that there is substantial variability in the propensity
to accept different syllogistic structures all classified as
similarly complex (Evans et al., 1999). The presence of such
asymptotic distortions is particularly troubling given that it
can lead researchers to dismiss a large body of work in favor
of new studies involving extended experimental designs.

4We generated SDT predictions for a six-point ROC by establishing
five equally spaced τ criteria between -1.64 and 1.64 (these criteria
lead to cumulative false-alarm rates ranging from .05 to .95 in equal
steps). These predictions were then fitted with an SDT model using
maximum-likelihood estimation (using the methods implemented in
Singmann & Kellen, 2013).

Aggregating across heterogeneous participants

We now turn to two examples involving the aggregation
of judgments coming from two heterogeneous participants
A and B. The first example is formally equivalent to the
one just described in the subsection above (i.e., the left
and center panels of Fig. 5 serve to illustrate it as well).
Assume that participant A shows worse discriminability
than (μV,A = 1) than participant B (μV,B = 3), with
everything else being equal (again, μ0 = 1, and σV,easy =
σV,hard = σI = 1). Note that both participants’ ROCs
are symmetrical. As in the case of heterogeneous stimuli,
the aggregation of the data from these two individuals
would lead to an asymmetric ROC and an inflated estimate
of σV (again, 1.32). In this scenario, the fact that one
participant performs better than the other one is enough
to distort the overall shape of the ROC. Once again, this
possibility is far from unexpected in light of the fact that
individual differences in reasoning ability are commonly
found (Stanovich, 1999; Trippas et al., 2015).

The second example concerns differences in response
bias, which can also produce distortions: For example, let
us imagine two participants that have the same ability to
discriminate between valid and invalid syllogisms, μV = 1,
but differ in terms of their response biases. Specifically,
let us assume that participant A relies on a conservative
criterion τ = 1.5 (i.e., is less likely to endorse syllogisms),
whereas participant B relies on the more lenient criterion
τ = 0 (i.e., is more likely to endorse syllogisms). The
hit and false-alarm rate pairs for these two participants
are (.31, .07) and (.84,.50), respectively. The pair obtained
when aggregating both pairs, (.57, .28), is associated with
μV = .76, a value that is smaller than any individual’s
discriminability. As shown in the right panel of Fig. 5, the
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concavity of the ROC function implies that the average
of any two hit and false-alarm pairs coming from a
single function (i.e., with the same discriminability) will
always result in a pair that falls below that function.
When evaluating a single experimental condition (e.g.,
syllogisms with believable conclusions), the distortions
caused by aggregating heterogeneous participants can lead
to an underestimation of discriminability.

Such underestimation of discriminability is especially
pernicious when different experimental conditions are
used (e.g., syllogisms with believable versus unbelievable
conclusions, or reasoning under a fixed-time limit versus
self-paced conditions, etc), as it can create spurious
differences or mask real ones. For example, individuals
might be better at discriminating syllogisms with believable
conclusions than their unbelievable counterparts (cf.,
Guyote & Sternberg, 1981). But if the inter-individual
variability in terms of the adopted response criteria
is larger in the former than in the latter, then the
resulting underestimation can mask the differences in
discriminability. Alternatively, if discriminability is the
same across two conditions, differences in terms of the
inter-individual variability of response criteria can introduce
spurious differences in the estimates obtained with the
aggregate data. It is possible that some inconsistencies
found in the literature (e.g., Dube et al., 2010; Klauer et al.,
2000) are driven by this. For instance, Trippas et al. (2013),
who also employed the SDT model, observed no effect
of believability on discriminability only for participants
of lower cognitive ability, with higher ability reasoners
showing a more typical effect of beliefs on accuracy.
This suggests that treating all participants as equivalent is
perhaps not the best assumption.

A hierarchical Bayesianmeta-analytic
approach

Fortunately, the problems associated with aggregation can
be avoided by relying on hierarchical methods that take
the heterogeneity at the participant and stimulus levels—
logical structures in our case—into account (e.g., Baayen
et al., 2008; Barr et al., 2013; Snijders & Bosker, 2012).
Specifically, both participants and stimuli considered in
the analyses are assumed to be random samples from
higher group-level distributions, whose parameters are
also estimated from the data. Note that when facing
multiple studies, one can conceptualize each study as a
random sample from a distribution of studies. Usually,
each of these higher group-level distributions are assumed
to follow a Gaussian distribution with some mean and

variance. In the case of participant-level differences, the
mean of this group-level distribution captures the average
individual parameter value whereas the variance expresses
the variability observed across participants. An analogous
interpretation holds for the group-level distributions from
which stimuli are assumed to originate.

Our hierarchical extension of SDT was implemented in
a Bayesian framework (Gelman et al., 2013; Carpenter et
al., 2017). In a Bayesian framework, the information one
has regarding the parameters is represented by probability
distributions. We begin by establishing prior distributions
that capture our current state of ignorance. These prior
distributions are then updated in light of the data using
Bayes’ theorem, resulting in posterior distributions that
reflect a new state of knowledge (for an overview of
hierarchical Bayesian approaches, see Lee &Wagenmakers,
2013; Rouder & Jun, 2005). The estimation of posterior
parameter distributions can be conducted using Markov
chain Monte Carlo methods (for an introduction, see Robert
& Casella, 2009). In the present work, we employed
Hamiltonian Monte Carlo (e.g., Monnahan et al., 2016 and
relied on weakly informative or non-informative priors that
imposed minimal constraints on the values taken on by the
parameters. These prior constraints are quickly overrun by
the information present in the data.

The information captured by the posterior parameter
distributions can be conveniently summarized by their
respective means and 95% (highest-density) credible
intervals. Each interval corresponds to the (smallest) region
of values that include the true parameter value with
probability .95. Moreover, the overall quality of a model
can be checked by comparing the observed data with
the predictions based on the model’s posterior parameter
distributions (Gelman & Shalizi, 2013). If the observed
data deviate substantially from the predictions then one can
conclude that the model is failing to provide an adequate
characterization.

Hierarchical extension of signal-detectionmodel

The contributions of participant and individual differences
can be conveniently characterized in terms of a generalized
linear model. For example, the probability that participant p
will endorse a syllogism s could be described as

P(“valid”|Participant = p,Syllogism = s) = �(μ̄ + ξp + ηs), (15)

where μ̄ denotes the grand mean. Parameter ξp corresponds
to the pth participant’s displacement from that grand mean,
whereas ηs corresponds to the sth stimulus’s displacement.
Displacements ξp and ηs are both assumed to come
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from zero-centered group-level distributions (for a similar
approach, see Rouder et al., 2008). Based on this linear
decomposition of participant and stimulus effects, the
estimate of the overall probability of syllogisms being
endorsed is given by �(μ̄), the probability of participant
p endorsing any syllogism corresponds to �(μ̄ + ξp),
and the probability of syllogism s being endorsed by
somebody is �(μ̄ + ηs).5 A hierarchical approach provides
a compromise between the assumption that all participants
and stimuli are effectively the same (as done when
aggregating data) and the assumption that all participants
and stimuli are unique (as done when analyzing data for
each participant individually). Specifically, the assumption
that both participants and stimuli come from group-level
distributions implies the presence of differences between
the participants/stimuli, but also the existence of similarities
that should not be overlooked. The estimation of individual
and group-level parameters are informed by each other—a

5Note that this linear model does not include the possibility of
participant × stimulus interactions. Such interactions cannot be
estimated in the present context because we only have one participant-
stimulus pairing (Christensen, 2011). However, the absence of such
correlations is not particularly troubling given that they are expected to
have a reduced impact of parameter estimates (see Rouder et al., 2008).

principle known as partial pooling—leading to parameter
estimates that are more reliable than what would be obtained
via independent estimation from individual datasets (e.g.,
Ahn et al., 2011; Katahira, 2016; for a discussion, see
Scheibehenne and Pachur, 2015).

As previously discussed, the SDT model characterizes
individuals’ responses in terms of latent strength distribu-
tions defined with means μ, standard deviations σ , and
response criteria τ . We will therefore introduce our hier-
archical extension of SDT at the level of these parameters
(Klauer, 2010; Rouder & Jun, 2005; Morey et al., 2008;
Pratte & Rouder, 2011; Pratte et al., 2010). Because of
the identifiability issues associated with SDT (see Foot-
note 3), we modeled believable and unbelievable syllogisms
separately.

The probability of participant ph in experimental study h

endorsing an invalid syllogism si or valid syllogism sv are
given by:

FARh,ph,si = P(“valid”|Study = h, Participant = ph, Syllogism = si) = �

(−τh,ph
+ μI,h,ph,si

σI,h,ph,si

)
, (16)

HRh,ph,sv = P(“valid”|Study = h, Participant = ph, Syllogism = sv) = �

(−τh,ph
+ μV,h,ph,sv

σV,h,ph,sv

)
. (17)

Individual mean parameters μI,h,ph,si and μV,h,ph,si are
established as a linear function of group-level means (μ̄),
and their respective experimental-study- (χ ), participant-
(ξ ), and stimulus-level (η) deviations from those means:

μI,h,ph,si = μ̄I + χ
μI

h + ξμI
ph

+ ημI
si

, (18)

μV,h,ph,sv = μ̄V + χ
μV

h + ξμV
ph

+ ημV
sv

. (19)

Note the use of subscripts and superscripts (i.e., ξ
μI
ph

does
not mean “ξph

to the power of μI ”). For reference on the
different parameters and sub/superscripts, see Table 2. Also,
note that additional parameters could be easily added to
the model, as is routinely done with predictor variables in
multiple-regression models (we provide a demonstration of
this in the general discussion). For example, Trippas et al.
(2013, 2015) considered the relationship between individual
differences variables such as cognitive ability and analytic
cognitive style with SDT estimates of discriminability and
response bias. The use of other predictor variables such as
fMRI data have also been entertained (e.g., Roser et al.,
2015).

A similar linear structure holds for the individual
standard-deviation parameters σI,h,ph,si and σV,h,ph,si ,
however it is implemented on a log scale:

σI,h,ph,si = exp
(
log(σ̄I ) + χ

σI

h + ξσI
ph

+ ησI
si

)
, (20)

σV,h,ph,sv = exp
(
log(σ̄V ) + χ

σV

h + ξσV
ph

+ ησV
sv

)
, (21)

where log() corresponds to the natural logarithm and exp()
to the exponential function.

Meta-analytic model

In terms of the meta-analytic model we implemented
a variant of what is known as a random-effects or
random study-effectsmeta-analysis (Borenstein et al., 2010;
Whitehead, 2003). Note that the usage of the term ’random-
effects’ in this context slightly differs from the other usage
in this manuscript and simply means that our model allowed
each individual study to have its own idiosyncratic effect
and that we did not assume that all study had exactly the
same overall effect. For the participant-level deviations ξx

ph

(where x ∈ {μI , μV , σI , σV }) we assume they follow a
normal distribution with mean 0 and study-specific variance
σ 2

ξx ,h,

ξx
ph

∼ N (0, σ 2
ξx ,h), (22)
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Table 2 Description of hierarchical linear model parameters and
super/subscripts

Parameter Meaning

μ̄ Grand mean

χ Study effect

ξ Person effect

η Item effect

Super/Subscript Meaning

V/I Valid/invalid

h Study

ph Participant in Study h

s Syllogistic forms

where N corresponds to the distribution function of the
normal or Gaussian distribution.6 For the study-specific
deviations χx

h we assumed the common random-effects
meta-analytic model,

χx
h ∼ N (0, σ 2

e,ξx ,h + υ2), (23)

where σ 2
e,ξx ,h is the within-study error variance, σ 2

e,ξx ,h =
σ 2

ξx ,h

Nh
(where Nh is the number of participants in study h;

σe,ξx,h is also known as the standard-error), and υ2 the
between-study error variance.7 As can be seen from the
previous two equations, the main difference between our
meta-analysis based on the individual trial-level data and
a traditional meta-analysis is that in our case the within-
study error variance is estimated in the same step as all other
parameters and not treated as observed data.

For ease of presentation, the formulas in the previous
paragraph present a slight simplification of our actual
model. For all displacement parameters, χx

h (study-
specific), ξx

Ph
(participant-level), and ηx

s (stimulus/item-
specific) we also estimated the correlation among the
deviations across the different SDT parameters x. Thus,
all displacements are actually assumed to come from

6Because we had no prior knowledge about the distribution of
the study-specific variances, we assumed that the square roots of
the variances (i.e., the standard deviations) follow a half-Cauchy
distribution with location σ̄ξx and scale γξx (we preferred the Cauchy
over the normal distribution here because of the fatter tails of the
former):

σξx ,h ∼ Cauchy+(σ̄ξx , γξx ). (24)

7In the meta-analytic literature the between-study error variance is
commonly referred to as τ 2. As we use τ to refer to a parameter of the
signal-detection model we use υ2 to refer to the between-study error
variance.

a zero-centered multivariate Gaussian distributions with
covariance matrices �S , �P , and �I , respectively (Klauer,
2010). For the covariance matrices �S and �P the standard
deviations are as described in the previous paragraph
and we additionally estimated one correlation matrix
for each covariance matrix. For ηx

s we estimated one
standard deviation for each x and one correlation matrix.
The complete model is presented in the Appendix. The
covariance matrices capture different dependencies that
could be potentially found across participants’ parameter
estimates. For instance, the participant-level covariance
matrix �P indicates how individual parameters, say μV

and σV , covary across participants. The estimation of all
these covariance matrices, which amount to a so-called
“maximal random-effects structure” is strongly advised as
it known to improve the generalizability and accuracy of
the hierarchical model’s account of the data (Barr et al.,
2013): Specifically, the hierarchical structure of the model’s
parameters allows us to more safely make generalizations
from our parameters of interest. For example, the group-
level means (e.g., σ̄V ) summarize the information that
we have about the individuals, after factoring out their
differences. These parameters allow us then to make general
inferences regarding the population, such as whether σV

is systematically greater than σI , as currently claimed in
literature (Dube et al., 2010; Heit & Rotello, 2014).

The extension of this model to the case of a K-point
confidence-rating paradigm follows exactly what is already
described in Eqs. 11 and 12, with the specification of
K − 1 ordered response criteria τh,ph,k per participant.
The use of a different set of criteria per participant allows
the model to capture different response styles that people
often manifest (Tourangeau et al., 2000). As previously
mentioned, it is customary to fix the parameters of the
invalid-syllogism distributions, but in the present case we
decided to instead fix τh,ph,1 and τh,ph,K−1 to 0 and 1,
respectively. This restriction, which does not affect the
ability of the model to account for ROC data, nor the
interpretation of the parameters, implies that the mean and
standard deviation parameters from all argument-strength
distributions are freely estimated (for a similar approach,
see Morey et al., 2008). The motivation behind the use
of this particular set of parameter restrictions was that it
provided a more convenient specification of the different
sets of participant-, stimulus-, and group-level parameters
and at the same time allowed for identical prior distributions
(see below) for the two standard deviations σV and σI ,
which are of interest here. Furthermore, we assumed that the
remaining three response criteria per individual participant,
τh,ph,2 to τh,ph,K−2, were each drawn from a separate
group-level Gaussian distribution and then transformed on
the unit scale using the cumulative distribution function
of the standard Gaussian distribution. The sampling was
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Table 3 Description of the data corpus

Study ID N participants N trials Study

1 44 16 Trippas et al. (2013), Exp. 1, complex-syllogism condition

2 47 16 Trippas et al. (2013), Exp. 1, simple-syllogism condition

3 44 16 Trippas (2013), Exp. 6, no time limit

4 42 16 Trippas (2013), Exp. 6, 10s time limit

5 32 16 Trippas (2013), Exp. 7, deductive instructions

6 34 16 Trippas (2013), Exp. 7, weak instructions

7 36 16 Trippas et al. (2013), Exp. 2, 10s time limit, IQ

8 49 16 Trippas et al. (2013), Exp. 2, no time limit, IQ

9 45 8 Trippas (unpublished), complex-syllogisms, internal replication

10 38 16 Trippas et al. (2014), fluent-font condition

11 38 16 Trippas et al. (2014), disfluent-font condition

12 42 8 Nuobaraite (2013 dissertation), ego-depletion

13 24 8 Trippas (unpublished), complex-syllogisms, debias instructions

14 191 16 Trippas et al. (2015), individual differences

15 38 8 Dube et al. (2010), Exp. 2, complex-syllogisms

16 21 16 Dube et al. (2010), Exp. 3, conservative condition

17 24 16 Dube et al. (2010), Exp. 3, neutral condition

18 27 16 Dube et al. (2010), Exp. 3, liberal condition

19 45 8 Heit and Rotello (2014), Exp. 1, augmented instructions

20 44 8 Heit and Rotello (2014), Exp. 1, standard instructions

21 44 8 Heit and Rotello (2014), Exp. 2, conservative instructions

22 44 8 Heit and Rotello (2014), Exp. 2, standard instructions

Note. “N trials” gives the number of trials per participant and believability by validity cell (i.e., each participant responded to “N trials” times 4
syllogisms)

performed such that the three to-be-estimated criteria per
individual participant were ordered.8

In line with the literature (e.g., Dube et al., 2010; Trippas
et al., 2013), we modeled the data for believable and
unbelievable syllogisms separately using the same model.
The reason for modeling these data separately is that SDT
does not yield identifiable parameters (i.e., infinitely many
sets of parameter values produce the exact same predictions;
see Bamber & van Santen, 2000; Moran, 2016) when
parameter restrictions are only applied on the parameters
concerning one stimulus type (e.g., believable syllogisms)
and everything else is left to be freely estimated (e.g.,
different response criteria for believable and unbelievable
syllogisms). However, applying restrictions to each stimulus
type while allowing criteria to vary freely between them

8For achieving model convergence (i.e., R̂ values below 1.05 and no
so-called “divergent transitions” that can appear in Hamiltonian Monte
Carlo) we had to fix the standard deviation of the Gaussian distribution
for the middle criterion to a small value (i.e., .1), as it otherwise tried to
converge on 0 (which is an impossible value for a standard deviation).
This suggests that there was little variability in the position of the
central response criterion delineating “valid” and “invalid” decisions
across participants.

is equivalent to fitting them separately (for detailed
discussions; see Singmann, 2014; Wickens & Hirshman,
2000).

Meta-analysis of extant ROC data

Our analysis differs from regular meta-analyses (e.g.,
Borenstein et al., 2010) in two important ways. First, we
obtained the raw (i.e., participant- and trial-level) data and
performed our meta-analysis on this non-aggregated data.
This has the benefit that all variability estimates are obtained
directly from the data and not inferred from other statistical
indices. Second, our meta-analysis is performed using a
fully generative model; it allows us to use the obtained
parameter estimates to generate new synthetic data from for
any part of the data corpus (e.g., for individual participants
or studies). The data corpus and modeling scripts are
available at: https://osf.io/8dfyv/.

The hierarchical Bayesian SDT model established here
was fitted to a data corpus comprised of 22 studies, for a
total of 993 participants. To the best of our knowledge, these
datasets consist of all published and non-published studies

https://osf.io/8dfyv/
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Fig. 6 Believable-syllogism ROCs observed in each of the reanalyzed studies (for details, see Table 2). Note that these ROCs are based on the
aggregated data. The shaded regions correspond to the hierarchical SDT model’s predictions based on its posterior parameter estimates

on belief bias including ROC data for which individual-
and item-level information is available. In the included
datasets, (1) three-term categorical syllogisms were used
as stimuli, (2) confidence ratings were collected on each
trial, (3) data was available on the trial-level, and (4)
information about the syllogistic structures was available
for each trial. Over 80% (18/22) of the included studies
were previously published. All of these studies involved
participants evaluating the validity of believable and
unbelievable syllogisms using a six-point confidence scale.
Table 3 provides a description of these studies. An important
aspect of these datasets is that they involve judgments
obtained across a wide range of experimental conditions, in
term of stimuli, instructions, response deadlines, stimulus-
presentation conditions, among others. This diversity is
particularly important when attempting to establish the
robustness of any phenomenon, as it ensures that it is not
circumscribed to a narrow set of conditions.

In terms of stimulus differences, we considered the
different forms that syllogisms can take on. A categorical
syllogism is an argument which consists of three terms,
denoted here by A, B, and C, which are combined in two
premises to produce a conclusion. The two terms which are
present in the conclusion, A and C, are referred to as the
end terms. The term which is present in each premise is
referred to as the middle term, is denoted B. For example,

in the “rose syllogism” given earlier, A = roses, B = petals,
C = flowers. The two premises and conclusion each include
one of four quantifiers:Universal affirmative (A; e.g., All A
are B), universal negative (E; e.g., No A are B), particular
affirmative (I; Some A are B), and particular negative
(O; e.g., Some A are not B). The logical validity of a
syllogistic structure is defined by its mood, its figure, and
the direction of the terms in the conclusion. The mood is a
description of which quantifiers occur in the syllogism. For
instance, if the premises and the conclusion are preceded
by the quantifiers “All”, “Some”, and “No”, respectively,
then the syllogism’s mood is AIE. Given that a syllogism
consists of three statements and that there are four possible
quantifiers for each statement, there are 64 possible moods.
The figure denotes how the terms in the conclusion are
ordered. There are four possible figures: 1: (A-B; B-C),
2: (B-A; C-B), 3: (A-B, C-B), 4: (B-A; B-C).9 Finally,
there are two possible conclusion directions: 1: (A-C) and
2: (C-A). Combining the 64 moods with the four figures
and the two conclusion directions yields a total of 512
possible syllogisms, of which only 27 are logically valid
(Evans et al., 1999). The combinations of form and figure

9Note that there are at least two different schemes for the four
syllogistic figures. The scheme used here (and also by Klauer et al.,
2000; Khemlani & Johnson-Laird, 2012) and another scheme used for
example by Dube et al. (2010).
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in syllogisms can be conveniently coded by concatenating
the two letters associated to the quantifiers of the premises,
the number associated with the figure, the letter associated
with the quantifier of the conclusion and the direction of the
conclusion. The “rose syllogism” used earlier as an example
would be coded as AA3 A2: both premises and conclusion
start with the “All” quantifier, the syllogistic figure is 3, and
the conclusion direction is 2—from C to A. A complete list
of all the syllogistic figures used in the reanalyzed studies
and their respective codes is included our supplemental
material is hosted on the Open Science Framework (OSF).
Specifically at: https://osf.io/8dfyv/.

Results

We begin by evaluating the ability of the hierarchical
model to fit the data. Specifically, we will evaluate its
sufficiency (whether the model fits) and necessity (whether
there is heterogeneity in stimuli and participants). With
regards to the sufficiency of this hierarchical account,
we implemented a model check by comparing the model
predictions based on the model’s posterior parameter
distributions and comparing it to the observed data (e.g.,
Gelman & Shalizi, 2013). Although SDT models for
confidence-rating data are relatively flexible (Klauer, 2015),
they cannot predict all possible data patterns in ROC space.
This check allowed us to assess whether the model was

able to describe the observed data sufficiently well. In this
particular case, we generated one set of predictions based on
each of the individual posterior-parameter distributions and
subsequently aggregated them in order to compare with the
ROCs obtained with the aggregate data. As can be seen in
Figs. 6 and 7, the predictions based on the model’s posterior-
parameter distributions are very similar to the ROCs
observed across studies. This similarity strongly suggests
that the model provides an adequate characterization of the
data.

With regards to the necessity of a hierarchical account,
we inspected the posterior estimates of the variability
parameters of the participant- (σ̄ξx ), stimulus- (σηx

s
), and

study-effects (υ) of the different SDT parameters. All of
these variability parameters clearly deviated from zero (i.e.,
their 95% credible intervals do not include 0), indicating the
presence of heterogeneity among participants, believable
and unbelievable syllogisms, and studies. As discussed in
detail by Smith and Batchelder (2008), the presence of
such heterogeneity indicates the need for a hierarchical
framework that does not rely on data aggregation.

The first question we posed was whether a simplified
version of SDT could provide a sensible account of the
data. As can be seen in Fig. 8, for both believable and
unbelievable syllogisms, the posterior group-level estimates
of σV

σI
were very close to 1 and their associated 95%

credible intervals include values both above and below 1.

Fig. 7 Unbelievable-syllogism ROCs observed in each of the reanalyzed studies (for details, see Table 2). Note that these ROCs are based on the
aggregated data. The shaded regions correspond to the hierarchical SDT model’s predictions based on its posterior parameter estimates

https://osf.io/8dfyv/
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Fig. 8 Posterior estimates of group-level σV

σI
observed in each study (squares; μ̄ + χσ ), and the posterior estimate obtained across studies

(diamonds; μ̄ alone). The bars and the width of the diamond correspond to the 95% credible intervals. The size of the squares reflects the width
of the credible intervals

Also, the posteriors were concentrated in a small range
of values (see the diamonds in Fig. 8), reflecting the
diagnostic value of the present data in terms of assessing
ROC asymmetry. Overall, these results suggest that EVSDT,
a simplified SDT model assuming that σV = σI , provides
an adequate account of the data (Kruschke, 2015). Another
way of framing this result is that data from almost 1000

participants were not sufficient to dismiss the EVSDT’s
assumption that σV = σI . One exception to this pattern is
Study 2, corresponding to the simple-syllogism condition
of Trippas et al. (2013, Exp. 1), for which the posterior
σV

σI
mean and 95% credibility interval are larger than

1. This result suggests that the ROC symmetry of the
EVSDT model fails at extreme performance levels, as
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Fig. 9 Forest plot with the posterior group-level estimates (and respec-
tive 95% credible intervals) of discriminability (da) for believable and
unbelievable syllogisms. The size of the squares reflects the width

of the credible intervals. The probability P (Unbel > Bel) corre-
sponds to the posterior probability that the group-level da estimate for
unbelievable syllogisms is larger than for believable syllogisms
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Fig. 10 Posterior estimates (and respective 95% credible intervals) of the stimulus-level deviations (ηx
s ) for the SDT parameters x concerning

valid and invalid syllogisms (sv or si ). The posterior estimates for the syllogisms used in study 2 are omitted here (see Foonote 5)

is the case for Study 2, where performance is close to
ceiling.

In order to quantify the general degree of support for the
EVSDT obtained from the posterior σV and σI estimates,
we computed Bayes factors (BF; Kass & Raftery, 1995)
that quantified the evidence in favor of EVSDT versus
an unconstrained SDT model. In this specific case, the
constrained EVSDT model was represented by the null
hypothesis H0 stating that the group-level σV

σI
can take

a small range of values, between .99 and 1.01, and an
encompassing alternative hypothesis HA that imposed no
such constraint.10 In typical settings, the use of Bayes
Factors requires the computation of marginal likelihoods
for (at least) two models, which can be quite challenging
(but see Gronau et al., 2017). But in this specific case in
which the hypotheses considered consist of nested ranges
of admissible parameter values (specifically, the range of
σV

σI
), Bayes Factors can be easily computed. As shown by

Klugkist and Hoijtink (2007), the Bayes Factor for the two
nested hypothesis corresponds to ratio of probabilities: The
posterior probability that .99 <

σV

σI
< 1.01, and its prior

counterpart. The obtained Bayes factors were 17.28 and
11.84 for believable and unbelievable syllogisms, which
indicates that the posterior probability of σV

σI
values very

close to 1 were 17 and 11 times greater after observing the
data than before. According to the classification suggested
by Vandekerckhove et al. (2015), this indicates strong
support for H0.

Let us now turn to our second question, whether
there is a difference in discriminability for believable
and unbelievable syllogisms. The group-level posterior da

estimates reported in Fig. 9 are virtually equivalent for
believable and unbelievable syllogisms, with an almost

10For reasons of numerical stability, we opted for testing a small range

of values rather than a point estimate
(

σV

σI
= 1

)
.

complete overlap of their respective 95% credible intervals.
This result indicates that the believability of conclusions
does not have an impact on participants’ ability to
discriminate between valid and invalid syllogisms, which is
in line with Dube et al.’s (2010) findings. The present meta-
analysis serves to dismiss any concerns that such a result
could be due to aggregation biases or a handful of studies,
and reiterates the challenge that it represents to the major
theories proposed in the literature (Dube et al., 2010; Klauer
et al., 2000). We quantified the strength of the evidence
in favor of the null hypothesis that the differences in da

between believable and unbelievable syllogisms should take
on a small range of values around 0 (values between − .01
and .01). We obtained a Bayes factor of 7.34, indicating
substantial evidence in favor of H0.

Figure 10 illustrates the posterior estimates of the
stimulus-based differences (ηx

s ) for believable and unbeliev-
able syllogisms for the four SDT parameters for which we
estimated stimulus effects.11 Overall, most differences are
very close to zero; only for some forms did we find notewor-
thy deviations. These results indicate that the impact of the
stimuli on the parameter estimates is small for most argu-
ment forms. However, note that the stimuli considered in 21
out of 22 studies came from only 16 syllogistic forms.

Figure 10 also allows us to compare our results to the
meta-analysis of Khemlani and Johnson-Laird (2012). In
contrast to the data considered here in which participants
are presented with both premises and conclusion, they

11In Fig. 10, we did not include the syllogisms presented in Study
2. Because these syllogisms were only included in this study, it is
difficult to completely disentangle their effects (captured by ηx

s ) from
the observed study-specific difference (parameter χx ) associated with
Study 2. These parameter estimates are reported in our supplemental
material is hosted on the Open Science Framework (OSF). Specifically
at: https://osf.io/8dfyv/.

https://osf.io/8dfyv/
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focused on data from the conclusion generation task. In this
task participants are only provided with the premises and
requested to create a possible conclusion or indicate that
no conclusion follows. For the valid forms, our data are
somewhat in line with their findings. The valid syllogisms
that showed a clearly reduced discriminatibility with η

μ
sv <

0, EI4 O2 and EI1 O2, also were among the most difficult
according to Khemlani and Johnson-Laird (2012). Out
of the 64 syllogistic forms their difficulty ranks (where
1 = easiest and 64 = most difficult) were 55 and 61,
respectively. Interestingly, no such consistency can be found
in the case of the invalid syllogisms: The two forms that
clearly showed a reduced discriminability, OE4 O2 and
EO4 O1, were relatively easy with ranks of 22 and 15,
respectively. However, OE3 O1, which showed an increased
discriminability in our study, η

μ
si > 0 was even slightly

more difficult in the generation task with a rank of 26. These
results reinforce the notion that the conclusion evaluation
task and the conclusion generation task do not appear to
involve the exact same cognitive processes. This would
appear to carry additional implications for the mental
models approach, beyond its seemingly faulty prediction of
an effect of belief on reasoning, since much of the data
used to develop the mental models theory of conclusion

evaluation tasks was obtained using the production task.
Furthermore, the model’s assumption that evaluation is
implicit production is also questioned by these results.

Validity checks

In this section, we will discuss different ways in which we
attempted to corroborate our results. We relied on different
approaches such as prior sensitivity analysis, assessing
the impact of aggregation biases, and parameter recovery
simulations. As discussed in detail below, all of the results
support the conclusions from our meta-analysis.

Prior sensitivity analysis

We begin by evaluating how strongly our results depend on
the particular prior distributions. To this end, we fitted an
additional model with alternative priors. More specifically,
we specified markedly wider prior distributions for most
parameters (e.g., the prior for both μ̄ in the original model
was a Cauchy distribution with location = .5 and scale = 4;
in the alternative model it was a Cauchy distribution with
location = .5 and scale = 10). As shown in Table 4, the

Table 4 Validity Checks

Model Parameter / Derived Measure

μ̄V Believable μ̄I Believable μ̄V Unbelievable μ̄I Unbelievable

Original 1.05 [.97, 1.14] .62 [.54, .71] .79 [.72, .86] .32 [.25, .38]

Alternative 1.05 [.97, 1.13] .62 [.54, .70] .78 [.72, .85] .32 [.25, .39]

No ηx
s 1.05 [.98, 1.14] .63 [.56, .71] .78 [.72, .85] .33 [.27, .39]

No ξx , no ηx
s .98 [.92, 1.05] .61 [.53, .68] .76 [.69, .82] .34 [.29, .40]

σ̄V

σ̄I
= 1.50 1.05 [.98, 1.12] .61 [.52, .70] .77 [.70, .84] .32 [.27, .38]

σ̄V Believable σ̄I Believable σ̄V Unbelievable σ̄I Unbelievable

Original .50 [.46, .55] .47 [.43, .53] .51 [.45, .58] .47 [.41, .54]

Alternative .50 [.46, .54] .47 [.43, .52] .51 [.45, .57] .47 [.41, .53]

No ηx
s .50 [.46, .55] .48 [.44, .53] .52 [.46, .58] .49 [.44, .55]

No ξx , no ηx
s .58 [.53, .62] .56 [.52, .60] .68 [.61, .76] .56 [.52, .61]

σ̄V

σ̄I
= 1.50 .70 [.65, .76] .48 [.43, .52] .69 [.62, .76] .47 [.41, .53]

σ̄V

σ̄I
Believable σ̄V

σ̄I
Unbelievable da Believable da Unbelievable

Original 1.06 [.95, 1.17] 1.09 [.96, 1.23] .62 [.46, .78] .67 [.52, .83]

Alternative 1.06 [.95, 1.17] 1.09 [.95, 1.23] .63 [.47, .78] .67 [.52, .83]

No ηx
s 1.05 [.97, 1.12] 1.05 [.98, 1.13] .60 [.47, .74] .64 [.50, .78]

No ξx , no ηx
s 1.03 [.99, 1.08] 1.21 [1.14, 1.28] .46 [.35, .58] .47 [.35, .59]

σ̄V

σ̄I
= 1.50 1.48 [1.35, 1.61] 1.45 [1.30, 1.62] .51 [.39, .64] .54 [.42, .67]

Note.Values in [ ] correspond to the 95% credible intervals of the posterior distributions. The “Original” model is referred to throughout the results
section. The “Alternative” model has the same structure but a different prior distribution specification. The “No ηx

s ” model has no stimulus effect
(i.e., data aggregated within participants) and the “No ξx , no ηx

s ” has neither participant nor study effect (i.e., data aggregated within studies),
both models are otherwise identical to the “Original” model. The “ σ̄V

σ̄I
= 1.50” model uses the same priors as the “Original” model, but is fitted to

data generated from the parameters of the “Original” model with the sole difference that σ̄V = 1.5 × σ̄I
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model with the alternative priors produced essentially the
same results, both in terms of posterior distributions as well
as in terms of Bayes Factors.

Effects of data aggregation

In the first part of this report, we provided several theoretical
and simulation-based arguments illustrating why data
aggregation can lead to biased conclusions. We now address
this question empirically by reanalyzing our data corpus
with models in which we purposefully omitted potential
sources of variability, such as stimuli or participants.
Given these concerns, it is interesting to see the extent
to which aggregation actually affects results. For example,
Pratte et al. (2010) found, in the context of recognition
memory, that aggregation biases did not ultimately affect the
observation of asymmetric ROCs. This outcome suggests
that data aggregation may not be problematic as typically
portrayed. Does a similar situation hold here? To find
out, we checked whether we found evidence against the
EVSDT when aggregating across the different sources of
variability. In the first of those reanalysis we did not
include stimulus-specific differences and aggregated the
data within participants (model “no ηx

s ”). This model
resulted in parameter estimates that were nearly identical
to those of the original model (see Table 4), in line with
the earlier observation that the stimulus-specific effects
were rather modest. However, the confidence bands for σV

σI

were markedly narrower when compared with the original
model. This result indicates that data aggregation can affect
parameter estimates by attributing them an unwarranted
degree of certainty.

In the second reanalysis we only analyzed the data
aggregated on the study level, ignoring both a stimulus-
specific effect as well as a participant-specific effect (model
“no ξx , no ηx

s ”).
12 This is the analysis most often performed

in previous work on reasoning ROCs (e.g., Dube et al.,
2010, although we employed a Bayesian approach here as
well). For this model (see Table 4) we now find rather strong
differences relative to the other variants. Furthermore, for
the unbelievable syllogisms we now find clear evidence
against EVSDT with σV

σI
= 1.21 [1.14, 1.28].

Taken together, these reanalyses reinforce two important
points. First, ignoring random variability that is part of the
data can lead to aggregation artifacts such as evidence for
the unconstrained SDT model although the simpler EVSDT
model is in fact more likely to be the data-generating model.
This also explains why earlier studies found such evidence.

12Due to the absence of participant-specific effects (and thereby
estimates of the within-study variability) this model does not
implement a ‘random-effects meta-analysis’. Instead, this is a
simple hierarchical model with one multivariate-normal group-level
distribution for the study effects.

Second, even in cases in which the random variability does
not distort the parameter estimates in dramatic ways it
can still lead to estimates purporting a precision that is
not actually warranted by the data. Both of these results
reinforce the dictum of Barr et al. (2013): always employ
the maximal random-effects structure justified by the design
(see also Schielzeth & Forstmeier, 2009).

Parameter-recovery simulation

In the second step we evaluated our ability to recover
model parameters. The idea here is that we should be
confident about our results only if we can demonstrate
that our hierarchical Bayesian SDT model can recover the
data-generating parameters. Specifically, we evaluated our
ability to recover parameters when the generated data are
not in line with the EVSDT, with σV

σI
= 1.50 (a value

that is in line with the estimates obtained in other domains;
e.g., Starns et al., 2012). In this simulation, we relied on
the parameter estimates obtained from the present meta-
analysis in order to have realistic individual parameter
values. Specifically, we generated one data set identical
in size to the original data from the parameter estimates
obtained from the original model with the sole difference
that σV = 1.5 × σI and then used the original model to
fit the data. We were able to recover parameter estimates,
which were at odds with the EVSDT. Table 4 reports the
results obtained from the group-level estimates, which are
close to the data-generating parameters (compared with
the parameter estimates obtained in the meta-analysis, also
reported in Table 4), reinforcing our trust in the present
results. These results also dismiss the concern that the ROC
datasets have limited diagnostic value, as some of them
appear to only cover some of the possible range of hits
and false-alarm values. If the data were not diagnostic for
detecting asymmetries, then the present recovery of the σV

σI

ratio would have not been expected.
Having established that our meta-analytic results are

trustworthy and the data diagnostic, we now present that
data from an experiment featuring a critical test of our main
novel finding: ROC symmetry.

A critical test of ROC symmetry

So far, we have estimated the shape of ROC data on the
sole basis of participants’ confidence-rating judgments. An
exclusive reliance on such data may be problematic: it
is possible that researchers relying on a single type of
data can fall victim to mono-operation biases (Shadish
et al., 2002, Chap. 3). Indeed, there is the question of
whether ROCs obtained with confidence ratings match
ROCs obtained with other methods (e.g., response-bias
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or payoff manipulations; see Klauer & Kellen, 2010;
Klauer, 2011; Kellen et al., 2013). Furthermore, it has been
suggested that the mere act of collecting confidence ratings
may critically alter the decision process (Malmberg, 2002).
Ideally, one seek converging evidence for the meta-analytic
results supporting ROC symmetry with novel experimental
data coming from alternative experimental paradigms to
provide converging evidence.

One approach would consist of collecting ROC data
without relying on confidence-rating judgments but instead
use response bias or payoff manipulations. This approach is
in many ways problematic: on a practical level, participants
tend to be quite conservative when it comes to shifting their
response criteria across response-bias conditions, leading to
ROC points that are too close to evaluate the overall shape
of the ROC (e.g., Dube & Rotello, 2012). On a theoretical
level, there is a risk that individuals do not maintain
the same level of discriminability across response bias
conditions, compromising ROC analysis (which assumes
that discriminability remains constant; see Balakrishnan,
1999; Bröder & Malejka, 2016; Van Zandt, 2000).

In order to sidestep these issues, we conducted a critical
test of ROC symmetry that capitalizes on an overlooked
property of SDT that was originally established by Iverson
and Bamber (1997). In a result known as the Generalized
Area Theorem, Iverson and Bamber showed that the ROC
function of a decision maker can be characterized by his/her
performance across different M-alternative forced-choice
trials in which one tries to identify the target stimulus
(e.g., the valid syllogism) among M-1 lure stimuli (e.g.,
invalid syllogisms). Specifically, the proportion of correct
responses in a M-alternative forced-choice (M-AFC) task
corresponds to the Mth moment of the ROC function (for
a detailed discussion, see Kellen, 2018). This result is
completely non-parametric as it does not hinge on the latent
distributions taking on a specific parametric form (i.e.,
the distributions do not have to be Gaussian). The Area
Theorem popularized by Green (see Green &Moses, 1966),
which states that the proportion of correct responses in 2-
AFC task corresponds to the area under the ROC function
(i.e., the function’s expected value or first moment), is an
instance of the Generalized Area Theorem.

Iverson and Bamber (1997) showed that the generalized
area theorem also enabled ROC symmetry to be tested
on the basis of M-alternative forced-choice judgments:
consider a complementary forced-choice task, designed
here as M-CAFC, in which the decision maker is requested
to identify the lure stimulus among M −1 target stimuli. For
example, in a 4-AFC task the decision maker is presented
with three invalid syllogisms and one valid syllogism and
has to pick the valid one, whereas in the 4-CAFC the
decision maker is presented with one invalid syllogism and
three valid ones and has to pick the invalid one. It can

be shown that an ROC function is symmetric (Killeen &
Taylor, 2004) if and only if, for all M , the proportions of
correct judgments in M-AFC and M-CAFC tasks are the
same (for details, see Iverson & Bamber, 1997).

Method

Participants

We collected data in an online web-based study advertised
on Amazon Mechanical Turk with a pre-determined
stopping rule of 125 participants. Participants were paid
1.25 USD for their participation, which took approximately
20 min. Ethical approval for the study was granted by the
Office of Research Ethics at the University of Waterloo,
Canada.

Procedure

Given the possibility for online data to be more noisy
than the equivalent lab data, we built in a number of
checks to ensure the data quality was sufficiently high.
Upon agreeing to participate in the experiment, an informed
consent page was presented. After providing informed
consent by clicking a button saying “I Agree”, the following
instructions were presented:

In this experiment we are interested in your

ability to reason according to the rules of

logic. You will be presented with a number

of reasoning puzzles (or "arguments") which

consist of two premises and a conclusion.

Some of these puzzles will have a logically

VALID conclusion, others will have a

logically INVALID conclusion

(explained below). Your task is to

discriminate between logically VALID and

INVALID arguments.

An argument is VALID if its conclusion

necessarily follows from the

premises, assuming the premises are true.

For instance:

Premise 1: All A are B

Premise 2: All B are C

Conclusion: All A are C

The conclusion (All A are C) is logically

VALID because if you assume it is true that

All A are B and that all B are C, then it

necessarily follows that all A are C.

By contrast, the conclusion All C are A is

logically INVALID, because assuming the

premises are true, this does not necessarily

follow. The entire experiment consists of 24

trials, divided in two blocks of 12. This is
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a control question. If you have read these

instructions carefully, please type in the

word "reasoning" below where it says

"respond here". >> Respond here: ________

Participants who did not correctly answer the control
question within five attempts were not allowed to participate
in the study (they were still paid). Participants who correctly
answered the control question were presented with the next
set of instructions, which read:

In the first part of the study, you will be

presented with up to four of these logical

reasoning problems at the same time. At

least one of these arguments will always be

logically VALID [INVALID], and the remaining

will be logically INVALID [VALID]. Your task

is to select the box which you think

contains the logically VALID [INVALID]

argument by clicking the box containing that

argument. To start with the experiment,

please type in the field below which box you

should select (in lowercase):

>> The box containing the _______ argument.

We tested the symmetry assumption in syllogistic
reasoning using M-AFC and a M-CAFC tasks for M = 2,
3, and 4. The participants were given 24 forced-choice trials
containing two, three, or four abstract syllogisms side-by-
side (M was manipulated within participants), either under
instructions to choose the valid argument (M-AFC task) or
under instructions to choose the invalid argument (M-CAFC
task), in a blocked and counterbalanced design (four trials
per cell of the design). In contrast with the data used in the
meta-analysis, we did not manipulate the believability of the
conclusions (for an application of 2-AFC to the study of
belief bias, see Trippas et al., 2014).

Results

The individual choice data were analyzed with a hierar-
chical Bayesian probit-regression model that included the
main effects of “number of alternatives” (two, three, or four)
and “choice focus” (choose target or lure item), as well as
their interaction. Weakly-informative priors were set for all
effects, with a normal distribution with mean 0 and stan-
dard deviation 4 and 16 being assigned to the intercept and
slope coefficients, respectively. Here, our interest lies in
whether there is a robust effect of “choice focus” (if there is,
then the ROC is asymmetrical). When attempting to choose
the invalid syllogism, the group-level estimates of correct-
choice probabilities were .60 [.55, .65], .43 [.38, .49], and
.34 [.29, .39] for M = 2, 3, and 4, respectively. When

attempting to choose the valid syllogism, the analogous esti-
mates were .64 [.58, .69], .43 [.38, .49], and .38 [.32, .43].
Both sets of estimates appear to be similar, in line with the
notion that ROCs are symmetrical. Indeed, the main effect
of “choice focus” was merely -.03 [-.08, .02]. We computed
a Bayes factor that quantified the relative evidence in favor
of the null hypothesis that the latter effect is zero (in con-
trast with the alternative hypothesis that it is not zero). The
obtained value was 69.72, which indicates very strong evi-
dence in favor of the null hypothesis. Overall, the results
show that our argument for ROC symmetry does not exclu-
sively hinge on data from confidence-rating paradigms,
dismissing the notion of a mono-operation bias in our
meta-analytic results. More importantly, they provide con-
verging evidence using a novel paradigm, suggesting that
the equal variance SDT model is an appropriate model for
belief bias in syllogistic reasoning. We discuss the implica-
tions of this experiment and the meta-analysis in next section.

Discussion

We can extract two take-home messages from the meta-
analysis and critical experimental test: (1) judgments
in syllogistic reasoning seem to be well accounted by
the EVSDT model, which in turn is equivalent to a
probit-regression model. (2) Individuals show the same
discriminability between valid and invalid syllogisms for
believable and unbelievable syllogisms. These two results
have serious implications on an empirical, methodological,
and theoretical level. On an empirical level, the fact that
the EVSDT model can be applied to binary judgments
means that one can safely revisit a large body of work, as
long as participant- and stimulus-level differences are taken
into account. EVSDT appears to fail when performance
is at ceiling (e.g., Study 2), but such performance levels
are very far from what is typically observed in syllogistic
reasoning studies, in which many errors are made, and the
focus is placed on the nature of such errors (e.g., Khemlani
& Johnson-Laird, 2012). Altogether, the routine collection
of confidence ratings does not seem necessary for the
appropriate measurement of belief bias–though we hasten
to add that doing so could certainly be of interest from a
meta-cognitive perspective (Ackerman & Thompson, 2015;
Thompson et al., 2011). Finally, on a theoretical level, the
results seem to corroborate Dube et al. (2010) in the sense
that the lack of an effect of believability on discriminability
is at odds with nearly all extant theories of syllogistic
reasoning. At least as long as one does not take further
individual characteristics into account as done below.

Meta-analyses are typically conducted with the goal of
obtaining a “final word” on a given subject. In the present
case, we reject such a view. Instead, we believe that our results
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should be framed as establishing a new starting point for
research on syllogistic reasoning. This starting point involves
the incorporation of some important facts: The exact way
in which we relate data and theoretical constructs matters.
Differences across studies, participants, and stimuli matter.
That ignoring any of the latter should be seen as dangerous
and misinformative. Based on this standpoint, we will dedi-
cate the remainder of this paper to the discussion of how one
can build upon the present work and develop better and
more comprehensive characterizations of deductive reasoning.

Relating individual reasoning abilities and theories
of belief bias

The hierarchical Bayesian SDT approach used here incorpo-
rates many state-of-the-art methods that deal with different
confounds such as the heterogeneity found at the level of
participants and stimuli. At this point, we do not see how
one could significantly improve upon the present approach
based on the available data alone. But despite the merits
of such an approach, we believe that some important limi-
tations still need to be addressed. Chief among them is the
fact that although the model can capture individual differ-
ences, it is completely silent regarding any of the factors that
underlie them. Given the considerable body of work show-
ing that different groups of individuals attempt to reason in
qualitatively distinct ways (e.g., Stupple et al., 2011), it is
extremely likely that the inclusion of additional individual-
level information might reveal new patterns and insights that
have so far only been investigated using the SDT model
applied to aggregate data (Trippas et al., 2013, 2015, 2014.
In particular, these studies suggest that the addition of idio-
graphic information might lead to a reframing of current
theories of syllogistic reasoning rather than the strong dis-
missal suggested by the lack of an effect of believability on
reasoning accuracy reported here.

Let us entertain the hypothesis that a sample of
participants is comprised of elements from two groups,
M and T : Group M consists of people who reason in
accordance to the mental-model theory (Oakhill et al.,
1989) given their stronger tendency to manifest an analytic
cognitive style (e.g., Pennycook et al., 2015). By reasoning
in accordance to the principles of the mental-model

theory, they will typically reason better for unbelievable
syllogisms, as these conclusions will trigger a search for
counterexamples. Group T is made up of participants, who
by having a lower tendency to manifest an analytic cognitive
style, tend to reason in accordance to the transitive-chain
theory (Guyote & Sternberg, 1981). These people are then
expected to reason worse for unbelievable syllogisms than
for believable ones, as the unbelievable contents are more
challenging to manipulate mentally. Analyzing data from
such an experiment under the assumption that everybody
amounts to some variation of the same reasoning strategy
is likely to yield the incorrect conclusion that beliefs do not
affect discriminability (as the differences in discriminability
found in both groups can cancel each other out), in line with
Dube et al.’s (2010) account.

This example can be made more concrete by reanalyzing
Study 14 (Trippas et al., 2015), a large sample study
(N = 191) in which additional individual information was
available for 182 participants in the form of the Cognitive
Reflection Test (CRT; Frederick, 2005). The CRT is a
test which consists of three simple but surprisingly tricky
problems which have been shown to capture individual
differences in analytic cognitive style—that is, the degree
to which a participant tends to engage in analytical thought
(Pennycook et al., 2016; Toplak et al., 2011). As an
example, consider the following question from the CRT (the
widgets problem): “if a factory with 100 workers produces
100 widgets in 100 days, how many days would it take for
5 workers to produce 5 widgets?”. The intuitive response
(based on a matching-heuristic) is “5 days”. However, the
correct response is in fact “100 days”—after all, the problem
premise entails that it takes 1 worker 100 days to produce 1
widget. We classified people who responded correctly to at
least one problem as part of the “analytic” group (N = 111).
People who responded incorrectly to all three problems
were classified as part of the “intuitive” group (N = 71).

We reanalyzed the binary endorsement rates for this
study using the EVSDT/probit-regression model that was
validated by the SDT analysis. But instead of only
considering participant- and stimulus-level differences as
done before, we also included those participants’ respective
CRT classifications. The equation of this hierarchical
Bayesian probit-regression model is

P(“valid”|participant = p,Syllogism = sL, L, B, C) = �(β0,p + LβL,p + BβB,p + CβC,p

+LBβLB,p + LCβLC,p + BCβBC,p

+LBCβLBC,i + βsL). (25)

This model includes parameters capturing the main effects
of Logic (L), Belief (B), and CRT classification (C), but also
their two- and three-way interactions (all factors are again

-1/1 coded). These parameters are allowed to vary across
participants, allowing for individual differences to be taken
into account. Moreover, βsL captures stimulus differences
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among valid and invalid syllogisms (additional details and
code to implement this model are presented in Appendix B).
The results reveal, among a host of less-surprising effects,
a credible group-level three-way Logic × Belief ×
CRT-classification interaction βLBC = -.07 [-.10, -.03],
suggesting that the Logic × Belief interaction is moderated
by individual differences in analytic cognitive style as
measured by the CRT. Specifically, this finding suggests
that participants classified as “analytic” reasoners tend to
perform better when evaluating unbelievable syllogisms
(group-level d ′ = 1.38 [1.20, 1.56]) than believable ones
(group-level d ′ = .91 [.81, 1.02]). For participants classified
as “intuitive” reasoners, the effect is smaller in magnitude
and, if anything, reversed, with group-level d ′

unbelievable

= .49 [.29, .69] and d ′
believable = .55 [.44, .66]. This

pattern is in line with the scenario described above, with
better reasoners behaving in accord with mental-models
theory, and worse reasoners with transitive-chain theory.
Although far from clear cut, these results demonstrate the
added value coming from the inclusion of individual
covariates, pointing researchers towards an individual-
differences approach already adopted in domains such as
emotion research and psychometrics (Rijmen et al., 2003).

In our view, the statistical model used in this reanalysis
should be considered as the new standard in analyzing
endorsement rates in syllogistic reasoning: (1) It respects
the nature of the data (categorical responses), (2) it is based
on a validated EVSDT model, (3) it takes into account the
heterogeneity found across participants and stimuli, and (4)
it can be easily extended to include additional covariates.
This model can also be conveniently implemented by
researchers. Here, we relied on the R package rstanarm
(Gabry & Goodrich, 2016). Appendix B provides details on
how the model is specified (a complete script along with
data can be found in our supplemental material is hosted on
the Open Science Framework (OSF). Specifically at: https://
osf.io/8dfyv/).

Beyondpure (SDT) model and single-task approaches

Throughout this manuscript, we exclusively relied on the
SDT model framework. However, this is not the only
approach that could be successfully adopted. For instance,
many researchers often rely on discrete-state models based on
multinomial processing trees (for an overview, see Batchelder
& Riefer, 1999; Erdfelder et al., 2009). Instead of describing
responses in terms of continuous latent representations
(e.g., distributions on an argument-strength scale), these
assume that responses are produced by a finite mixture of
discrete cognitive states that are entered probabilistically.
For example, Klauer et al. (2000) considered a discrete-
state model in which the true logical status of a valid syllo-
gism is detected with a certain probability (e.g., probability

Dv), a state in which a correct judgment was invariably
made. When the logical status of a valid syllogism is not
detected (e.g., with probability 1− Dv), the model assumes
that individuals simply guess whether the syllogism is valid
or invalid (with probabilities g and 1 − g, respectively). By
testing detection probabilities and guessing biases across
different types of syllogisms and experimental conditions,
Klauer et al. were able to establish a testbed for the predic-
tions of many different models of syllogistic reasoning.

Several successful discrete-state approaches can be found
in the reasoning literature, outside of the context of the belief-
bias effect discussed here (Böckenholt, 2012b; Campitelli
& Gerrans, 2014; Oberauer, 2006; Oberauer et al., 2006;
Klauer et al., 2007; Krauth, 1982). For example, Klauer et al.
(2007) developed a discrete-state model for the classic Wason
selection task (Wason, 1966), which requires participants to
decide which of four cards needs to be flipped in order to
test a given rule (“If there is an A on the letter side, then
there is a 3 on the number side’’). This discrete-state model
establishes how the observed responses (among the 16 pos-
sible combinations of card turns) can result from dif-
ferent interpretations of the rule (e.g., conditional versus
biconditional interpretation), the types of inferences con-
sidered (forward versus backward), and their perceived
sufficiency or necessity (see also Oberauer, 2006). Another
example worth mentioning is the cognitive-miser model orig-
inally proposed by Böckenholt (2012b) and further devel-
oped by Campitelli and Gerrans (2014). This model, which
is used to characterize responses from an extended version
of the CRT, allows for the estimation of thinking disposi-
tions and mathematical abilities by establishing parameters
reflecting the probability of successful response inhibition
and deliberative processing being engaged.

There is a decade-long debate among SDT and discrete-
state modelers on the relative merits of the two approaches
in several psychological domains (Batchelder et al., 1994;
Dube & Rotello, 2012; Dube et al., 2010, 2012; Kellen
& Klauer, 2011; Kellen, 2014; Kellen et al., 2013, 2015;
Kinchla, 1994); for reviews, see Pazzaglia et al. (2013),
Batchelder and Alexander (2013), and Dube et al. (2013).13

From this heated debate, two constructive points are often
overlooked: First, there is some consensus that the two
modeling approaches seem to be particularly successful
in certain types of domains and paradigms. For instance,
discrete-state approaches allow for a more clear separation

13One criticism is that the interaction index corresponds to a special
case of a specific discrete-state model, namely a restricted two-high
threshold model (Dube et al., 2010). However, it is important to keep
in mind that the shortcomings of a specific discrete-state model do not
necessarily generalize to the class of discrete-state models as whole.
In fact, when a more appropriate two-high-threshold model that can
account for ROC curvature is used Klauer and Kellen (2010), one
obtains a characterization of the data that is similar to the SDT model’s
(Klauer & Kellen, 2011).

https://osf.io/8dfyv/
https://osf.io/8dfyv/
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between mental states and their mapping onto observed
responses, which has enabled researchers to develop a wide
range of methods to account for individual differences
in response styles (see Böckenholt, 2012a; Klauer &
Kellen, 2010). Second, the two modeling approaches can
be conveniently integrated in order to create hybrid models
that simultaneously account for different kinds of data. As
pointed out by Klauer and Kellen (2011), the parameters
expressing the probability of different discrete states being
entered can be easily specified as a function of continuous
distributions like the ones postulated by SDT (see also
Klauer, 2010).

A combination of these modeling approaches, particu-
larly when done in a hierarchical Bayesian fashion, opens
very promising avenues of research. For instance, one can
integrate the cognitive-miser and SDT models in order to
further explore the relationships between different reason-
ing theories and the belief-bias effect. Moreover, one can
develop hybrid models that bridge the gap between different
types of data that are relevant for theories of syllogistic rea-
soning. For example, Khemlani and Johnson-Laird (2012)
tested a large set of models of syllogistic reasoning using
data from a conclusion generation task in which partici-
pants attempted to produce a conclusion from a given pair
of premises. The categorical data coming from this task
(note that participants can produce many types of conclu-
sions) could be conveniently modeled by means of discrete
states. It would be interesting to try to link the parame-
ters describing the probabilities of such states being entered
with the argument-strength distributions that underlie the
SDT modeling of endorsement rates. The joint modeling
of both tasks simultaneously could help researchers to bet-
ter understand the general and task-specific aspects of the
data (e.g., the previously discussed fact that the difficulty of
invalid syllogisms appears to differ between tasks). These
joint-modeling efforts seem particularly important when
considering the recent efforts to integrate different rea-
soning abilities within a single framework (e.g., Stanovich
et al., 2016; Thompson, 2000).

Playing amore ambitious game

Allen Newell famously stated that one cannot hope to
play “20 Questions” with Nature and win. Khemlani and
Johnson-Laird (2012) faced such a humbling situation when
failing to find a theory that successfully accounted for 64
different syllogistic forms. The difficulties associated with
describing the wide range of syllogisms available has led
many researchers to focus their efforts on a few cases only.
Despite its practical appeal, this strategy has led to the
present case in which the 22 reanalyzed datasets pretty
much focused on 17 syllogistic forms. Another advantage
of the hierarchical Bayesian SDT approach advocated here

is that it allows for a characterization of the different
syllogistic forms without any form of aggregation (note that
Khemlani and Johnson-Laird (2012), relied on aggregate
data) that can later guide us towards more comprehensive
theories of syllogistic reasoning. In fact, one could in
principle connect the SDT model with more fine-grained
computational theories by constraining the parameters of
the former to be a function of the mechanisms of the latter
(for examples in the context of recognition memory, see
Brandt, 2007; Osth & Dennis, 2015).

Last but not least, future work should attempt to go
beyond acceptance rates and incorporate the time take taken
for making these judgments. For instance, one can rely
on the drift-diffusion model (e.g., Ratcliff & Rouder, 1998),
which can be seen as a dynamic extension of the SDTmodel
used here. However, note that other options are available,
including the use of a dynamic discrete-state model approach
(e.g., Klauer, 2018). Although response times have not
played a significant role in this literature, they nevertheless
introduce important theoretical constraints (e.g., Trippas et
al., 2017). This state of affairs is partly due to the difficulties
associated with fitting such models when individual data are
sparse. But fortunately, some of these difficulties have been
relaxed due to the development of hierarchical Bayesian
extensions (e.g., Vandekerckhove et al., 2011).

Stop worrying about data sparseness and embrace
partial pooling

As discussed earlier, one of the challenges experimental
psychologists regularly face is the sparseness of data. One
obvious way to ameliorate this sparseness is to maximize
the number of responses per individual. However, the notion
that more data is necessarily better is a dangerous one,
especially when dealing with higher-cognitive faculties.
For instance, there is the risk that the way individuals
engage syllogisms depends on their expected workload
(e.g., number of syllogisms to be evaluated) throughout the
experiment. For example, the studies by Klauer et al. (2000)
relied on a large number of participants evaluating a small
number of syllogisms each (as small as eight syllogisms).
In contrast, studies with the goal of obtaining ROC data,
such as virtually all of the studies we considered, involved
larger numbers ranging from 16 to 64 syllogisms. It is
possible that this difference can explain to some degree the
discrepancies found in these studies regarding the effect
of conclusion believability on participants’ discriminability.
When relying on a hierarchical Bayesian approach, one
can avoid a maximization strategy by capitalizing on the
principle of partial pooling—that the similarities among
participants will inform the estimation of individual-level
parameters. The sparseness found at the individual level
can be compensated for by a reliance on large participant
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samples that can be conveniently collected online, for
example. The advantages of hierarchical Bayesian modeling
would also hold in the case of incomplete experimental
designs that attempt to sidestep time constraints, fatigue,
learning, or carryover effects (Little & Rubin, 1997;
Schafer, 1997). For example, partial pooling would improve
parameter estimation in an experiment in which participants
engage in different tasks and encounter different stimuli

(e.g., Thompson, 2000), but not all participants engage in
same set of tasks and/or encounter the same set of stimuli.
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Appendix A

Details on the hierarchical Bayesian SDTmodel

A graphical representation of our hierarchical Bayesian
SDT model is displayed in Fig. 11. This graphical repre-
sentation follows the conventions used by Lee and Wagen-
makers (2013): Discrete variables are displayed as squares
and continuous variables as circles, the observed variables
are displayed as shaded nodes, whereas the unobserved vari-
ables are non-shaded, and the double-bordered nodes repre-
sents variables that follow deterministically from other vari-
ables. Hence, all estimated variables are single-bordered,
round, and non-shaded. Finally, the plates display the hier-
archical structure of the model and all bold variables are
non-scalar values such as vectors or matrices. Below the
graphical model, Fig. 11 shows the distributional assump-
tions of our model as well as the complete prior structure.
Note that in the figure the second parameter of Normal dis-
tributions is the standard deviation and not the variance. The
only information missing is the exact specification of the
SDT model which is given in Eqs. 16 and 17.

We used Hamiltonian Monte Carlo methods to explore
the joint posterior distribution, as implemented in Stan
(Carpenter et al., 2017). We used six independent chains
with 1000 samples each, discarded the first 25% as warm-
up samples (i.e., burn-in), and retained only every third
iteration (i.e., thinning). Chain convergence was assessed
visually for all hyper-parameters and by inspecting the
Gelman-Rubin R̂ statistics for all sampled parameters. The
largest R̂ for the main (i.e., “original”) model was 1.03 (i.e.,
below the 1.05 threshold). The largest R̂ for any of the other
model versions discussed in this paper was 1.05.

One distinctive feature ofStan is that it allows to separate a
variance-covariance matrix � into a correlation matrix � and
standard-deviation vector σ with separate prior distributions.
We employed this approach throughout and used completely
non-informative priors for the correlation matrices, so-called
LKJ priorswith shape parameter 1 (Lewandowski et al., 2009;
Stan Development Team, 2016). The priors for the variances
were weakly informative, half Cauchy with location 0 and
scale 4 (Gelman et al., 2013). Most of the remaining priors
were also weakly informative Cauchy priors.

Appendix B

Probit regression analysis of study 14

We analyzed the data from Study 14 (Trippas et al.,
2015) using a hierarchical Bayesian probit regression
to assess whether the extent to which believability
affects logical reasoning accuracy is moderated by
individual differences in CRT performance (Frederick,
2005) when heterogeneity due to participants and stimuli
is accounted for. The model can be specified in a
straightforward fashion using the rstanarm package:

require(rstanarm)

# next line implicitly requires the afex

package afex::set_sum_contrasts() # sets

-1/1 contrasts for factors globally

fit <- stan_glmer(rsp logic*belief*crt+

(logic*belief|subj)+(belief|syll), family =

binomial("probit"),data = study14)

where study14 is a data.frame in the long-format
containing the variables subj, syll, rsp, logic,
belief, and crt. A description of each variable is
presented in Table 5.

The syntax can be interpreted as follows: the part
before the tilde ˜specifies the outcome variable, in this
case a binary accept/reject response rsp. The part after
the tilde ˜specifies the fixed and random-effects. The
fixed-effects specification logic*belief*crt cor-
responds to an intercept (grand mean), a main effect
of validity, a main effect of believability, a main
effect of CRT, a Logic × Belief interaction, a Logic
× CRT interaction, a Belief × CRT interaction, and
a Logic × Belief × CRT interaction. The random-
effects are specified between brackets. Specifically,
(logic*belief|subj) corresponds to a random per-
participant deflection from the intercept, from the effect
of Logic, from the random effect of Belief, and
from the Logic × Belief interaction. A covariance matrix

Table 5 Description of the variables in the probit regression analysis

Variable Description

subj Identifier for each participant (factor)
syll Identifier for each syllogistic structure (factor)
rsp Response: 1 if endorsed as valid, 0 if rejected
logic Logical Validity: valid or invalid (factor, first level =

valid)
belief Conclusion Believability: believable or unbelievable

(factor, first level = believable)
crt CRT-grouping: high or low (factor, first level = high)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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capturing these random effects is implied. Finally,
(belief|syll) corresponds to a random per-
syllogism deflection from the intercept and from the
effect of Belief—once again together with a covariance
matrix capturing these effects. Weakly informative priors
were set for all effects, with a normal distribution with
mean 0 and standard deviation 4 and 16 being assigned
to the intercept and slope coefficients, respectively.

The analysis showed that there was a credible main
effect of Logic, .42 [.33, .51], suggesting that people
were sensitive to logical validity. There was also a
main effect of Belief, .42 [.34, .49], indicating that
arguments with believable conclusions were endorsed
at a greater rate than arguments with unbelievable
conclusions. There was no effect of the CRT on
the overall endorsement rate, .04 [-.02, .10]. These
main effects were qualified by several higher order
interactions. There was a small but credible Logic ×
Belief interaction effect, -.05 [-.09, -.01] suggesting
that people may have reasoned somewhat better for
the arguments with unbelievable conclusions than for
the arguments with believable ones. There was a
comparatively large Logic × CRT interaction effect,
.16 [.10, .21], indicating that participants classified
as analytic reasoned better overall than their intuitive
counterparts. The Belief × CRT interaction went in
the opposite direction, -.10 [-.17, -.03], indicating that
analytic reasoners were less likely to accept problems
on the basis of conclusion believability than the intuitive
reasoners. Finally, as discussed in the main text, the
theoretically crucial Logic × Belief × CRT interaction
was also credible, -.07 = [-.10, -.03], suggesting the
Logic×Belief interaction differed between intuitive and
analytical reasoners.
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Böckenholt, U. (2012). The cognitive-miser response model: Testing
for intuitive and deliberate reasoning. Psychometrika, 77(2), 388–
399. https://doi.org/10.1007/s11336-012-9251-y
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