
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/125504 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/125504
mailto:wrap@warwick.ac.uk


 

 

Elucidation of molecular mechanisms of 

antibiotics biosynthesis in  

Burkholderia gladioli 

by 

Xinyun Jian 

 

Thesis submitted in partial fulfilment of the requirements for the degree of  

Doctor of Philosophy in Chemistry 

University of Warwick, Department of Chemistry 

September 2018 



PhD Thesis: Xinyun Jian  List of contents 

I 

List of contents 

List of Figures, Schemes and Tables ............................................................................................. VI 

Acknowledgements .................................................................................................................... XIV 

Declaration ................................................................................................................................... XV 

Abbreviations.............................................................................................................................. XVI 

Abstract ..................................................................................................................................... XVIII 

Chapter 1  Introduction ............................................................................................................... 1 

1.1 Burkholderia .................................................................................................................. 1 

1.1.1 The diversity and versatility of Burkholderia ............................................................. 1 

1.1.2 Natural products discovery in Burkholderia .............................................................. 3 

1.1.3 Discovery of gladiolin from Burkholderia gladioli BCC0238 ...................................... 3 

1.1.4 Re-discovery of icosalides from Burkholderia gladioli BCC0238 ............................... 5 

1.2 Polyketides .................................................................................................................... 6 

1.2.1 Polyketide natural products ...................................................................................... 6 

1.2.2 Polyketide biosynthesis ............................................................................................. 6 

1.2.3 Biosynthesis of gladiolin and etnangien .................................................................. 19 

1.3 Non-ribosomal peptides ............................................................................................. 23 

1.3.1 Non-ribosomal peptide natural products ................................................................ 23 

1.3.2 Non-ribosomal peptide biosynthesis....................................................................... 24 



PhD Thesis: Xinyun Jian  List of contents 

II 

1.3.3 Biosynthesis of icosalides ........................................................................................ 30 

1.4 Study aims ................................................................................................................... 32 

Chapter 2  Characterization of cis- and trans-acting enoyl reductases in the gladiolin 

polyketide synthase ..................................................................................................................... 33 

2.1 Characterization of the GbnD1 ER1 domain .............................................................. 35 

2.1.1 In vivo characterization of the GbnD1 ER1 domain ................................................. 35 

2.1.2 In vitro characterization of the GbnD1 ER1 domain ................................................ 44 

2.2 Characterization of GbnE ............................................................................................ 50 

2.2.1 In vivo characterization of GbnE .............................................................................. 50 

2.2.2 In vitro characterization of GbnE ............................................................................. 57 

2.3 Conclusions and future work ...................................................................................... 65 

Chapter 3  Probing the molecular mechanism of chain length control in gladiolin biosynthesis

 ...................................................................................................................................................... 67 

3.1 Iterative nature of GbnD2 Module 5 .......................................................................... 68 

3.1.1 Production of recombinant GbnD2 Module 5 ......................................................... 68 

3.1.2 Investigating the activity of GbnD2 Module 5 in vitro ............................................. 69 

3.1.3 Probing the ACP-selectivity of GbnD2 Module 5 iteration ...................................... 72 

3.2 The effect of GbnE on GbnD2 Module 5 iteration ..................................................... 75 

3.2.1 GbnE abolishes iteration of GbnD2 Module 5 ......................................................... 75 

3.2.2 Protein-protein interactions between GbnE and the GbnD2 ACP5 domain prevent 

re-acylation of the GbnD2 KS5 domain ................................................................................ 77 

3.2.3 The ‘gate-keeping’ role of the GbnD2 KS6 domain ................................................. 78 

3.3 Conclusions and future work. ..................................................................................... 84 



PhD Thesis: Xinyun Jian  List of contents 

III 

Chapter 4  Investigation of a double chain initiation mechanism in icosalides biosynthesis . 88 

4.1 Characterization of the IcoA C4 domain ..................................................................... 89 

4.1.1 Production of recombinant IcoA C4 domain ........................................................... 89 

4.1.2 Characterization of the N-acylation activity of the IcoA C4 domain ....................... 90 

4.2 Characterization of the IcoA C4-A3-PCP3 tri-domain ................................................ 92 

4.2.1 Production of recombinant IcoA C4-A3-PCP3 tri-domain ....................................... 92 

4.2.2 Characterization of the chain initiation activity of the IcoA C4-A3-PCP3 tri-

domain…………………………………………………………………………………………………………………………….93 

4.3 Characterization of IcoA Module 3 ............................................................................. 96 

4.4 Trails for in vitro reconstitution of icosalides derivatives biosynthesis .................... 99 

4.4.1 Strategy 1: two-piece reconstitution ..................................................................... 100 

4.4.2 Strategy 2: one-piece reconstitution ..................................................................... 101 

4.5 Conclusions and future work .................................................................................... 102 

Chapter 5  Conclusions and future perspectives .................................................................... 104 

Chapter 6  Materials and methods ......................................................................................... 108 

6.1 Materials ................................................................................................................... 108 

6.1.1 Growth Media ....................................................................................................... 108 

6.1.2 Buffers ................................................................................................................... 108 

6.1.3 Reagents and Kits .................................................................................................. 109 

6.1.4 Bacterial strains ..................................................................................................... 110 

6.1.5 Vectors ................................................................................................................... 111 

6.2 General DNA manipulation ...................................................................................... 112 

6.2.1 Genomic DNA isolation ......................................................................................... 112 



PhD Thesis: Xinyun Jian  List of contents 

IV 

6.2.2 Polymerase chain reaction (PCR) ........................................................................... 113 

6.2.3 Fragment DNA purification .................................................................................... 114 

6.2.4 DNA restriction digestion and ligation .................................................................. 114 

6.2.5 TOPO® cloning ....................................................................................................... 115 

6.2.6 TA® cloning ............................................................................................................ 116 

6.2.7 Gibson assembly and GeneArt assembly .............................................................. 117 

6.2.8 DNA purification for electroporation .................................................................... 118 

6.2.9 Transformation and electroporation ..................................................................... 118 

6.2.10  Plasmid DNA mini-prep ........................................................................................ 119 

6.3 Genetic manipulation of Burkholderia ..................................................................... 120 

6.3.1 Targeted in-frame gene deletion in Burkholderia ................................................. 120 

6.3.2 Site-directed mutagenesis in Burkholderia ........................................................... 120 

6.3.3 Gene complementation in Burkholderia ............................................................... 121 

6.3.4 General tri-parental mating procedures ................................................................ 123 

6.4 Burkholderia metabolite extraction and LC-MS analysis ......................................... 124 

6.4.1 Metabolite production and extraction .................................................................. 124 

6.4.2 Metabolite LC-MS analysis .................................................................................... 124 

6.5 Recombinant protein overproduction and purification .......................................... 125 

6.5.1 Cloning of recombinant protein expression constructs: ....................................... 125 

6.5.2 Site-directed mutagenesis ..................................................................................... 127 

6.5.3 Recombinant protein overproduction ................................................................... 128 

6.5.4 Recombinant protein purification ......................................................................... 129 



PhD Thesis: Xinyun Jian  List of contents 

V 

6.5.5 SDS-PAGE analysis of protein ................................................................................. 131 

6.6 In vitro biochemical assays ....................................................................................... 132 

6.6.1 General PPTase-catalysed phosphopantetheinyl loading ACP assays ................... 132 

6.6.2 Characterization of GbnD1 ER1 domain ................................................................ 133 

6.6.3 Characterization of GbnE ....................................................................................... 134 

6.6.4 Characterization of GbnD2 Module5 ..................................................................... 134 

6.6.5 Characterization of GbnD2 Module 6 (S941A) ...................................................... 135 

6.6.6 Characterization of IcoA C4 domain ...................................................................... 135 

6.6.7 Characterization of IcoA C4-A3-PCP3 tri-domain .................................................. 136 

6.6.8 Characterization of IcoA Module 3 ........................................................................ 136 

6.6.9 Two-piece In vitro reconstitution of icosalides biosynthesis ................................. 136 

6.7 LC-MS analysis of proteins and in vitro intact protein assays ................................. 137 

6.8 Full length icosalide NRPS encoded gene cloning .................................................... 137 

6.8.1 Capturing plasmid construction ............................................................................ 137 

6.8.2 Yeast transformation ............................................................................................. 138 

6.8.3 Candidate yeast colonies screening ...................................................................... 138 

6.8.4 IcoA containing plasmid DNA extraction and confirmation .................................. 139 

6.9 Icosalides full length NRPS heterologous expression in E. coli ................................ 139 

References ................................................................................................................................. 141 

Appendix .................................................................................................................................... 159 

 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

VI 

List of Figures 

Figure 1.1 Beneficial and problematic traits of the Burkholderia species. 

Figure1.2 Representative examples of natural products with biological activities from 

Burkholderia species. 

Figure 1.3 Structural comparison of gladiolin 7 and etnangien 8. 

Figure 1.4 Structures and activities of icosalide A1 (9), A2 (10) and B (11). 

Figure 1.5 Representative bioactive polyketide natural products. 

Figure 1.6 Schematic view of the representative type I modular PKS responsible for erythromycin 

A biosynthesis. 

Figure1.7 Schematic overview of chain initiation, extension and termination by type I modular 

PKSs. 

Figure 1.8 Schematic view of the representative trans-AT PKS responsible for leinamycin 

biosynthesis. 

Figure1.9 Examples of module iteration in type I modular PKSs. 

Figure1.10 Mechanism of acyl transfer reaction catalyzed by the AT domains from modular PKSs. 

Figure 1.11 Mechanism of modular PKS KS domains catalyzed chain elongation reaction. 

Figure 1.12 Catalytic and stereo control mechanisms of KR and DH domains from modular PKSs. 

Figure 1.13 Catalytic mechanism, stereo control and structural overview of of cis-acting ER 

domains from type I modular PKSs. 

Figure 1.14 Phylogenetic, functional and structural overview of trans-acting ER domains from 

type I modular PKSs. 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

VII 

Figure 1.16 Schematic view of PPtase catalyzed holo modification of ACP domains (A) and distinct 

interfaces mediate KS-ACP protein–protein interactions (B). 

Figure 1.17 Comparison of the gladiolin and etnangien biosynthetic gene clusters. 

Figure1.18 Comparison of the trans-AT PKSs responsible for etnangien and gladiolin assembly. 

Figure 1.19 Comparison of the proposed biosynthesis in the first module of gladiolin (red box) 

and etnangien (blue box) PKSs. 

Figure 1.20 Representative bioactive non-ribosomal peptides. 

Figure 1.21 Schematic view of the representative modular NRPS that responsible for vancomycin 

biosynthesis. 

Figure 1.22 Schematic overview of non-ribosomal peptide chain elongation relations catalyzed 

by the three core domains. 

Figure 1.23 Ribbon diagrams of the NMR solution structures of the TycC3-PCP (from tyrocidine A 

synthetase) showing three conformers in the A, A/H, and H states. 

Figure 1.24 Crystal structure and detailed view of active site of CDA-C1 domain. 

Figure 1.25 Classification of the C domains from NRPS based on the phylogenetic and 

bioinformatic analysis. 

Figure 1.26 Identification of the icosalide NRPS biosynthetic gene and phylogenetic affiliation 

catalytic domains (unpublished data from Challis group). 

Figure 1.28 NRPS and proposed biosynthesis of icosalides. 

Figure 2.1 Partial biosynthetic pathways of the gladiolin (A) and etnangien (B) PKSs. 

Figure 2.2 Comparison of catalytic domain architectures of the gladiolin and etnangien PKSs 

showing the hypothetic catalytic origin of the additional enoyl reduction event in module 5 of 

the gladiolin PKS. 

Figure 2.3 Work flow of the mutagenesis system applied in in-frame deletion in Burkholderia. 

Figure 2.4 Structure comparison of gladiolin and its analogues. 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

VIII 

Figure 2.5 Schematic representation of generation and PCR confirmation of B. gladioli 

BCC1622_ΔgbnD1_ER1. 

Figure 2.6 LC-MS analysis of metabolite extracts from BCC1622 wild type and 

BCC1622_ΔgbnD1_ER1. 

Figure 2.7 Structural comparison of gladiolin and proposed derivatives arising from inactivation 

of GbnD1 ER1 in vivo. 

Figure 2.8 Proposed structure of unreduced gladiolin derivatives. 

Figure 2.9 Structure of NADPH binding site in SpnER2 domain from spinosyn PKS. 

Figure 2.10 Partial result of multiple sequence alignment between GbnD1 ER1 domain and 

reported ER domains from type I modular PKSs. 

Figure 2.11 Schematic representation of generation and PCR confirmation of B. gladioli BCC1622_ 

gbnD1_ER1 (G388S/G389P) 

Figure 2.12 LC-MS analysis of metabolite extract from BCC1622 wild type and 

BCC1622_gbnD1_ER1*(GG388-399SP). 

Figure 2.13 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD1 ACP1-ER1, N-His6-GbnD1 ER1, 

N-His6-GbnD2 ACP5. 

Figure 2.14 LC-MS analysis of in vitro GbnD1 ER1 domain intra-module enoyl reduction activity. 

Figure 2.15 LC-MS analysis of in vitro GbnD1 ER1 domain inter-modular enoyl reduction activity 

in module 5. 

Figure 2.16 LC-MS analysis of in vitro assay demonstrating enoyl reduction activity of the isolated 

GbnD1 ER1 domain. 

Figure 2.17 Schematic representation of generation and PCR confirmation of B. gladioli 

BCC1622_ΔgbnE. 

Figure 2.18 LC-MS analysis of metabolite extracts from B. gladioli BCC1622 wild type and 

BCC1622_ΔgbnE. 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

IX 

Figure 2.19 Structural comparison of gladiolin and proposed derivatives produced by gbnE 

deletion mutant. 

Figure 2.20 PCR confirmation of BCC1622_ΔgbnE::gbnE. 

Figure 2.21 LC-MS analysis of gladiolin production in B. gladioli BCC1622 wild type, 

BCC1622_ΔgbnE, BCC1622_ΔgbnE::gbnE and BCC1622_ΔgbnE::pMLBAD. 

Figure 2.22 Schematic representation of generation and PCR confirmation of B. gladioli 

BCC1622_ΔgdsB_ER and BCC1622_ΔgbnEΔgdsB_ER. 

Figure 2.23 LC-MS analysis of gladiolin production in B. gladioli BCC1622 wild type, 

BCC1622_ΔgbnE, BCC1622_ΔGdsB_ER and BCC1622_ΔgbnEΔGdsB_ER. 

Figure 2.24 SDS-PAGE and LC-MS analysis of purified N-His6-SUMO-GbnE. 

Figure 2.25 LC-MS analysis of in vitro enoyl reduction activity of GbnE. 

Figure 2.26 SDS-PAGE and LC-MS analysis of N-His6-GbnD1 ACP3, N-His6-GbnD4 ACP10 and N-

His6-GbnD5 ACP12. 

Figure 2.27 LC-MS analysis of 2,4-hexadienoyl-PPant loading onto the GbnD1 ACP3 (A), GbnD2 

ACP5 (B), GbnD4 ACP10 (C) and GbnD5 ACP12 domain (D). 

Figure 2.28 LC-MS analysis of GbnE in vitro enoyl reduction with GbnD2 ACP5, GbnD4 ACP10, 

GbnD1 ACP3, and GbnD5 ACP12 domain. 

Figure 2.29 Structure of active site in FabK from Streptococcus pneumoniae. 

Figure 2.30 Partial result of multiple sequences alignment between GbnE and homologous 

enzymes. 

Figure 2.31 LC-MS analysis of purified N-His6-SUMO-GbnE, N-His6-SUMO-GbnE(H198V). 

Figure 2.32 LC-MS analysis of in vitro enoyl reduction activity of GbnE (H198V). 

Figure 3.1 Comparison of partial biosynthetic pathways of gladiolin (A) and etnangien (B). 

Figure 3.2 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD2 Module 5. 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

X 

Figure 3.3 LC-MS analysis of in vitro reconstitution of iterative activity of GbnD2 Module 5. 

Figure 3.4 SDS-PAGE analysis and LC-MS analysis of N-His6-tag cleaved GbnD1 ACP3 and GbnD4 

ACP10 domain. 

Figure 3.5 LC-MS analysis of in vitro iteration control assays of GbnD2 Module 5. 

Figure 3.6 LC-MS analysis of in vitro GbnD2 Module 5 iteration assays with and without addition 

of GbnE. 

Figure 3.7 LC-MS analysis of in vitro GbnD2 Module 5 iteration assays with and without addition 

of GbnE (H198V). 

Figure 3.8 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD2 Module 6(S941A). 

Figure 3.9 LC-MS analysis of in vitro PPtase catalyzed 2,4-hexadienoyl-PPant and 4-hexenoyl-

PPant loading of GbnD2 ACP5 domain. 

Figure 3.10 LC-MS analysis of in vitro chain translocation between GbnD2 ACP5 domain and 

GbnD2 KS6 domain. 

Figure 3.11 LC-MS analysis of acylation of the KS domain in GbnD2 Module 6(S941A). 

Figure 3.12 LC-MS analysis of GbnD2 Module6 (S941A) in vitro chain elongation. 

Figure 4.1 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA PCP3 and N-His6-IcoA C4. 

Figure 4.2 LC-MS analysis of the N-acylation activity of the IcoA C4 domain. 

Figure 4.3 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA C4-A3-PCP3 tri-domain and N-

His6-IcoA C4*-A3-PCP3(H143A) tri-domain. 

Figure 4.4 LC-MS analysis of the L-serine adenylation activity of A domain in IcoA C4-A3-PCP3 and 

IcoA C4*-A3-PCP3 (H143A). 

Figure 4.5 LC-MS analysis of in vitro reconstitution of chain initiating activity of IcoA C4-A3-PCP3. 

Figure 4.6 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA Module 3. 

Figure 4.7 LC-MS analysis following apo to holo modification and L-Serine loading of IcoA module 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

XI 

3 and proposed identity of the unknown derivative of IcoA module 3. 

Figure 4.8 Schematic view of in vitro reconstituted biosynthesis of novel icosalides derivatives. 

Figure 4.9 In vitro reconstitution of IcoA by a two-part strategy. 

Figure 4.10 Restriction digestion map of the pET28a(+)-icoA 

Figure 5.1 Future perspectives of different chain length control mechanisms employed by the 

gladiolin and etnangien assembly lines. 

Figure 5.2 Schematic view of rational engineering of novel icosalides derivatives via a 

combinatorial biosynthesis strategy. 

List of schemes 

Scheme 2.1 Design of in vitro assay for investigating the GbnD1 ER1 domain’s intra-modular enoyl 

reduction activity. 

Scheme 2.2 Design of In vitro assay for investigating putative inter-module enoyl reduction 

activity of GbnD1 ER1 domain in module 5. 

Scheme 2.3 Design of in vitro assay for monitoring activity of isolated GbnD1 ER1 domain. 

Scheme 2.4 Design of In vitro assay for examination of enoyl reduction activity of GbnE. 

Scheme 3.1 Design of in vitro assay (A) and proposed mechanism (B) for examining the iterative 

nature of GbnD2 Module 5. 

Scheme 3.2 Design of in vitro assays for monitoring GbnD2 Module 5 iteration with GbnE 

presence. 

Scheme 3.3 Design of in vitro assays for monitoring substrate specificity of GbnD2 KS6 domain in 

the translocation process. 

Scheme 3.4 Design of in vitro assays for monitoring substrate specificity of GbnD2 KS6 domain in 

chain elongation process. 

Scheme 4.1 Proposed biosynthetic events in module 3 of IcoA 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

XII 

Scheme 4.2 Design of in vitro assays for testing the N-acylation activity of the IcoA C4 domain. 

Scheme 4.3 Design of in vitro assay for examination of the chain initiating activity of IcoA C4-A3-

PCP3. 

Scheme 4.4. Optimized in vitro one-pot assay for reconstitution of the chain initiating activity of 

IcoA C4-A3-PCP3. 

Scheme 4.6 Design of on-pot in vitro assay for reconstitution of the activity of IcoA Module 3. 

List of tables 

Table 6.1 List of antibiotics  

Table 6.2 List of bacterial strains  

Table 6.3 List vectors  

Table 6.4 Components of typical PCR reactions 

Table 6.5 Thermocycling conditions for a routine PCR 

Table 6.6 Components of DNA restriction digestion reactions 

Table 6.8 Components of TOPO® cloning reactions 

Table 6.9 Components of typical TA® cloning reactions 

Table 6.10 Components of typical Gibson assembly reactions 

Table 6.11 Components of typical GeneArt assembly reactions 

Table 6.12 Overview of constructs used in in-frame deletion, site-directed mutagenesis and 

complementation in Burkholderia 

Table 6.13 UHPLC elution profile metabolite LC-MS analysis 

Table 6.14 Overview of primers and cloning methods for constructs used for recombinant protein 

expression 

Table 6.15 Components of Q5® Site-Directed Mutagenesis reactions 



PhD Thesis: Xinyun Jian  List of figures, schemes and tables 

XIII 

Table 6.16 Overview of the primers and mutations for mutant constructs 

Table 6.17 Overview of tag type, size and purification method for recombinant protein 

Table 6.18 Recipe of Tris-glycine SDS-polyacrylamide gels 

Table 6.19 UHPLC elution profile for protein and intact protein LC-MS analysis 

Table 6.20 Overview of primers for construct pCAP1000-icoA



PhD Thesis: Xinyun Jian  Acknowledgements 

XIV 

Acknowledgements 

First and foremost, I would like to express my gratitude to my supervisor, Prof. Gregory Challis for 

giving me the opportunity to work on such an interesting and varied project, and for providing 

such a great multidisciplinary platform for our studies. His sound guidance, deep insights, kind 

support and encouragement are highly appreciated. 

I would like to specially thank Dr. Matthew Jenner, for his enormous help to many aspects 

throughout my PhD. These include teaching me biochemistry and protein mass spectrometry 

techniques and providing valuable discussions and comments to my experiments, reports, 

presentations and thesis. I would also like to thank Dr. Joleen Masschelein for teaching me 

Burkholderia genetic manipulation and offering useful suggestions to my project in the first two 

years of my PhD. I am grateful to Dr. Lona Alkahalaf, for her patiently reading through and 

correcting my thesis, as well as helpful advice to my project. I am also appreciative to Dr. Douglas 

Roberts and Christian Hobson, for synthesizing the substrates used in this study and for 

sometimes explaining chemistry questions to me.  

My thanks also go to my advisory panel: Dr. Christophe corre and Dr. Claudia Blindauer, Dr. Lijiang 

Song, Dr. Simone Kosol, Dr. Yousef Dashti, Dr. Chris Fage, Dr. Daniel Zabala, Dr. Emzo De Los Santos, 

Dr. Shanshan Zhou, for their advice and help during my PhD. Furthermore, I would like to thank 

everyone in the Challis group for creating a positive and lovely working environment. Thanks to 

the CSC-Warwick joint scholarship for funding.  

Finally, I would like to thank my parents and family for their Love, support and encouragements. 

I want to give my special thanks to Chuan, who has always been there for me. I couldn’t have 

done it without you.

https://warwick.ac.uk/fac/sci/chemistry/research/blindauer/


PhD Thesis: Xinyun Jian  Declaration 

XV 

Declaration 

I confirm this thesis has been prepared in accordance with the university’s guidelines on the 

presentation of a research thesis for the degree of Doctor of Philosophy. The experimental work 

reported in this thesis is original research carried out by myself, unless otherwise stated. No 

material has been submitted in any application for any other degree.  

Results from other authors are referenced in the usual manner throughout the thesis. 

 

 

 

 

 

                                                        Date:                     

Xinyun Jian 

 

 

 



PhD Thesis: Xinyun Jian  Abbreviations 

XVI 

Abbreviations  

 

A-Domain   Adenylation Domain  

ACP  Acyl Carrier Protein 

ADP  Adenosine Diphosphate 

AL  Acyl Ligase 

Ala  Alanine 

AMP  Adenosine Monophosphate 

Arg  Arginine 

Asn  Asparagine 

AT  Acyltransferase 

ATP  Adenosine Triphosphate 

Bcc  Burkholderia cepacia complex 

C-Domain  Condensation Domain 

CoA  Coenzyme A 

Cys  Cystine 

DMSO.  Dimethylsulphoxide 

DNA  Deoxyribonucleic Acid 

DPCK  Dephosphocoenzyme A Kinase 

E-domain  Epimerization Domain 

ECH  Enoyl-CoA Dehydratase 

EDTA  Ethylenediaminetetraacetic Acid 

ER  Enoyl Reductase 

ESI  Electrospray Ionisation 

FAS  Fatty Acid Synthase 

FMN  Flavin Mononucleotide 

Gln  Glutamine 

Glu  Glutamic Acid Glycine 

Gly  Glycine 

GNAT  GCN5-related N-acetyltransferase 

His  Histidine 

HMGS  3-hydroxy-3-methylglutaryl-CoA  

IPTG  Isopropylthio-β-galactoside 

KR  Ketoreductase 

KS  Ketosynthase 

LB  Luria Broth 



PhD Thesis: Xinyun Jian  Abbreviations 

XVII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LC  Liquid Chromatography 

Leu  Leucine 

Lys  Lysine 

Met  Methionine 

MS/MS  Tandem Mass Spectrometry 

MS  Mass Spectrometry 

MT  Methyl Transferase/ Mutant 

MIC  Minimum Inhibitory Concentration 

NADH  Nicotinamide Adenine Dinucleotide 

NADPH  Nicotinamide Adenine Nucleotide Phosphate 

NMR  Nuclear Magnetic Resonance 

NRPS  Non-Ribosomal Peptide Synthase 

PanK  Pantethenate Kinase 

Phe  Phenylalanine 

PKS  Polyketide Synthase 

Pant  (Phospho)pantetheine 

PPant  Phosphopantetheinyl 

PPAT  Phosphopantetheine Adenylyltransferase 

PPTase  4’-Phosphopantetheinyl Transferase 

Pro  Proline  

PUFA  Poly Unsaturated Fatty Acid 

Ser  Serine 

NAC  N-Acetyl Cysteine 

TAR  Transformation-Associated Recombination   

TE  Thioesterase 

TFA  Trifluoroacetic Acid 

Thr  Threonine 

TOF  Time of Flight 

Trp  Tryptophan 

Tyr  Tyrosine 

Val  Valine 

UHPLC  Ultra-high Performance Liquid Chromatography 

WT  Wild Type 

   

   



PhD Thesis: Xinyun Jian  Abstract 

XVIII 

Abstract 

Burkholderia is a multi-talented genus of Gram-negative bacteria that has been recently shown 

to be a promising, untapped source of antibiotics with the potential to overcome antimicrobial 

resistance. An antimicrobial activity screen of a clinical isolate, B. gladioli BCC0238, identified a 

novel polyketide macrolide antibiotic, gladiolin, that is structurally related to a known antibiotic 

etnangien and exhibits potent activity against Mycobacterium tuberculosis. Gladiolin shows 

significantly increased stability towards light and air compared to etnangien, due to the absence 

of a highly unstable hexaene moiety present in the side chain of etnangien, which is the key 

structural difference between the two metabolites. Comparison of the polyketide synthases 

(PKSs) responsible for the biosynthesis of gladiolin and etnangien, however, reveals a strikingly 

similar domain architecture. This thesis reports the elucidation of the catalytic origins for the 

main structural differences between the two metabolites, revealing a trans-acting enoyl 

reduction event involved in shutting down a programmed iteration in gladiolin biosynthesis, 

which is proposed for the polyene formation in etnangien biosynthesis.  

In addition to gladiolin, a set of lipopeptodiolides, known as icosalides, which were originally 

reported as fungal metabolites, were also discovered from B. gladioli BCC0238. The non-

ribosomal peptide synthase (NRPS) responsible for the biosynthesis of icosalides exhibits an 

unprecedented domain architecture revealing two directly adjacent condensation (C) domains 

embedded in the middle of the NRPS. In this study, the enzymology of these C domains has been 

investigated in vitro, elucidating an unusual double chain initiation mechanism for asymmetric 

peptidolide biosynthesis. Additionally, efforts towards in vitro reconstitution of the entire 

icosalide NRPS is reported, which may allow access to novel antibiotic analogues. 
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Chapter 1  

Introduction 

1.1 Burkholderia 

1.1.1 The diversity and versatility of Burkholderia  

Burkholderia is a genus of Gram-negative β-proteobacteria. Species belonging to this genus which 

occupies remarkably diverse ecological niches, ranging from environmental water, soil, the 

rhizosphere of plants to animals and humans.1,2,3 The first described species from this genus was 

identified by William Burkholder in 1950 as a plant pathogen that caused sour rot of onion and 

named as Pseudomonas cepacian due to the phenotypic similarity to Pseudomonas species.4 The 

Burkholderia species were included in the Pseudomonas genus till 1992 when the new genus 

Burkholderia was generated.5 This genus underwent a rapid expansion subsequently and now 

composes over 80 identified species, which are classified into two major clades.6 A particular 

important group of species is the Burkholderia cepacia complex (Bcc) located in clade I. Bcc is a 

collection of genetically distinct but phenotypically similar Burkholderia species, which have 

attracted considerable attention from researchers due to their challenging taxonomy, particular 

importance in clinical epidemiology as well as exceptional metabolic versatility among 

Burkholderia species.7  

Burkholderia species are now known as one of the most versatile groups of Gram-negative 

bacteria that are capable of forming a variety of complex interactions with hosts.1 These 

interactions form the basis of both the problematic and beneficial traits of Burkholderia species 

as shown in Figure 1.1. Apart from some species identified as plants pathogens, for example B. 

plantarii causes seedling blight of rice8 and B. andropogonis causes stripe disease of sorghum9, 
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several species are also capable of infecting animals and humans. The primary pathogens include 

B.mallei and B. pseudomallei which cause glanders mainly in horses and melioidosis in both 

animals and humans respectively.10,11 Species like B. gladioli, B. fungorum and Bcc are 

opportunistic pathogens that are considered as serious threats to vulnerable individuals, 

especially cystic fibrosis (CF) patients.12,13,14   

In contrast to the pathogenic traits that led to the original identification, some Burkholderia 

species have been demonstrated to develop beneficial interactions with plants leading to a 

general growth promotion of crops. These species are able to fix atmospheric nitrogen, such as 

B. vietnamiensis and B. tropica,15,16 or produce bioactive metabolite to protect seedling plants 

from attack by pathogenetic fungi and nematodes or insects.17,18,19 Additionally, several species 

have also showed great biotechnological potential as bioremediation agents, due to their ability 

to degrade polyaromatic hydrocarbon pollutants, such as B.cepacia20,21.  

 

Figure 1.1 Beneficial and problematic traits of the Burkholderia species (reproduced from ref.22). The 

pathogenicity to plants, animals and humans, particularly evident for cystic fibrosis (CF) patients, represent the 

problematic traits of Burkholderia species. The ability to biodegrade pollutants and promote plant growth via 
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nitrogen fixing or producing antimicrobial metabolites form the beneficial basis of this genus. 

1.1.2 Natural products discovery in Burkholderia  

Burkholderia species exhibit a remarkable ability to produce a variety of specialized metabolites 

with diverse bioactivities (Figure 1.2), the majority of which are antimicrobial metabolites, such 

as antibiotic cepacins 123 and enacyloxins IIa 524 and antifungal agent pyrrolnitrin 625 and 

occidiofungin 226 . 

 

Figure1.2 Representative examples of bioactive natural products produced by Burkholderia species. 

In recent years, the availability of vast genome sequence data from Burkholderia species has 

uncovered their surprisingly huge genetic capacity with the genome size ranging between 6 and 

9 Mb, which underpins their extraordinary specialized metabolic potential.27 Aided by the 

advances in genomic-driven natural product discovery technologies, numerous natural product-

linked as well as cryptic biosynthetic gene clusters have been identified from Burkholderia species, 

proving them as an untapped and promising source of novel natural products. 

1.1.3 Discovery of gladiolin from Burkholderia gladioli BCC0238 
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During previous screens of Burkholderia clinical isolates for antimicrobial metabolite production 

in the Mahenthiralingam group, B. gladioli BCC0238, isolated in 1996 from the sputum of a cystic 

fibrosis patient, was found to exhibit a broad spectrum of antimicrobial activity.28 HPLC 

purification coupled with structural elucidation of the active metabolite from B. gladioli BCC0238 

resulted in the identification of a novel polyketide macrolide, named gladiolin 7 (Figure 1.3) by 

the Challis group.28 Gladiolin is structurally similar to the known polyketide antibiotic etnangien 

8 (Figure 1.3), produced by Sorangium cellulosum.29,30 Structural comparison of gladiolin and 

etnangien reveals three differences: 1) an extra methyl group at C6 in etnangien, 2) the C38-C39 

double bound in etnangien is saturated at the corresponding C34-C35 position in gladiolin and 3) 

the C26-C31 triene moiety in etnangien is replaced by saturated a C26-C27 bond in gladiolin. The 

conjugated hexaene moiety in the etnangien side chain significantly destabilizes the molecule, 

making it prone to light-induced isomerization and rapid oxidative degradation.30 Gladiolin 

lacking this moiety and thus has significantly increased stability towards light and air. However, 

the lactone of gladiolin is prone to rearrangement/hydrolysis (detailed in section 2.1.1.1). 

 

Figure 1.3 Structural comparison of gladiolin 7 and etnangien 8. Structural differences are highlighted in red 

(gladiolin) and blue (etnangien).  

Etnangien was reported to be active against a broad panel of Gram-positive bacteria, including 

Mycobacterium smegmatis (MIC = 1 μg/ml), a non-pathogenic species, which is phylogenetically 

close to a known tuberculosis causing pathogenic species, Mycobacterium tuberculosis. As an 

analog of etnangien, gladiolin was also tested against mycobacteria, revealing it possesses potent 

activity against M. tuberculosis (MIC = 0.4 μg/ml against the H37Rv strain).28 Both compounds 

have been shown to be capable of inhibiting the mycobacterial RNA polymerase, which is a 

validated drug target of M. tuberculosis, while having low mammalian cytotoxicity.28-31 With the 

significantly increased stability towards light and air compared with etnangien, potent activity 
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including against several isoniazid and isoniazid/rifampicin-resistant clinical isolates of M. 

tuberculosis,28 gladiolin offers more promise for development of novel drug to confront 

multidrug-resistant tuberculosis. 

1.1.4 Re-discovery of icosalides from Burkholderia gladioli BCC0238 

In the process of screening for other bioactive metabolites from B. gladioli BCC0238 in the Challis 

Group, a set of lipopeptodiolides, known as icosalides A1 (9), A2 (10) and B (11) (Figure 1.4) were 

identified from the extracts of this strain. Interestingly, icosalides were originally isolated from 

the extract of a fungi species32. 

 

Figure 1.4 Structures and activities of icosalide A1 (9), A2 (10) and B (11). The amino acid building blocks are 

denoted, with the different configurations of the second leucine residue highlighted in green. The incorporated 

3-hydroxyacyl units are highlighted in red and blue.  

Structurally, all three icosalide analogs contain two serine and two leucine amino acid residues, 

with two fatty acid-derived 3-hydroxyacyl units incorporated as part of the central twenty-

member ring. A distinguishing feature of icosalide A1 is the presence of a single D-Leucine residue, 

whereas A2 and B universally contain L-configured amino acid residues. Besides, icosalides A1 

and A2 integrate eight and ten carbon 3-hydroxyacyl chains into the cyclic core generating an 

asymmetric peptolide, whereas icosalide B obtains structural symmetry via incorporation of two 

eight carbon 3-hydroxyacyl units. With these structural differences, the three Icosalide analogs 

display very different bioactivities: icosalide A1 shows modest antimicrobial activity against 
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Streptococcus pyogenes, S. pneumoniae, and Enterococcus faecalis while icosalides A2 and B are 

cytotoxic to replicating Madin-Darby canine kidney (MDCK) cells. 

1.2 Polyketides  

1.2.1 Polyketide natural products 

Polyketides (PKs) are a large family of natural products that possess impressive structural 

complexity and diversity, as well as a broad range of biological activities, such as antibiotic 

erythromycin A 12, antifungal agent amphotericin B 13, anti-cancer agent epothilone B 16, 

cholesterol-lowering agent lovastatin 14, immunosuppressant rapamycin 15 and pesticide 

spinosyn A 17 (Figure 1.5). Their pharmaceutical and economic value have motivated interest in 

novel structure discovery, elucidation of the enzymology and structure of biosynthetic 

machineries as well as genetic and chemical engineering of novel derivatives for the last three 

decades.    

 

Figure 1.5 Representative bioactive polyketide natural products. 

1.2.2 Polyketide biosynthesis  
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Despite polyketide natural products having remarkable structural diversity, they are all assembled 

from simple acyl-coenzyme A (CoA) derived building blocks by a group of enzymes called 

polyketide synthases (PKSs).33 Three distinct types of PKSs exist in various organisms, including 

bacteria, fungi and plants, and are responsible for biosynthesis of different classes of polyketides, 

including aromatic and complex polyketides.34 This study focuses on the bacterial polyketides 

complex, the majority of which are assembled by type I modular PKSs.  

1.2.1.1 Type I modular polyketide synthases 

Type I modular PKSs are large multifunctional enzyme complexes, in which the catalytic domains 

are organized into multiple sequential modules, whereby a module is responsible for one 

catalytic cycle of the building block selection and installation.35 The best studied type I modular 

PKSs is the 6-deoxyerythromycin B synthase (DEBS) involved in erythromycin biosynthesis, which 

cotains six chain extension modules flanked by a loading and module and a chain releasing 

thioesterase (TE) domain into three gigantic multienzymes (DEBS 1, DEBS 2 and DEBS 3) as shown 

in Figure 1.6.  

 

Figure 1.6 Schematic view of the type I modular PKS responsible for erythromycin A biosynthesis. The 
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correspondence between the structures of the assembled intermediates and final structure id highlighted by the 

color coding the domain organization of the PKS. 

1.2.1.2 Biosynthetic overview of type I modular PKSs  

Type I modular PKSs employ the biosynthetic logic resembling that of mammalian fatty acid 

synthases (FASs). In general, both biosynthetic machineries incorporate the simple acyl-CoA 

building blocks in an assembly line fashion through three steps: chain initiation, chain extension 

and chain termination (Figure 1.7).  

Chain assembly is normally initiated by an acyltransferase (AT) domain in the loading module 

selecting and loading a starter unit from the corresponding CoA thioester (commonly acetyl-CoA) 

onto the phosphopantetheinyl (PPant) moiety of an acyl carrier protein (ACP) domain. This PPant 

moiety is attached to the ACP domain by a phosphopantetheinyl transferase (PPase) prior to 

polyketide assembly. An alternative chain initiating mechanism involves an AT domain loading a 

malonyl or methylmalonyl unit, followed by a decarboxylation catalyzed by a ketosynthase 

domain (KS) variant KSQ (discussed in section 1.2.2.5 ‘Ketosynthase domains’). 

In each chain elongation step, a KS domain catalyses a decarboxylative Claisen condensation 

between the starter unit or the growing polyketide chain it accepts from the upstream ACP 

domain and the extender unit (commonly methymalonyl- or manlonyl-CoA) loaded on the 

downstream ACP domain by the adjacent AT domain. The minimal chain elongation module thus 

consists of KS, AT and ACP domains which extend the polyketide backbone by one ketide unit. 

The resulting β-keto-acyl thioester can undergo optional modification by ketoreductase (KR), 

dehydratase (DH) and enoyl reductase (ER) domains, leading successively to β-hydroxyl, α,β-

unsaturated and fully saturated intermediates respectively. The polyketide chain is passed along 

the assembly line between ACP domains and KS domains and built up through repeated chain 

extension.  

The chain assembly is normally terminated by a TE domain located at the end of the PKS releasing 

the product by hydrolysis or more commonly macrocyclization. Further post-PKS modifications, 

such as glycosylation, methylation and hydroxylation are sometimes employed to introduce 
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additional structural complexity and diversity.  

 

Figure 1.7 Schematic overview of chain initiation, extension and termination by type I modular PKSs (adapted 

from ref.36). 

1.2.1.3 Subdivision of type I modular PKSs 

Given the above biosynthetic logic employed by type I modular PKSs, the structures of their 

polyketide products are often found to be directly correlated to their domain organizations 

(Figure 1.6). This correlation is referred to as ‘colinearity’ and has been applied to effective 

prediction of final product structure from the PKS architecture.37  

In recent years, however, another class of modular system has emerged, in which the colinearity 

is normally not conformed to. In these particular systems, the most obvious feature is that 

integrated AT domains are absent from the assembly lines. Instead, the AT activity required by 

every module is supplied by one or more trans-acting AT domains.38 They are thus termed as 
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trans-AT PKSs, with DEBS representing modular systems termed as cis-AT PKSs.38 Examples of 

trans-AT PKSs include those responsible for the biosynthesis of pederin,39 bacillaene,40 

viginamycin41 and leinamycin 1942 (Figure1.8). 

 

Figure 1.8 Schematic view of the trans-AT PKS responsible for leinamycin biosynthesis. 

In addition to trans-acting AT domains as a distinguishing feature, trans-AT PKSs exhibit several 

other non-canonical architectural and enzymatic characteristics. These include unusual domain 

architectures, modules split into across subunits, inactive domains or and trans-acting enzymes 

other than AT domains as shown in Figure 1.8. Phylogenetic studies have revealed that the cis- 

and trans-AT PKSs have distinct evolutionary origins, with the former believed to evolve through 

module duplication and domain diversification while the latter has evolved via horizontal gene 

transfer.43,44  

1.2.1.4 Iterative module use in type I modular PKSs 

In type I modular PKSs, a molecular ratchet mechanism is typically employed to govern the 

unidirectionally of the assembly line.45 However, iterative usage of individual modules has been 

observed as either an aberrant or a programmed event in several modular PKS systems (Figure 

1.9). The discovery of a ring expanded 6-dEB analogue 20 as a minor product of DEBSs resulting 
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from iteration in module 4 represents the first example of module ‘stuttering’ (Figure 1.9 A). A 

similar phenomenon was found during epothilone biosynthesis, which iteratively use module 5 

and module 6 to generate 6 different ring expanded analogue.46 On the other hand, programmed 

module iterations are demonstrated to be required for the biosynthesis of stigmatellin, 

aureothin,47 (each two iterations) borrellidin,48 and etnangien31 (each three iteration) (Figure 1.9 

B). 

 

Figure1.9 Examples of module iteration in type I modular PKSs. (A) Module ‘stuttering’ occurs in module 4 of 

the 6-dEB PKS leading to a minor ring-expanded product is an example of aberrant module iteration. (B) Iterative 

usage of module 1 of the aureothin PKS is required for the biosynthesis of the final product, representing the 

programmed iteration.  

Current understanding of programmed module iteration in modular PKSs is mainly based on 

investigations of aureothin biosynthesis. Since modular PKSs exist as homodimers, it has been 

proposed that the iteration occurs by retrotransfer of the intermediate from the ACP domain 

onto the KS domain located on the opposite polypeptide strand49. In addition evidence was 

provided to show that iteration is controlled by several factors, including a ‘gate-keeper’ function 

and downstream KS domains and the kinetics of chain acylation of and elongation by the KS 

domains.50 

1.2.1.5 Catalytic domains of type I modular PKSs 
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Acyltransferase domains 

The AT domains catalyze the transfer of the acyl unit from CoA to the downstream ACP domain 

via a ‘ping-pong bi-bi’ mechanism which involves two half reactions: acylation of the active site 

serine residue of the AT domain followed by transfer to the ACP domain51,52 (Figure 1.10).  

 

Figure1.10 Mechanism of acyl transfer reaction catalyzed by the AT domains from modular PKSs. The AT 

domains catalyse starter unit (e.g. malonyl- or 2S-methylmalonyl-CoA) loading via an acyl-O-A T intermediate 

The AT domains from modular PKSs play a crucial role in conserving the fidelity of the assembly 

line through their specificity towards the substrates. The extender AT domains mainly select 

primary metabolism originated malonyl- and (2S)-methylmalonyl-CoA,53 with trans-acting AT 

domains normally specific for malonyl-CoA.38 However, some examples of extender AT domains 

incorporating unusual acyl building blocks, such as hydroxyl- and aminomalonyl-CoA have been 

observed, which contribute to the structural diversity of polyketides.53 In contrast, the AT 

domains associated with the loading module utilize a variety of acyl-CoAs as starter units, such 

as acetyl-, propionyl-, isobutyryl-, crotonyl- and isopentyl-CoA.54,55 Structural and bioinformatic 

studies on several AT domains have allowed the identification of the conserved motifs that 

correlates the with substrate specificity.36  

Ketosynthase domains 

KS domains catalyse carbon-carbon bond formation through two half reactions, including 

transthiolation and decarboxylative Claisen condensation. Reported structures of modular PKS 

KS domains showed they form homodimers with each monomer adopting a thiolase-like fold.56,57 

The substrate binding channel is split into a well-conserved PPant arm binding region and a more 

variable thioester substrate binding site. Bioinformatics analysis combined with structural studies 
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revealed a conserved Cys-His-His catalytic triad is harbored that all chain elongating KS domains 

contain.56,57,58 Firstly, the transthiolation proceeds via nucleophilic attack of the thiol group in the 

active site Cys residue on the carbonyl group of the starter unit or polyketide thioester tethered 

to the upstream ACP domain, forming an acyl-S-KS complex (Figure1.11). Following release of the 

upstream ACP domain, the KS domain catalyses decarboxylation of the extender unit delivered 

by the PPant arm of the downstream ACP domain. This enables the resulting enolate to attack 

the carbonyl group of the acyl-S-KS intermediate, thereby generating a two-carbon elongated β-

keto-acyl-ACP thioester product. One of the histidine residues within the catalytic Cys-His-His 

triad stabilizes the enolate intermediate while the other histidine residue is hypothesized to 

promote decarboxylation via activation of a water molecule to towards nucleophilic attack on the 

carbonyl group extender unit.59,60    

 

Figure 1.11 Mechanism of KS domain catalyzed chain elongation reaction in modular PKSs. The KS domain 

catalyzed chain elongation reaction involves a transthiolation and a decarboxylative condensation steps. 

Biochemical studies of KS domains from cis-AT PKSs revealed they exhibit varying levels of 

substrate specificity61 while KS domains from trans-AT PKSs are more selective towards the 

structure of the functional group at the β-position, especially in the chain elongation step.62,63 

The substrate specificity prediction of trans-AT PKS KS domains has been facilitated by 

phylogenetic analysis, which demonstrated that evolutionarily close trans-AT KS domains usually 

have similar substrate specificity.44 These insights have greatly facilitated the biosynthetic 

assignment of trans-AT PKSs which are normally difficult using colinearity-based predictions. 

In addition to chain elongating KS domains, other two variants of KS domains exist in modular 

PKSs. The first is located in the loading modules of cis-AT PKSs and catalyses the decarboxylation 

of a starter unit (malonyl or methyl-malonyl unit) due to a catalytic cysteine to glutamine 

mutation, and are thus termed KSQ domain.64 The other ones are found as a characteristic feature 
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of trans-AT PKSs. These lack an active site histidine residue which is essential for chain elongation, 

and are thus termed non-elongating KS (KSo) domains.38 KSo domains have been postulated to 

pass the growing polyketide chain to the next module but the reason this is needed is unclear.   

Ketoreductase and Dehydratase domains  

Ketoreductase domains in type I modular PKSs belong to the short-chain 

dehydrogenase/reductase (SDR) family and catalyse stereospecific reduction of β-keto-acyl-ACP 

thioester intermediates to the corresponding β-hydroxy-acyl-ACP thioester using NAD(P)H as a 

cosubstrate.65 They consist of a structural and a catalytic subdomain with a conserved Tyr-Ser-Lys 

triad in the active site participating in catalysis. 66,67 The reaction proceeds via the transfer of 4-

pro-S hydride from NAD(P)H to the β-carbon of the substrate, followed by the protonation of the 

resulting alkoxide by the active site tyrosine residue. Based on the stereochemistry of the 

resulting β-hydroxy group, KR domains are classified into A-type (for L-configuration) and B-type 

(for D-configuration) (Figure 1.12 A) KR domains.68 The stereochemistry of the product is thought 

to be determined by the binding orientation of the substrate relative to the NADPH, which is 

influenced by the relative position of amino acid residues in the active site amino acids.68 

 

Figure 1.12 Catalytic and stereo control mechanisms of KR and DH domains from modular PKSs. (A) KR domains 

catalyzed ketoreduction proceeds via 4-pro-S hydride transfer from NADPH to the β-carbonyl carbon followed by 

α-position protonation by a catalytic Tyr residue. A type and B type KR domains lead to different stereo outcome 

at C3, determined by the binding orientation of the substrate relative to the NADPH. (B) A Syn elimination 

mechanism that involves the catalytic His-Asp diad is applied by modular PKS DH domains to achieve stereo 



PhD Thesis: Xinyun Jian  Chapter 1 

15 

control with 3R-hydroxy groups resulting in trans double bonds while 3S-hydroxy groups resulting in cis. 

Dehydratase domains from modular PKSs catalyse elimination of water from the β-hydroxy-acyl-

ACP substrate and typically result in formation of a trans (E)-α, β-double bond, however, cis(Z)-α, 

β-double bond has been observed69. Structurally, they are organized as dimers with each 

monomer forming a double hot dog (DHD) fold and bearing a conserved His-Asp catalytic dyad 

at the active site.70,71,72 The dehydration reaction has been proposed to proceed via 

deprotonation at the α-position by the His residue and elimination of the β-hydroxy group, 

promoted by protonation by the Asp residue (Figure 1.12 B).70,71 Biochemical and evolutionary 

evidence have suggested most double bonds formation by modular PKS DH domains share a 

common syn elimination mechanism.73,74,75 The geometry of the double bond is hypothesized to 

be mainly determined by the chirality of the β-hydroxy group, with 3R-hydroxyl group generated 

by A-type ketoreduction leading to trans double bond, and 3S-hydroxyl group generated by B-

type ketoreduction giving cis-double bound.76 

Cis-acting enoyl reductase domains 

The modular PKS integrated ER domains catalyse cis-acting NADPH-dependent reduction of an 

enoyl-ACP to an α, β-saturated acyl-ACP.77 Current understanding of the mechanism involves two 

processes: the transfer of the 4-pro-R hydride of NADPH to the C3 position of the enoyl acyl-ACP, 

followed by a stereospecific protonation of the C2 position by either a general acid or solvent 

(Figure 1.13 A). Multiple sequence alignment of cis-acting ER domains combined with 

mutagenesis studies revealed that a conserved tyrosine residue confers the S configured stereo 

specificity at the C2 position protonation process, whereas a valine (occasionally alanine or 

phenylalanine) at the corresponding position led to 2R configured products (Figure 1.13 A).78,79  
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Figure 1.13 Catalytic mechanism, stereo control and structural overview of of cis-acting ER domains from type 

I modular PKSs. (A) cis-acting ER domains catalyse enoyl reduction via transfer of the 4-pro-R hydride from 

NADPH to the C3 position of the enoyl-ACP thioester, followed by a stereospecific protonation at C2, resulting in 

2S- (when conserved Tyr present) or 2R-configurated products (when the conserved Tyr is replaced by 

Val/Ala/Phe). (B) Crystal structure of the SpnER2 domain shows the NADPH binding site located in a cleft between 

the two subdomains and the conserved catalytically important residues (K422, Y241 and D444) located close to 

the nicotinamide moiety (Figure adapted from ref.80).   

Like their counterparts in mammalian FASs, cis-acting ER domains belong to the Medium-chain 

Dehydrogenases/Reductases (MDR) family that typically comprise of a C-terminal NADPH binding 

subdomain with a Rossman fold and a N-terminal substrate binding subdomain.81 The only 

reported crystal structure of an ER domain from a modular PKS is SpnER2 (solved as a KR-ER 

didomain) from the spinosyn PKS. It showed, unlike other homodimeric members of the MDR 

family, that the SpnER2 domain exists as a monomer with the NADPH binding site located in a 

cleft between the two subunits (Figure 1.13 B).80 Within its active site, three conserved residues 

Y241, K422, and D444 were observed with in ~6 Å of the nicotinamide 4-pro-R hydrogen atom, 

indicating they may be involved in substrate protonation.80However, both previous in vivo 

mutagenesis study on RapER13 domain (in rapamycin PKS)82 and the structural guided in vitro 

mutagenesis study on SpnER279 concluded that no single residue is essential for catalytic activity. 
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Trans-acting enoyl reductase domains 

In addition to the embeded cis-acting ER domains, another phylogenetically distinct type of ER 

domain in trans-AT PKSs is the stand-alone trans-acting ERs.38 In some cases these are fused to 

the N-terminus of AT or AH domains. Trans-acting ERs clade with stand-alone ER domains (PfaD) 

employed by polyunsaturated fatty acid synthases and close to non-canonical bacterial FAS ER 

(FabK), fungal FAS ER (fFAS ER) and Corynebacteria, Mycobacteria, and Nocardia (CMN)-FAS ERs 

(Figure 1.14 A).83 While cis-acting ER domains directly reducing substrate tethered on the 

adjacent ACP domain using NADPH as cosubstrate, this type of ER performs enoyl reduction in a 

trans-acting manner using FMN to mediate hydride transferring from NAD(P)H to substrate 

(Figure 1.14.B). The trans-acting enoyl reduction activity of a PksE ER domain involved in 

dihydrobacillaene biosynthesis was biochemically characterized, showed it engaged in a specific 

interaction with its cognate ACP domain.84 Other homologues are found in several trans-AT 

polyketide biosynthetic clusters, such as kalimantacin/batumin,85 leinamycin86 and 

myxovirescin87. 

 

Figure 1.14 Phylogenetic, functional and structural overview of trans-acting ER domains from type I modular 

PKSs. (A) Phylogenetic tree and distribution of modular PKSs trans-acting ER related proteins among bacteria and 
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fungi showing trans-acting ERs form trans-AT PKS are phylogenetically close to PfaD, FabK, CMN-FAS ERs and 

fungal FAS ERs (Figure reproduced from ref.83) . (B) Trans-acting ERs catalyse enoyl reduction using FMN to 

mediate the transfer of hydride from NAD(P)H to the substrate. (C) Crystal structure of DifA ER domain shows it 

forms a homodimer with FMN (highlighted in green) bound to the TIM barrel subdomain and contains additional 

loops and helix insertions compared to FabK (highlighted in purple and yellow) which are proposed to serve as 

interdomain interaction interfaces (Figure reproduced from ref.83). The dimerization tip is highlighted in red.    

The first structural insights into trans-acting ERs was provided by the crystal structure of the DifA 

ER domain (excised from an AT-ER didomain), which is involved in the biosynthesis of difficidin.83 

The DifA ER domain exists as a homodimer with each monomer consisting of a triosephosphate-

isomerase (TIM) barrel domain with FMN bound and an inserted α-helical substrate-binding 

domain (Figure 1.14 C).83 Though highly structurally homologous to FabK, the DifA ER domain 

contains additional loops and helix insertions (highlighted in purple and yellow), which were 

proposed to serve as interdomain interaction interfaces.83 However, the detailed catalytic 

mechanism of trans-acing ERs and the molecular basis underlying their specific interactions with 

cognate ACP domains remain unclear.   

Thioesterase domains 

TE domains fused to the C-termini of modular PKSs catalyze polyketide chain release via a two-

step reactions.88 The highly conserved serine residue located within the active site initiates the 

reaction by nucleophilic attack on the C=O bond of the assembled polyketide chain tethered via 

a thioester linkage to the adjacent ACP domain, resulting in formation of an acyl-O-TE 

intermediate. This intermediate subsequently undergoes hydrolysis from the TE domain or a 

regio-specific macrocyclization via attack of internal nucleophilic.89,90 In addition to the TE 

domains fused to the C-termini of modular PKSs (termed type I TE domains), standalone type II 

TE domains are also usually associated with modular PKSs.91,92 This type of TE domain catalyses 

cleavage of aberrant acyl chains from ACP domains to ensure the assembly line remain 

catalytically active.93  

Acyl carrier protein domains and their interactions with other domains 
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Acyl carrier protein domains are small (  8̴0-100 aa) non-catalytic domains involved in all of the 

catalytic steps of polyketide chain assembly. Structurally, they consist of four-helix bundles, 

stabilized by inter-helical hydrophobic interactions.94,36 Inactive apo-ACP domains are converted 

to their functional holo forms by a dedicated PPTase, which catalyses post-translational 

attachment of a PPant moiety of CoA to a conserved the serine residue located in the DSL motif 

(Figure 1.16 A).95,96  

 

Figure 1.16 Schematic view of PPtase catalyzed post-translational modification of ACP domains (A) and the 

distinct interfaces that mediate KS-ACP interactions (B). Chain elongation (orange and red) and chain transfer 

(blue) epitopes lie on entirely different faces of the DEBS ACP2 domain (figure reproduced from ref.97) 

The PPant moiety of ACP domains serves as a  2̴0 Å long and flexible arm that allows the shuttling 

of covalently-bound building blocks or assembled intermediates to and between different 

catalytic domains.57 ACP domains also engage in the specific protein-protein interactions with 

partner domains through distinct interface. The conserved DSL motif in helix II has been 

demonstrated be a universal recognition site for interacting with other catalytic domains.98 

Recent work has showed the docking sites for intramodular KSn-ACPn interaction (in chain 

elongation step) and intermodular ACPn-KSn+1 interaction (in chain translocating step) are located 

at distinct regions of ACP domains, with the former located in Helix I and the latter located in 

Loop I (Figure 1.16 B).97,45 These specific KS-ACP protein-protein interactions play an important 

role in conserving the unidirectionally of the assembly line.36  

1.2.3 Biosynthesis of gladiolin and etnangien 

Complete genome sequencing of B. gladioli BCC0238 and S. cellulosum So ce56, in combination 

with targeted gene inactivation experiments, have facilitated the identification of the 
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biosynthetic gene clusters for gladiolin and etnangien.28,99 Both clusters harbor six large trans-AT 

PKS-encoding genes, associated with a conserved set of genes encoding trans-acting polyketide 

processing enzymes and export related proteins (Figures 1.17).28,31 

 

Figure 1.17 Comparison of the gladiolin and etnangien biosynthetic gene clusters.28 The proposed functions of 

genes are indicated in color corresponding to the annotation at the bottom and the homology between the genes 

from the two clusters is indicated by the colored shading. 

BLAST searches revealed that these two trans-AT PKSs share remarkably similar domain 

organizations, with the only difference identified as the substitution of an ACP domain in module 

1 of the etnangien PKS with an ER (GbnD1 ER1) domain in the gladiolin PKS (Figure1.18). The 

proposed biosynthetic pathways for gladiolin and etnangien show that the main structural 

differences between the two compounds are incorporated by the first five modules of their 

respective assembly lines.28,31 Both are proposed to utilize a succinyl-CoA starter unit, which 

subsequently undergoes chain elongation with a malonyl unit catalyzed by the KS domain in the 

first module (Figure 1.19). A β-branch is then incorporated. This is catalyzed by a cassette of trans-

acting enzymes (‘HCS cassette’), including a 3-hydroxymethylglutaryl synthase (HMGS)-like 

enzyme, standalone KSQ and ACP domains, and two enoyl-CoA hydratase (ECH)-like enzymes, and 

results in a β-methyl, α, β-unsaturated intermediate (Figure 1.19). The α, β-double bond is 

predicted to be saturated by the ER (GbnD1 ER1) domain in module 1 of the gladiolin PKS. The 

GbnD1 ER1 domain is substituted with an ACP domain in the etnangien PKS. Thus, this α, β-

double bond remains in the final product, accounting for one of the structural differences 

between the two compounds (Figure 1.19).
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Figure1.18 Comparison of the trans-AT PKSs responsible for etnangien and gladiolin assembly28,31,100. Domain and module organization of the gladiolin and etnangien PKS, showing 

the proposed structure of chain-elongation intermediates attached to the ACP domain in each module. Structural differences between intermediates and final products are shown 

in red (gladiolin) and blue (etnangien). The GbnD1 ER1 domain is highlighted in green as the sole difference between the two PKSs. The predicted iterative EntE module 5 is highlighted 

in gold. The configurations of the stereocenters are predicted based on sequence analysis of the KR domains. Acyl transferase (AT)/hydrolase (AH) domains acting in trans with their 

predicted specificities are indicated. Putative trans-acting ERs, non-elongating KSs and HMGS enzymes cassette are indicated. ‘HCS cassette’ interacting ACPs are labeled with ‘+’. 
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Figure 1.19 Comparison of the proposed biosynthesis in the first module of gladiolin (red box) and etnangien 

(blue box) PKSs. β-branching event is highlighted in gray box. ACP domains labeled with ‘+’ denotes the integrated 

ACP domains, while without denotes the ACP domain belongs to the trans-acting ‘HCS cassette’ enzymes.  

The resulting intermediate from module 1 of each assembly line is then transferred to module 2 

and subsequently module 3 and 4 for identical chain elongation and modification reactions. 

According to the key structural differences between the two metabolites, module 5 of the 

etnangien PKS (EntE Module 5) is predicted to be iteratively used for three times while the 

corresponding iteration does not occur at this biosynthetic stage of gladiolin chain assembly. In 

addition, an enoyl reduction is proposed to take place in module 5 of the gladiolin PKS (GbnD2 

Module 5) which does not occur in EntE Module 5 (Figure. 1.18). Interestingly, the corresponding 

ER domains is absent from GbnD2 Module 5. This ER activity has been postulated to be provided 

by the GbnD1 ER1 domain. However, according to the proposed biosynthetic pathways, a trans-

acting ER activity is also required by module 10 of both assembly lines (Figure 1.18). The trans-

acting ER activities of standalone GbnE and EntL in each cluster have been predicted based on 

their homologies to the putative trans-acting ER (BatK) involved in the Kalimantacin/Batumin 

biosynthesis28,101. Therefore, GbnE could be the other candidate to provide the ER activity in 

GbnD2 Module 5.  

After the chain assembly process has passed module 5 in each PKS, β-branching is employed 

again in module 6 of both assembly lines. Interestingly, while the etnangien assembly line uses 
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only one set of ‘HCS cassette’ enzymes to carry out two β-branching events, two sets of ECH 

enzymes (GbnI/J and GbnR/S) are found in the gladiolin biosynthetic gene cluster. The 

subsequent biosynthetic steps appear to be identical for etnangien and gladiolin, except that an 

methyl group is predicted to be installed in module 15 of the former, even though no C-MT 

domain is present in the module.  

As gladiolin and etnangien PKSs are striking similar, the catalytic origins of the structural 

differences between the two compounds is a very intriguing aspect of their biosynthesis. The 

shorter side chain of gladiolin indicates a different chain length control mechanism is employed 

by its assembly line in compare to etnangien, which is possibility linked to an additional enoyl 

reduction in the module 5. 

1.3 Non-ribosomal peptides 

1.3.1 Non-ribosomal peptide natural products 

In addition to polyketides, non-ribosomal peptides (NRPs) represent a second major superfamily 

of natural products and have also been exploited in the development of numerous therapeutically 

important agents, such as antibiotics (e.g. vancomycin 22, tyrocidine A 24 and daptomycin 26), 

anticancer agents (e.g. bleomycin A2 23) and immunosuppressants (e.g. cyclosporin A 25) as 

shown in Figure 1.20.102 The broad range of the bioactivity of NRPs reflects their remarkable 

structural complexity and diversity, which is greatly expanded by various chemical modifications, 

including incorporation of fatty acid moieties, nonproteinogenic amino acids (including as D-

amino acids), sugars and heterocycles as well as methylation and halogenation. The biological 

functions of NRPs are closely associated with their structural features, which often play an 

important role in constraining the peptide in its biologically active conformation. It is the unique 

conformation of each peptide that ensures its selective binding to a dedicated molecular 

target.103,104 
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Figure 1.20 Representative bioactive non-ribosomal peptides. Examples of diverse structural modifications are 

highlighted with coloured ovals. 

1.3.2 Non-ribosomal peptide biosynthesis  

1.2.1.6 Non-ribosomal peptides synthetases 

The majority of non-ribosomal peptides are assembled from simple amino acid building blocks 

by the modular non-ribosomal peptide synthetases (NRPSs), which are large multienzyme 

complexes containing catalytic domains organized in an assembly line fashion (Figure 1.21). 

NRPSs adopt a similar biosynthetic logic to type I modular PKSs to assemble the peptide through 

chain initiation, elongation and termination processes. 

 

Figure 1.21 Schematic view of the representative modular NRPS that responsible for vancomycin biosynthesis. 
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The order and number of NRPS modules corresponds to the sequence and number of amino acids in the final 

product. 

1.2.1.7 Chain elongation and core domains 

The core domains required for peptide chain extension consist of an adenylation (A), peptidyl 

carrier protein (PCP) and condensation (C) domains. As shown in Figure 1.22, during each peptide 

chain extension cycle, the A domain first selects and binds the cognate amino acid building block 

and then activates it as the corresponding aminoacyl-AMP via reaction with ATP. The amino acyl 

adenylate intermediate is subsequently attacked by the thiol group of a 4’-phosphopantethiene 

arm that is post-translationally coupled to the adjacent PCP domain, resulting in a PCP domain-

bond aminoacyl thioester. The aminoacyl substrate is then condensed with the peptidyl or 

aminoacyl thioester tethered to the upstream PCP domain by the C domain from the same 

module via a peptide bond formation. The elongated peptide intermediate is then provided as 

the substrate for further chain extension by the downstream module.103,105 

 

Figure 1.22 Schematic overview of non-ribosomal peptide chain elongation reactions catalyzed by the three 

core domains. (1) The A domains select and activate the amino acid (aa) using ATP to generate the corresponding 

aminoacyl-AMP. (2) The aminoacyl-AMP undergoes a nucleophilic attack from the thiol group of the PPant 

prosthetic group of the PCP domain forming an aminoacyl thioester. (3) The C domain subsequently catalyses a 

condensation reaction between the α-amino group of the PCP-bound acceptor amino acid with the thioester of 

the upstream PCP-bound donor amino acid or peptide. 
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Adenylation domains  

A domains (  5̴50 aa) function as the initial gate-keeper of the NRPS assembly lines as a 

consequence of their substrate specificity. Though A domains catalyse very similar chemistry as 

aminoacyl tRNA synthetases, which are part of the protein biosynthetic machinery, they are 

structurally and evolutionally distinct.106 Several crystal structures of A domains have been 

determined, such as phenylalanine-activating PheA from the gramicidin S NRPS107 and 2,3-

dihydroxybenzoic acid specific DhbE from the bacillibactin NRPS108. They share significant 

structural similarity to enzymes from the adenylate-forming-superfamily, which includes acetyl 

CoA synthetases (ACS) 109 and acyl-CoA ligases. 110 The overall structure of A domains comprises 

a large N-terminal subdomain and a small flexible C-terminal subdomain with the active site 

located at the interface. Bioinformatic analysis combined with extensive structural and 

mutagenesis studies allowed the identification of 8-10 residues within the substrate binding 

pocket, which were shown to be crucial for substrate recognition.111,112,113 Some of these residues 

interact with the carboxy and α-amino moiety of the substrate, whereas others interact with the 

substrate side chain. Aided by computational design, these insights have been exploited to 

rationally engineer the selectivity of A domains for novel NPRs biosynthesis.113,114 

Peptidyl carrier protein domains 

PCP domains are small (  ̴100 aa) non-catalytic domains located downstream of A domains. Like 

ACP domains in PKSs, a conserved serine residue is found by all PCP domains. It is covalently 

modified via attachment of the a 4’-PPant moiety from CoA, a post-translational modification 

catalyzed by PPTases.115 In doing so, the PCP domain is converted from the inactive apo form to 

the functional holo form with the thiol group of the flexible 4’-PPant arm serving as an anchor to 

covalently bind aminoacyl and peptidyl intermediate substrates. PCP domains are central in 

mediating NPR biosynthesis by shuttling biosynthetic intermediates between catalytic 

domains.104 PCP domains are four-helix bundles with the conserved serine residue located in 

helix 2. Three distinct conformations of PCP domains were observed: A state (apo), H state (holo) 

and A/H state(apo/holo) as shown in Figure 1.23.116 It was proposed that the transitions between 

the conformations contribute to further flexibility of the 4’-PPant arm of PCP domains in 
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interacting with different partner catalytic domains.104 

 

Figure 1.23 Ribbon diagrams of the solution NMR structures of the TycC3-PCP (from tyrocidine A synthetase) 

showing three conformers in the A, A/H, and H states (figure reproduced from ref.116). 

Condensation domains 

C domains normally contain  ̴450 aa and are located at the N-terminus of elongation modules. 

Bioinformatic analysis revealed C domains bear a conserved HHXXXDG motif and share sequence 

similarity with acyltransferases.117 Comprehensive mutagenesis studies of the TycB1 C domain 

(from the tyrocidine A NRPS) and EntF C domain (from the enterobactin NRPS) highlighted the 

putative role of the second Histidine residue in the conserved HHXXXDG motif as a general 

base.118,119 The catalytic mechanism of the C domains is proposed to involve deprotonation of 

the α-amino group of the acceptor aminoacyl-substrate thioester by the second histidine residue 

in the conserved motif to promote nucleophilic attack on the thioester of the acyl donor.118,119   

Based on the crystal structures of the stand-alone C domain VibH (from the vibriobactin NRPS)120 

and the TycC PCP-C didomain (from the tyrocidine NRPS)121 as well as several further 

structures,122,123 C domains were found to be monomeric enzymes that are composed of N and 

C-terminal subdomains organized in a V-shape with the conserved HHXXDG active site located at 

the junction between them. A tunnel running through the active site was observed at the 

interface providing the entry to the donor and acceptor PCP-bond substrates (Figure 1.24 A).120 

A structure of the calcium-dependent antibiotic (CDA)-C1 domain with a substrate covalently 

tethered in the active site provided further insights to the role of the second His within the 

catalytic motif (H157).124 In addition to the previously proposed catalytic role, H157 was observed 

to be critical for substrate positioning via forming a hydrogen bond with the α-amino group of 

acceptor aminoacyl substrate (Figure 1.24 B).124 
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Figure 1.24 Crystal structure and detailed view of active site of CDA-C1 domain. (A) A Model of CDA-C1 domain 

with PCP domains bound showing the active site tunnel based on the crystal structures of CDA-C1 (highlighted in 

green, PDB:4JN3) with the position of acceptor PCP domain (shown in dark blue) modeled from PDB:2VSQ and 

the position of donor PCP domain (shown in light blue) modeled from biochemical data (figure reproduced from 

ref.125). (B) Active site of CDA-C1 domain, containing engineered E17C mutation with bromoalkylamine analogue 

covalently bound to mimic the substrate delivery by PCP domain, shows the important role of H157 in positioning 

α-amino group of the substrate for nucleophilic attack via forming a hydrogen bond (figure reproduced from 

ref.124 ). 

Several bioinformatic and phylogenetic studies show C domains clade according to their 

biochemical activity.126,127 Subtypes were found as shown in Figure 1.25 A : The subtype LCL 

catalyses the condensation between L-configured amino acid building blocks tethered on PCP 

domains; DCL domains link the acceptor L-aminoacyl substrate with a D-configured donor;128 

starter C domains, situated at the priming position of the NRPS, acylate the first loaded amino 

acid a the 3-hydroxyacyl unit hijacked from fatty acid biosynthesis;129 dual E/C domains first 

epimerize the C-terminal amino acid in the donor peptide chain and subsequently condense it to 

with the acceptor aminoacyl substrate;130 the Cy domain first performs the condensation 

between aminoacyl/peptidyl-PCP donors and serinyl-/threoninyl-/cysteinyl-PCP acceptors, and 

then catalyses the cyclodehydration between the thiol or hydroxyl side chains of the donor 

residues and the carbonyl group of the newly-formed peptide bond, resulting in incorporation of 

a heterocycle into the growing peptide chain.131 Profile Hidden Markov Models (pHMMs) for the 

sequence motifs as well as for the entire sequences of C domain subtypes were provided as 

shown in Figure 1.25 B, the determined specificity conferring positions of which have greatly 
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facilitated C domain subtype identification and engineering.  

 

Figure 1.25 Classification of NRPS C domains based on phylogenetic and bioinformatic analysis (reproduced 

and adapted from ref.127) . (A) Phylogenetic tree of C domains showing the subtypes. (B) Hidden Markov Models 

(HMMs) of the C domain subtypes. Yellow bars indicate significant specificity determining positions in LCL, Starter 

and DCL domains with the most significant residues highlighted with a red star. 

1.2.1.8 Chain modification  

In addition to the core domains catalysing chain elongation, NRPSs can contain a variety of chain 

modification domains to introduce other chemical features, which enrich the structural diversity 

and complexity of NRPs (Figure 1.20). As well as the dual E/C domains, introductino of D-

configured amino acid residues into the peptide chain can be mediated by individual 

epimerization (E) domains, through epimerization of newly incorporated L-amino acid with the 

growing peptide chain.132,133 The thiazolines and oxazolines incorporated by Cy domains can be 

further oxidized to the corresponding thiazoles and oxazoles by oxidation (Ox) domains using 

FMN as a cofactor, as in the biosynthesis of bleomycin and epothilone.134,135 These heterocycles 

could be alternatively reduced to thiazolidines and oxazolidines respectively by a NADPH-

dependent reductase (R) domains, for example during pyochelin assembly.136 Both N-methyl and 

C-methyl groups are also commonly installed into the NRPs, such as cyclosporin,137 

actinomycin138 and yersiniabactin.139 The methylations are catalyzed by N-methyl transferase (N-

MT) and C-methyl transferase (C-MT) domains using methyl donor, S-adenosyl methionine (SAM) 
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as methyl donor.  

1.2.1.9 Chain initiation and release  

Peptide assembly is usually initiated by the activity of an A domain located in the loading module, 

which normally lacks a C domain. However, in the biosynthesis of lipopeptides, such as surfactin, 

fengycin and gliadobactin, a starter C domain (discussed previously) is always found at the N-

terminus of the loading module.126 In this kind of chain initiation mechanism, the starter C 

domain catalyses N-acylation of the loaded amino acid with a 3-hydroxylacyl unit.129 The loading 

modules of NRPS sometimes contain additional chain modification domains, for example a E 

domain is located in first module of the Gramicidin S assembly line.140  

Once the peptide chain has been fully assembled, it is released from the assembly line either as 

a linear product, such as vancomycin, or more commonly as a macrocyclic product, such as 

surfactin. This process is normally accomplished by a C-terminal TE domain, which utilizes a 

similar catalytic mechanism to type I TE domains from modular PKSs (discussed in the previous 

section).141,142 Alternatively, in some cases, the product is liberated as a linear aldehyde or alcohol 

via NADPH-dependent reduction catalyzed by a C-terminal thioester reductase (TR) domain.143 

1.3.3 Biosynthesis of icosalides 

Genome sequencing of B. gladioli BCC238 identified a single  ̴15 kb gene encoding an NRPS 

proposed to be responsible for the biosynthesis of icosalides(Figure 1.26 A). Within the NRPS, 

four adenylation domains were identified, with their predicted substrate specificities in 

agreement with amino acid residues incorporated into the icosalides (A1: Leucine, A2: Serine, A3: 

Leucine, A4: Serine). Five C domains and a cyclising TE domain were assigned to the six bond-

forming reactions required for the assembly of the 20-membered cyclic core of the icosalides. 

Phylogenetic analysis of the five C domains revealed they clade into the following subtypes 

(Figure 1.26 B): C3 and C5 are LCL domains, C2 is a dual E/C DCL domain and C1 and C4 are starter 

C domains. The dual epimerization-condensation activity of the C2 domain accounts for the 

existence of the D-configuration of the Leu residue in the final product. The presence of the two 
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starter C domains, C1 and C4, is also in agreement with the incorporation of two 3-hydroxy acyl 

chains into the icosalides. Inactivation of icoA abolished production of the icosalides, confirming 

the involvement of the NRPS in the icosalides biosynthesis (Figure 1.26 C)The biosynthetic 

pathway proposed for the icosalides is shown in Figure 1.27. 

 

Figure 1.26 Identification of the gene encoding the icosalide NRPS biosynthetic gene and phylogenetic analysis 

of the C domains (unpublished data from Challis group). (A) Schematic of the ~15 kb icoA NRPS biosynthetic 

gene. The sequence of enzymatic domains within the NRPS is shown below. (B) phylogenetic analysis of the C 

domains of IcoA NRPS. 3-hydroxyacyl unit incorporating starter C1 and C4 domains are highlighted in red. (C) 

Insertional mutagenesis of icoA abolishes icosalide A1 production in B. gladioli BCC0238.  

 

Figure 1.27 NRPS and proposed biosynthesis of icosalides. Domain and module organization of the icosalide 
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NRPS showing the proposed structure of chain elongation intermediates. The two starter condensation domains 

are highlighted by red numbers. The starter condensation domain C4 is ‘embedded’ in the predicted NRPS. 

Substrate specificity of each adenylation domain is denoted above each domain. 

The icosalide NPRS exhibits an unprecedented domain architecture, with the chain initiating C 

domain IcoA C4 situated in the middle of IcoA and directly adjacent to the IcoA C3 domain. The 

IcoA C4 domain is believed to be the first example of a starter condensation domain that is 

internal to an NRPS. The domain organization of module 3 also indicates IcoA C3 domain and 

IcoA C4 domain are required to co-operate for accomplishing a second round of chain initiating 

event as well as a chain elongation event in this module, the biosynthetic mechanism of which is 

of considerable interests. 

1.4 Study aims  

The aims of this study were to gain a better understanding of gladiolin and icosalides biosynthesis 

in B. gladioli with a long-term goal of employing the obtained insights to engineer their and 

related biosynthetic pathways. 

The first aim was to uncover the biosynthetic origins for the key structural differences between 

gladiolin and etnangien. This included identification of the enoyl reductase required by module 

5 of the gladiolin PKS and probing the molecular basis for the non-iteration of this module. 

The second aim was to investigate the double chain initiation mechanism underpinned by the 

unprecedented domain organization of the icosalide NRPS. This involves characterization of the 

internal starter and the adjacent ‘normal’ condensation domains in module 3 of icosalide NRPS. 
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Chapter 2 

Characterization of cis- and trans-acting 

enoyl reductases in the gladiolin polyketide 

synthase 

As discussed in section 1.2.3, the gladiolin and etnangien PKSs possess strikingly similar domain 

architectures, yet produce quite different biosynthetic products. A key structural difference is the 

hexaene moiety of etnangien (absent in gladiolin), which is likely installed by the iterative activity 

of EtnE Module 5 resulting in the three double bonds between C26-C31, and contributes to the 

inherent instability of etnangien (Figure 2.1A). The corresponding region in gladiolin is a saturated 

centre between C26-C27, suggesting an enoyl reduction event has halted the formation of a 

polyene (Figure 2.1B). Intriguingly, the corresponding module 5 of the gladiolin PKS does not 

harbor an ER domain to catalyze the reduction of the α,β-unsaturated intermediate. 

 

Figure 2.1 Partial biosynthetic pathways of the gladiolin (A) and etnangien (B) PKSs. The iterative module 5 of 
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the etnangien PKS is highlighted in gold. The missing ER required for the additional enoyl reduction event in 

module 5 of the gladiolin PKS is denoted. The substituted ER domain in module 1 of the gladiolin PKS is highlighted 

in green. Structural differences in the intermediates and final products resulted from the two additional events 

and iteration and non-iteration of module 5 are highlighted in red (gladiolin) and blue (etnangien). 

In order to investigate this phenomenon, the ER required by module 5 of the gladiolin PKS is 

needed to be first identified. Building upon the previous detailed analyses of the gladiolin and 

etnangien biosynthetic gene clusters, the most likely candidate was assigned as the sole 

difference between the two PKSs architecture, the substituted ER (GbnD1 ER1) domain in module 

1 of the gladiolin PKS (Figure 2.2). Here, the GbnD1 ER1 domain would be predicted to act dual-

functionally that catalyzes the enoyl reduction in GbnD1 module1 in an intra-modular manner, 

and in GbnD1 Module 5 in an inter-modular manner. Another feature identified from 

bioinformatics analysis of both clusters is the presence of a putative trans-acting enoyl reductase 

GbnE/EntL are proposed to reduce the intermediate in module 10 of their PKSs according to the 

structure of the final products (Figure 2.2). However, with this knowledge, it is feasible that GbnE 

could be the second candidate supplying dual-functional trans-acting ER activity in module 5 

apart from in module 10. 

This chapter describes efforts to elucidate the ‘cryptic’ ER activity in the module 5 of the gladiolin 

PKS. Using a combination of in vivo genetic engineering and in vitro biochemical assays, the 

function of the aforementioned two candidate ERs in the gladiolin biosynthesis are investigated. 

 

Figure 2.2 Comparison of catalytic domain architectures of gladiolin and etnangien PKSs showing the 

hypothetic catalytic origin of the additional enoyl reduction event in module 5 of the gladiolin PKS. 70 out 71 

catalytic domains are identical between the two assembly lines. The two candidates for the ER required by 
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module 5 of the gladiolin PKS are denoted as: 1) the sole domain architecture difference, the substituted GbnD1 

ER1 domain in the gladiolin PKS (highlighted in green), and 2) the putative trans-acting ER GbnE (highlighted in 

purple). The counterpart of GbnE in the etnangien PKS is shown as EntL. 

2.1 Characterization of the GbnD1 ER1 domain  

2.1.1 In vivo characterization of the GbnD1 ER1 domain 

2.1.1.1 In-frame deletion of gbnD1 ER1  

An in vivo inactivation approach was first employed to investigate the function of the GbnD1 ER1 

domain in gladiolin biosynthesis. In-frame deletion of the DNA-encoding region for the GbnD1 

ER1 domain was considered to be the most direct strategy to inactivate this domain. This 

approach also aimed to mimic the catalytic domain organization of the etnangien PKS at the 

sequence level (minus an ACP domain), in attempt to elicit etnangien-like biosynthesis.  

In-frame deletion of targeted chromosomal regions in B. gladioli were achieved by the 

homologous recombination mutagenesis system, based on the yeast homing endonuclease I-

SceI144 (Figure2.3). The system involves cloning the sequences flanking the chromosomal region 

targeted for deletion into the suicide plasmid pGPI-SceI that cannot replicate in Burkholderia 

strain and carries the I-SceI recognition site. This plasmid is then transferred to Burkholderia by 

tri-parental mating, resulting in its targeted insertion into the chromosome via homologous 

recombination and the introduction of a single crossover mutant allele. The second plasmid pDAI-

SceI that constitutively expresses the I-SceI nuclease was then introduced into the single 

crossover mutant allele. I-SceI causes a double strand break into the inserted plasmid sequence, 

which stimulates intramolecular homologous recombination between the flanking region on 

plasmid and chromosome. The resolution of this cointegrate can either restore the parental allele 

or cause a gene deletion, depending on the site of the crossover. 
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Figure 2.3 Work flow of the mutagenesis system applied in in-frame deletion in Burkholderia. Blue and red box: 

5’ and 3’flanking regions, green box: targeted gene, grey box: SceI nuclease encoded in pDAI-SceI, orange and 

purple box: trimethylprime and tetracycline resistance gene, yellow box: counter selection marker SacB, arrow 

on pDAI: constitutive promoter, blue cross marks are referred to homologous recombination events. 

As the previous trial of gene deletion in the original gladiolin producer B. gladioli BCC0238 

resulted in failure due to its spontaneous resistance to the antibiotic for the mutant selection, 
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the in vivo investigation was then carried out in another gladiolin producing isolate B. gladioli 

BCC1622, which harbors the identical biosynthetic gene cluster (99.5% identity of DNA 

sequences). Metabolite profiling of wild type B. gladioli BCC1622 by LC-MS also observed another 

two gladiolin related compounds which present in the extract of B. gladioli BCC0238. Structural 

elucidation (by Dr. Lijiang Song) confirmed one of them is the iso-gladiolin 28, generated via 

rearrangement, and the other is the linear gladiolin 29 due to hydration of gladiolin28 (Figure 2.4). 

 

Figure 2.4 Structure comparison of gladiolin and its analogues. Iso-gladiolin 28 and linear-gladiolin 29 derive 

from rearrangement and hydration of gladiolin respectively. 

To in-frame delete gbnD1 ER1 following the strategy described above, the deletion construct 

pGPI-gbnD1_ER1 was generated and mobilized into B. gladioli BCC1622 (detailed in 6.3.1). The 

gbnD1 ER1 deletion mutant B. gladioli BCC1622_ΔgbnD1_ER1 was successfully obtained and 

confirmed by PCR. (Figure 2.5).  

Having generated the B. gladioli BCC1622_ΔgbnD1_ER1 mutant, the effect of the mutation on 

gladiolin production could then be examined. Comparative metabolite profiling of B. gladioli 

BCC1622_ΔgbnD1_ER1 and WT B. gladioli BCC1622 was conducted by LC-MS (detailed in 6.4). 

The B. gladioli BCC1622_ΔgbnD1_ER1 mutant base peak chromatogram (BPS) showed the three 

gladiolin related peaks were absent, with no obvious new peak being formed (Figure 2.6 A). 

Furthermore, the extracted ion chromatogram (EIC) confirmed the production of gladiolin was 

abolished in BCC1622_ΔgbnD1_ER1 (Figure2.6 B). 
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Figure 2.5 Schematic representation of generation and PCR confirmation of B. gladioli BCC1622_ΔgbnD1_ER1. 

(A) Targeted in-frame deletion of the gbnD1 ER1 region of wild type chromosome is highlighted in green. Loss of 

the green region on the mutant chromosome after double crossover denotes successful deletion. Checking PCR 

primers are indicated by orange arrows and their binding sites on the mutant and WT chromosome and deletion 

plasmid DNA are indicated, respectively. The length of corresponding predicted PCR products is shown. (B) DNA 

electrophoresis gel of the PCR products confirms the genome type of the deletion mutant, resulting in a 449 bp 

product as observed in the positive control (deletion plasmid), and the negative control (WT allele) resulted in a 

1361 bp product. ‘CL’ refers to control, ‘WT’ refers to B. gladioli BCC1622 wild type. 

 

Figure 2.6 LC-MS analysis of metabolite extracts from BCC1622 wild type and BCC1622_ΔgbnD1_ER1. All 

chromatograms follow the layout of; WT B. gladioli BCC1622 indicated in black and B. gladioli 



PhD Thesis: Xinyun Jian  Chapter 2 

39 

BCC1622_ΔgbnD1_ER1 mutant indicated in red. (A) Base peak chromatograms of metabolite extracts. (B) EICs at 

m/z=779.5309 ± 0.02 Da and 801.5129 ± 0.02 Da, corresponding to the [M+H]+ and [M+Na]+ ions of gladiolin 7 

and iso-gladiolin 28, (C) EICs at m/z= 777.5153 ± 0.02 Da and 799.4972 ± 0.02 Da corresponding to [M+H]+ and 

[M+Na]+ ions of unsaturated gladiolin 32. See appendix for mass spectra of the EICs. 

The possible products produced by the GbnD1 ER1 domain inactivated mutant are expected as 

shown in Figure 2.7, based on three scenarios: 1) The GbnD1 ER1 domain is of dual function, 

performing enoyl reduction in both module 1 and module 5, and the activity of GbnD1 ER1 in 

module 5 halts the inherent iterative nature of module 5, thus inactivation of GbnD1 ER1 would 

resulted in generation of structure 30; 2) The GbnD1 ER1 domain is of dual function but GbnD2 

Module 5 has no underlying ability to perform iteration, thus inactivation of GbnD1 ER1 would 

generate structure 31; 3) The GbnD1 ER1 domain only reduces the α, β-unsaturated intermediate 

arising from module 1 and has no effect on module 5, thus inactivation of GbnD1 ER1 would 

generate structure 32.  

 

Figure 2.7 Structural comparison of gladiolin and proposed derivatives arising from inactivation of GbnD1 ER1 

in vivo. Structural differences from gladiolin are highlighted in red, and m/z values for [M+H]+ and [M+Na]+ are 

shown. The proposed derivatives are comprised of the structural differences resulting from a combination of 

possible consequences of GbnD1 ER1 inactivation. The desaturation of C34-C35 (in all three derivatives) 

originates from elimination of GbnD1 ER1 activity in module 1. The desaturation of C26-C27 (in 30 and 31) 

originates from elimination of the proposed GbnD1 ER1 additional activity in module 5. The installation of a 

polyene region at C26-C31 (in 30) is the predicted result of restoring the iteration of module 5 by removing GbnD1 
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ER1 function towards this module. 

To probe whether gladiolin derivatives 30-32 (Figure 2.7) were produced after deletion of gbnD1 

ER1, the corresponding [M+H]+ and [M+Na]+ ions were searched in both mutant and WT 

metabolite extracts. The ions with molecular weight corresponding 30 and 31 were not detected 

in both the WT and mutant extract (data not shown). This result indicates the GbnD1 ER1 domain 

does not catalyse the inter-modular enoyl reduction in module 5. Interestingly, multiple peaks 

with m/z value corresponding to 32 were observed in the WT, whilst a new single peak with a 

different retention time (16.9 min) appeared in the mutant (Figure 2.6 C). Due to the very low 

intensities of all the peaks being noted, it was not possible to purify them for structural 

elucidation. However, none of these peaks could be observed in metabolite extraction from the 

single crossover mutant (data not shown), which strongly suggested they were all related to 

gladiolin biosynthesis.  

The new peak (16.9 min) in the mutant likely corresponds to 32 as this would be consistent with 

the predicted GbnD1 ER1 domain’s cis-acting enoyl reduction activity in module 1. The multiple 

peaks in the WT EIC at m/z= 777.5153 ± 0.02 Da and 799.4972 ± 0.02 Da (the same of the one of 

32) are predicted to be 33 and 34 (Figure 2.8), as well as their iso-gladiolin analogous. They would 

be formed by the trans-acting enoyl reduction events in module 5 or module 10 not being fully 

efficient during polyketide assembly. The low yield of 32 from the mutant strain could be the 

result of the excision of the GbnD1 ER1 domain from GbnD1 affecting the overall folding of GbnD1 

which slowed down the polyketide assembly. This could also be an alternative explanation for 

inability to detect the derivative 30 and 31. 

 

Figure 2.8 Proposed structure of unreduced gladiolin derivatives. Structures were proposed based on the 

hypothesis of trans-acting enoyl reduction events in module 5 (generates 33) or module 10 (generates 34) not 

being fully efficient during the polyketide assembly. 
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2.1.1.2 Site-directed mutagenesis of GbnD1 ER1 domain in the gladiolin PKS 

In order to avoid the disturbance to the overall structure of GbnD1, inactivation of the GbnD1 

ER1 domain was alternatively pursued via site-directed mutagenesis. This strategy aims complete 

domain inactivation without significantly affecting the conformation or folding of the GbnD1 

protein. 

The cis-acting ER domains of modular PKSs belong to the NAD(P)H-dependent medium-chain 

dehydrogenase/reductase (MDR) superfamily of enzymes, which typically comprise of two 

subunits: a N-terminal catalytic subdomain and a C-terminal Rossman-fold NADPH bind 

subdomain 81. Unfortunately, unlike other domains from modular PKSs, there is very limited 

structural and catalytical information on ER domains. Previous mutagenesis studies of the 

proposed catalytically important residues in the ER domain from rapamycin PKS (RapER13) and 

spinosyn PKS (SpnER2) all resulted in only lowering but not abolishing the activity (as introduced 

in section 1.2.1.5 ‘cis-acting Enoyl reductases’)82,80. However, site-directed mutagenesis of the 

NADPH binding motif of ER domains from nystatin (NysER5) 145 and erythromycin (EryER3)146 PKS 

have been reported to successfully inactivate their enoyl reduction activity. Changing the two 

adjacent glycine residues in the conserved NADPH binding motif HAAAGGVGMA of NysER5 and 

EryER3 to a serine and a proline resulted in non-production of parental products and relatively 

high production of unreduced analogous145,146, suggesting an completely inactive ER domain and 

a fully functioning assembly line in each instance. 

Further inspection of the NADPH binding pocket in SpnER2, the only reported crystal structure of 

ER domain from modular PKSs, suggested the two adjacent glycine residues (G138 and G139) 

located at the active site and involved in the binding of the NADPH (Figure 2.9). Replacing G138 

with serine and G139 with proline would disturb conformation of the α-helix thus impede 

accommodation of NADPH. This observation further supported the logic of mutagenesis study in 

NysER5 and EryER3. Thus, one possible strategy to inactivate the GbnD1 ER1 domain via 

mutagenesis, in the absence of structural information, would be following the mutagenesis 

approach outlined above. 
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Figure 2.9 Structure of NADPH binding site in SpnER2 domain from spinosyn PKS. Cofactor binding site of 

SpnER2 shows G138 and G139 (shown as sticks) involved in the binding of NADPH. Structure created in Pymol 

from PDB: 3SLK80. 

The cofactor binding motif of the GbnD1 ER1 domain was identified by sequence alignment with 

other ER domains from modular PKSs (Figure 2.10, see appendix for full result). The two adjacent 

glycines embedded in the NADPH binding motif of the GbnD1 ER1 domain were located at 

positions 388 and 389. The subsequent double mutation (G388S/G389P) was achieved by in vitro 

site-directed mutagenesis of the gbnD1 ER1 DNA encoding region and then an in-frame ‘knock-

in’ of the mutated gbnD1 ER1(G388S/G389P) segment back into B. gladioli 

BCC1622_∆gbnD1_ER1 by double crossover homologous recombination (detailed in 6.3.2) 

(Figure 2.11 A). This was achieved based on the same yeast homing endonuclease I-SceI144 system 

used for in frame deletion as previous described (Figure2.3). Both PCR analysis (Figure 2.11 B) 

and sequencing of the designed mutation region confirmed the successful mutagenesis.  

 

Figure 2.10 Partial result of multiple sequence alignment between GbnD1 ER1 domain and reported ER 

domains from type I modular PKSs. The conserved NADPH binding motif is indicated as an orange bar and the 

conserved two adjacent glycine residues are indicated by a red star. The numbers after ER domains refer to the 

module number within the respective PKS. Ery, erythromycin; Spn, spinosyn; Rap, rapamycin; Lkm, lankamycin; 

Cur, curacin. 
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Figure 2.11 Schematic representation of generation and PCR confirmation of B. gladioli BCC1622_ gbnD1_ER1 

(G388S/G389P). (A) Wild type gbnD1 ER1 cloned with flanking arms is denoted in green. Mutated gbnD1 ER1* 

fragments on pGPI plasmid and the in-frame knock-in mutant chromosome are highlighted by a purple. Insertion 

of the purple region on the mutant chromosome after double crossover denotes as a successful knock-in. 

Checking PCR primers are indicated by orange arrows and their binding sites on the mutant chromosome, 

parental allele BCC1622_ΔgbnD1_ER1 chromosome and knock-in plasmid pGPI-gbnD1_ER1* are indicated 

together with the length of corresponding predicted PCR products. (B) DNA electrophoresis gel of the PCR 

products confirmed the genotype of mutants, resulting in a 1136 bp product as observed in positive controls (WT 

and knock-in plasmid), while negative control (parental allele) resulted in 449 bp product. ‘CL’ refers to control, 

‘*’ refers to G388S/G389P mutation. 

Comparative metabolite profiling of the mutants and wild type was then conducted by LC-MS 

analysis. Again, gladiolin production was abolished in BCC1622_gbnD1_ER1*(G388S/G389SP) as 

shown in BPCs with no obvious new peak observed (Figure2.12 A). The abolished production of 

gladiolin was confirmed by EIC (Figure2.12 B). All predicted derivatives (Figure 2.7) were searched 

in the mutant and wild type metabolite extracts. A similar gladiolin derivatives production pheno 

type was observed in BCC1622_gbnD1_ER1*(G388S/G389P) mutant with the gbnD1 ER1 in-

frame deletion mutant (Figure 2.12 C). Only ions with molecular weight corresponding to 

unreduced gladiolin 32 could be detected (16.9 min) and the yield did not significantly increase 

compared to in the gbnD1 ER1 deletion mutant. This suggested that the low production of 

gladiolin derivatives in both gbnD1 ER1 deleted and mutated mutants was the result of a 

restricted substrate preference of the downstream assembly line.  
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Figure 2.12 LC-MS analysis of metabolite extract from BCC1622 wild type and BCC1622_gbnD1_ER1*(GG388-

399SP). All chromatograms follow the layout of: wild type indicated in black and BCC1622_gbnD1_ER1*(G388S-

G389P) indicated in red. (A) Base peak chromatograms. (B) Extracted ion chromatograms at m/z=779.5309±0.02 

Da and 801.5129±0.02 Da corresponding to the [M+H]+ and [M+Na]+ ion of gladiolin 7 and iso-gladiolin 28, C) 

Extracted ion chromatogram at m/z= 777.5153±0.02 Da and 799.4972±0.02 Da corresponding to [M+H]+ and 

[M+Na]+ ions of unsaturated gladiolin 33 and 34 in WT and 32 in BCC1622_gbnD1_ER1*mutant. See appendix for 

mass spectra of the EICs. 

Although no structural elucidation of the new metabolite (16.9 min) was possible, its presence in 

both the gbnD1 ER1 deletion and site-directed mutation mutants but not in WT and single 

crossover indicated the structure of this new metabolite as 32. It thus suggested the GbnD1 ER1 

domain has cis-acting enoyl reduction activity in module 1.   

2.1.2 In vitro characterization of the GbnD1 ER1 domain 

In an effort to complement the genetic data shown previously, detailed in vitro biochemical 

assays were also employed to provide additional information regarding the ability of the GbnD1 

ER1 domain to conduct both intra- and inter-modular enoyl reductions. This hypothesis requires 

that the GbnD1 ER domain must interact with ACP domains from module 1 and module 5, 
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catalyzing reduction of the α, β-unsaturated intermediate in each instance.  

In order to investigate this, the following protein constructs were designed: GbnD1 ACP1-ER1 

didomain, isolated GbnD1 ER1 domain and isolated GbnD2 ACP5 domain. pET-151-GbnD1_ACP1-

ER1, pET-151-GbnD1_ER1 and pET-151-GbnD2_ACP5 were created as N-terminal pHis6 

constructs, which were overexpressed in E. coli BL21 (DE3) and the corresponding N-pHis6 

recombinant proteins were purified as described in 6.5. The mass and purity of the purified 

recombinant protein were confirmed by SDS-PAGE and LC-MS analysis (Figure 2.13). 

 

Figure 2.13 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD1 ACP1-ER1, N-His6-GbnD1 ER1, N-His6-GbnD2 

ACP5. 10% SDS-PAGE gel showed the size and purity of N-His6-GbnD1 ACP1-ER1 and N-His6-GbnD1 ER1 (A), 15% 

SDS-PAGE gel showed the size and purity of N-His6-GbnD2 ACP5 (B). Deconvoluted mass spectra of N-His6-GbnD1 

ACP1-ER1 (C), N-His6-GbnD1 ER1 (D) and N-His6-GbnD2 ACP5 (E). Peaks labeled as ‘*’ refer to the known 

gluconoylation of His-tag fusion proteins with +178 Da being observed147. The second ‘●’ peak in N-His6-GbnD1 

ER1 deconvoluted spectrum referred to phosphogluconoylation modification of His-tag with mass addition of 258 

Da147. For See appendix for raw mass spectra. 

2.1.2.1 Characterization of GbnD1 ER1 intra-modular enoyl reduction activity in module 1  

Firstly, the ability of the GbnD1 ER1 domain to catalyse enoyl reduction of a 2-butenoyl substrate 

attached to the GbnD1 ACP1 domain was examined. An in vitro enoyl reduction assay (outlined 

in Scheme2.1) was designed, using the commercially available 2-butenoyl-CoA ester as a 
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substrate mimic of the intermediate in module 1. The 2-butenoyl-phosphopantethienyl (Pant) 

chain from the CoA ester was first loaded onto the ACP domain using the reported PPtase 

catalyzed loading reaction (described in 6.6.6.1). The successful attachment of the 2-butenoyl-

PPant chain was monitored by LC-MS analysis of intact GbnD1 ACP1-ER1 before and after the 

loading reaction, which showed the expected 409 Da mass shift (Figure 2.14 A). The following 

reduction of the loaded 2-butenoyl unit by the GbnD1 ER1 domain was conducted by adding 

either NADH/NADPH as cofactor to the reaction. A control reaction was conducted with the same 

condition, without adding any cofactor.  

 

Scheme 2.1 Design of in vitro assay for investigating the GbnD1 ER1 domain’s intra-modular enoyl reduction 

activity. GbnD1 ACP1-ER1 didomain was first loaded with 2- butenoyl-PPant unit from substrate mimic crotonyl-

CoA via PPtase, Svp catalyzed loading reaction, followed by addition of cofactor NADPH/NADH 

 

Figure 2.14 LC-MS analysis of in vitro GbnD1 ER1 domain intra-module enoyl reduction activity. (A) 

Deconvoluted mass spectra of apo-GbnD1 ACP1-ER1 (top) and following incubation with 2-butenoyl-CoA Svp and 

MgCl2 (bottom). (B) Mass spectra of PPant ejected ions activated from 2-butenoyl-GbnD1 ACP1-ER1 following 
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incubating with NADPH (top), NADH (middle) or with no co-factor (bottom). 

As the mass shift from the reduced product to the substrate was only 2 Da, and therefore difficult 

to detect by intact protein MS, the enoyl reduction activity was instead monitored using the 

PPant ejection procedure148. This involves collision-induced activation of the 

phosphopantetheinylated proteins within the mass spectrometer to liberate the pantetheine 

(Pant) moiety from the ACP as a small molecule, allowing small mass shifts resulting from acyl 

chain modifications to be examined (Figure 2.14 B). Interestingly, the control reaction (lacking 

the required NADPH/NADH cofactor) resulted in the presence of both 2-butenoyl-PPant and 

butyryl-PPant ions at a ratio of around 1:1. This was probably due to GbnD1 ACP1-ER1 co-

purifying with the cofactor bound. However, complete conversion from 2-butenoyl-GbnD1 ACP1-

ER1 to butyryl-GbnD1 ACP1-ER1 was only observed following incubation with additional NADPH 

(Figure 2.14 B). There was only 5-10% conversion with NADH addition compared to the control 

reaction, indicating NADPH is the true cofactor of this ER domain. This result confirmed the 

GbnD1 ER1 domain’s intra-modular enoyl reduction activity in module 1. 

2.1.2.2 Probing the GbnD1 ER1 inter-modular enoyl reduction activity in module 5 

To investigate the proposed inter-modular activity of the GbnD1 ER1 domain with the ACP 

domain of module 5, a 2,4-hexadienoyl pantetheine (Pant) (synthesized by PhD student Christian 

Hobson), was used as a closer substrate mimic of the intermediate generated by module 5 to 

perform the designed in vitro assay shown in Scheme 2.2. 
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Scheme 2.2 Design of in vitro assay for investigating the putative inter-modular enoyl reduction activity of the 

GbnD1 ER1 domain. The GbnD2 ACP5 domain was first loaded with 2,4-hexadienoyl-PPant unit using the 

corresponding pantetheine form substrate mimic and the phosphopantetheinylation enzyme cassette catalyzed 

loading reaction followed by addition of GbnD1 ER and cofactor NADPH. 

Loading of the 2,4-hexadienoyl PPant unit onto the GbnD2 ACP5 domain was achieved using the 

phosphopantetheinylation enzyme cassette (detailed in 6.6.1.2). The resulting 2,4-hexadienoyl-

GbnD2 ACP5 was confirmed by a +435 Da mass shift on from the apo-GbnD2 ACP5 when 

monitored by LC-MS (Figure 2.15 A). The 2,4-hexadienoyl-GbnD2 ACP5 was then incubated with 

the GbnD1 ER1 domain and additional NADPH using the same conditions used in 2.1.2.1 (detailed 

in 6.2.2.2). A control reaction was conducted using the same conditions, but lacking GbnD1 ER1. 

Only 2,4-hexadienoyl-PPant ion could be detected in both of the control and experimental 

reaction (Figure 2.15 B) showing there was no ER-catalyzed reduction. This suggested that GbnD1 

ER1 does not interact with GbnD2 ACP5 in an inter-modular fashion.  

 

Figure 2.15 LC-MS analysis of in vitro GbnD1 ER1 domain inter-modular enoyl reduction activity in module 5. 

(A) Deconvoluted mass spectra of apo-GbnD2 ACP5 (top) and following incubation with 2,4-hexadienoyl-Pant and 

loading enzymes cassette in the presence of MgCl2 and ATP (bottom). (B) Mass spectra of PPant ejected ion 

activated from 2,4-hexadienoyl-GbnD2 ACP5 incubated with GbnD1 ER1 and NADPH (bottom) or only with 

NADPH (top). 

However, this negative result could also be caused by the isolated GbnD1 ER1 being purified in 

an inactive form. Therefore, in order to test this possibility, another in vitro assay (Scheme 2.3) 
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was conducted, in which the GbnD1 ER domain was incubated with 3-methyl-butenoyl-Pant 

(synthesized by Dr. Douglas Roberts) and monitored for reduction of the enoyl functionality 

(detailed in 6.2.2.2). LC-MS analysis of extracted reaction mixture showed 60-70% substrate was 

converted to 3-methyl-butyryl-Pant while there was no conversion observed in the control 

reaction when using denatured GbnD1 ER1 domain (Figure 2.16). This result confirmed the 

isolated GbnD1 ER1 domain was purified in active form.  

 

Scheme 2.3 Design of in vitro assay for monitoring activity of isolated GbnD1 ER1 domain. The isolated GbnD1 

ER1 domain was incubated with 3-methyl-butenoyl-Pant and cofactor NADPH. 

 

Figure 2.16 LC-MS analysis of in vitro assay demonstrating enoyl reduction activity of the isolated GbnD1 ER1 

domain. Base peak chromatogram from LC-MS analysis of extracted reaction mixture of the GbnD1 ER1 domain 

incubated with 3-methyl-butenoyl-Pant and NADPH (bottom) and control group using denatured GbnD1 ER1 

(top). 

All the above results in this section provided key evidence to support the idea that GbnD1 ER1 

domain is unable to engage in productive interactions with the ACP domain from module 5, 

suggesting that the GbnD1 ER1 domain is not able to catalyze the proposed ‘inter-module’ 

reduction in module 5. 
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2.2 Characterization of GbnE 

The findings detailed in Section 2.1 essentially ruled out the ability of the GbnD1 ER1 domain to 

catalyse enoyl reduction activity on a module 5 intermediate in an inter-modular manner. This 

suggested that the putative trans-acting enoyl reductase, GbnE, is a more likely candidate to 

perform enoyl reduction in both module 10 and module 5. To probe this dual functional activity 

of GbnE as well as the potential effect of GbnE to the non-iterative usage of module 5, GbnE was 

first characterized via in vivo approach.  

2.2.1 In vivo characterization of GbnE 

2.2.1.1 In-frame deletion of gbnE 

Since GbnE is encoded by a stand along gene, in-frame deletion was still considered as useful 

approach to investigate its function in the biosynthesis of gladiolin. Utilizing the same 

methodology as employed for deletion of gbnD1_ER1, a deletion construct, pGPI-gbnE, was first 

generated and mobilized into B. gladioli BCC1622 to obtain B. gladioli BCC1622_ΔgbnE (Figure 

2.17 A). Successful deletion of gbnE was confirmed by PCR and sequencing (Figure 2.17 B).  

 

Figure 2.17 Schematic representation of generation and PCR confirmation of B. gladioli BCC1622_ΔgbnE. (A) 

Targeted in-frame deletion region on WT B. gladioli BCC1622 chromosome is highlighted as a blue. Loss of the 

blue region on the mutant chromosome after double crossover denotes successful deletion. Checking PCR 
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primers are indicated by orange arrows and their binding sites on the mutant chromosome, WT chromosome and 

deletion plasmid are indicated together with the length of corresponding predicted PCR products. (B) DNA 

electrophoresis gel of the PCR products confirmed the genome type of the gbnE deletion mutant, resulting in a 

457 bp product as observed in the positive control (deletion plasmid), and the negative control (WT allele) 

resulted in a 1756 bp product. ‘CL’ refers to control, ‘WT’ refers to B. gladioli BCC1622 wild type. 

Comparative metabolite profiling of B. gladioli BCC1622_Δ gbnE and WT B. gladioli BCC1622 was 

conducted by LC-MS analysis. Interestingly, the B. gladioli BCC1622_Δ gbnE metabolite extract 

(Figure 2.18 A and B) showed that although the gladiolin production significantly reduced, it was 

maintained at low level, around 5-10% of wild type production. This seemed to suggest GbnE is 

intimately involved in gladiolin biosynthesis, and could be partially complemented by 

homologous enzyme(s) in the cell.  

 

Figure 2.18 LC-MS analysis of metabolite extracts from B. gladioli BCC1622 wild type and BCC1622_ΔgbnE. All 

chromatograms follow the layout of: WT B. gladioli BCC1622 indicated in black and B. gladioli BCC1622_ΔgbnE 

indicated in red. (A) Base peak chromatograms. (B) Extracted ion chromatograms at m/z=779.5309 ± 0.02 Da and 

801.5129 ± 0.02 Da corresponding to the [M+H]+ and [M+Na]+ ions of gladiolin 7 and iso-gladiolin 28. C) Extracted 

ion chromatogram at m/z = 777.5153 ± 0.02 Da and 799.4972 ± 0.02 Da corresponding to [M+H]+ and [M+Na]+ 

ions of unsaturated gladiolin 33 and 34. See appendix for mass spectra of the EICs. 
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Possible derivatives produced by gbnE deletion mutant were proposed (Figure 2.15) based on 

three possible scenarios:1) GbnE domain is of dual function, performing enoyl reduction in both 

module 5 and module 10, and the activity of GbnE in module 5 halts the inherent iterative nature 

of this module, thus inactivation of GbnE would resulted in generation of structure 35; 2) GbnE 

is of dual function but GbnD2 Module 5 has no underlying ability to perform iteration, thus 

inactivation of GbnE would generate structure 36; 3) Like its counterpart EntL in etnangien 

biosynthesis, GbnE only reduces the α, β-unsaturated intermediate arising from GbnD4 module 

10 and has no effect on module 5, thus inactivation of GbnE would generate structure 34.   

 

Figure 2.19 Structural comparison of gladiolin and proposed derivatives produced by the gbnE deletion mutant. 

Structural differences from gladiolin are highlighted in red, and m/z values for [M+H]+ and [M+Na]+ are shown. 

The proposed derivatives are comprised of the structural differences resulting from a combination of possible 

consequences of gbnE deletion. The desaturation of C16-C17 (in all three derivatives) originate from elimination 

of GbnE activity in module 10. The desaturation of C26-C27 (in 35 and 36) originate from elimination of GbnE 

activity in module 5. The installation of a polyene region at C26-C31 (in 35) is the result of restoring the iteration 

of module 5 by removing GbnE function towards this module.  

To probe whether derivatives 34-36 (Figure 2.19) were produced after deletion of gbnE, the ions 

corresponding to their molecular weight were searched for in metabolite extracts of B. gladioli 

BCC1622_ ΔgbnE. Neither 35 or 36 was observed (data not shown) and 34 (and 33) was detected 

at significantly lower level than in the wild type (Figure 2.18 C).  

The decreased production of gladiolin and related derivatives in the B. gladioli BCC162_ΔgbnE 

mutant strain suggested a general slowing down of the PKS assembly line in the absence of GbnE, 
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which further indicated the crucial role of the enoyl reduction events performed by GbnE to the 

assembly line. This could be because the reduced intermediates are preferred by the downstream 

assembly line or the assembly line requires the trans-acting protein-protein interaction from 

GbnE for efficient processing.  

It is, however, possible that the polar effect introduced by deletion of gbnE was responsible for 

the overall low production of gladiolin related products. In order to rule out this possibility and 

to thus validate the crucial function of GbnE to the assembly line, gbnE complementation to B. 

gladioli BCC1622_ΔgbnE was performed. 

2.2.1.2 Complementation of gbnE 

Firstly, gbnE was cloned onto an expression vector pMLBAD (detailed in 6.3.3), which was 

reported to be used for performing successful regulated gene expression under the control of an 

arabinose-inducible PBAD promoter in Burkholderia cepacian species149. The confirmed construct 

pMLBAD-gbnE was then mobilized into BCC1622_ΔgbnE by tri-parental mating (detailed in 6.3.4). 

Mutant BCC1622_ΔgbnE::gbnE was screened by antibiotic selection and confirmed by PCR 

(detailed in 6.3.3) (Figure 2.20). 

 

Figure 2.20 PCR confirmation of B. gladioli BCC1622_ΔgbnE::gbnE. DNA electrophoresis gel of the PCR products 

confirmed the genome type of gbnE complemented mutant, resulting in a 1398 bp product like the positive 

control wild type ‘CL’ refers to control. 

0.2%-2% of L-arabinose was reported to be the optimal final concentration used for the induction 
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of gene expression in Burkholderia species149. For comparison, 0.2% or 2% of L-arabinose was 

added to the medium for mutant metabolite production (detailed in 6.4.1). Comparative 

metabolite profiling between BCC1622 wild type, BCC1622_ΔgbnE, BCC1622_ΔgbnE::gbnE and 

empty vector control BCC1622_ΔgbnE::pMLBAD induced at different concentration of L-

arabinose were performed by LC-MS analysis (Figure 2.21). Gladiolin EICs showed that the 

complemented mutant BCC1622_ΔgbnE::gbnE induced at 0.2% L-arabinose restored 90% 

gladiolin production. The empty vector control group BCC1622_ΔgbnE::pMLBAD induced at the 

same concentration of L-arabinose seemed to maintain the similar level of the gladiolin 

production as BCC1622_ΔgbnE. This confirms the successful complementation. Nevertheless, 2% 

L-arabinose was found to abolish gladiolin production in both the complemented mutant 

BCC1622_ΔgbnE::gbnE and control BCC1622_ΔgbnE::pMLBAD. Since the mutant with 2% L-

arabinose added in production medium showed no growth defect, this was predicted to result 

from other competitive pathway(s) being switched on or greatly up regulated by high 

concentration of L-arabinose.  

This result provided evidence that no polar effect was brought into the gbnE deletion mutant, 

and the decreased gladiolin production in gbnE deletion mutant related to the loss of GbnE’s 

function in the assembly line. 

 

Figure 2.21 LC-MS analysis of gladiolin production in B. gladioli BCC1622 wild type, BCC1622_ΔgbnE, 

BCC1622_ΔgbnE::gbnE and BCC1622_ΔgbnE::pMLBAD. Extracted ion chromatograms at m/z=799,5309±0.02 Da, 

801.5129±0.02 Da corresponding to [M+H]+ and [M+Na]+ ion of gladiolin (17.4 min) and iso-gladiolin (17.8 min). 

Percentage refers to the concentration of L-arabinose in media. 
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2.2.1.3 In-frame deletion of putative complementary trans-acting ER  

In order to probe whether GbnE’s function in the gladiolin biosynthesis could be complemented 

by homologous enzyme(s) in B. gladioli BCC1622, the genome of B. gladioli BCC1622 was 

searched for gbnE homologue(s). A standalone AT-AT-ER tri-domain, GdsB is located in a trans-AT 

PKS gene cluster and GdsB ER domain was found to have 57.7 % sequence identity to GbnE. The 

metabolic product of this products was revealed by the Challis group to be gladiosatin, a novel 

secondary metabolite. From the structure and the associated gene cluster, a biosynthetic 

pathway was proposed, in which several trans-acting enoyl reduction events are predicted to be 

required (data not published). It was thus considered as a very good candidate for 

complementing the function of GbnE in the gladiolin biosynthesis. 

In an attempt to investigate the putative complementary function of the GdsB ER domain, as well 

as to probe whether iteration of module 5 could be restored when the enoyl reduction event in 

module 5 is completely removed, in-frame deletion of GdsB ER domain encoded DNA region was 

then performed in both B. gladioli BCC1622 WT and BCC1622_ΔgbnE. Deletion of gdsB_ER 

followed the same methodology used for deletion of gbnD1 ER1 and gbnE. Single knock-out 

mutant B. gladioli BCC1622_ΔgdsB_ER and double knock-out mutant B. gladioli 

BCC1622_ΔgbnEΔgdsB_ER were successfully obtained and confirmed by PCR (Figure 2.22 B). A 

weak band of size close to 1851 bp was noted in the double knockout mutant PCR products, 

which seemed to suggest a single crossover genotype as a PCR product of 606 bp was also 

observed. Attempts to amplify the SceI recognition region from the BCC1622_ΔgbnEΔgdsB_ER 

genome, which could verify whether the genome has the pGPI-gdsB_ER integrated, resulted in 

no PCR products while the control group using pGPI-gdsB_ER as a template resulted in positive 

PCR products (data not shown). This confirmed the loss of pGPI-gdsB_ER and thus validated it 

was double crossover mutant. 
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Figure 2.22 Schematic representation of generation and PCR confirmation of B. gladioli BCC1622_ΔgdsB_ER 

and BCC1622_ΔgbnEΔgdsB_ER. (A) Targeted in-frame deletion region on wild type chromosome and 

BCC1622_ΔgbnE is highlighted in orange. Loss of the orange region on the mutant chromosome after double 

crossover denotes successful deletion. Checking PCR primers are indicated by orange arrows and their binding 

sites on the mutant chromosome, parental chromosome and deletion plasmid respectively are indicated together 

with the length of corresponding predicted PCR products. (B) DNA electrophoresis gel of the PCR products 

confirmed the genotype of gdsB_ER deletion mutants, resulting in a 606 bp product as observed in the positive 

control (deletion plasmid), and the negative control (WT and BCC1622_ΔgbnE allele) resulted in a 1851 bp 

product. ‘CL’ refers to control, ‘WT’ refers to B. gladioli BCC1622 wild type. 

LC-MS analysis of the metabolites produced by both the single and double knock-out mutants 

showed that knocking out gdsB ER did not affect the production of gladiolin. Knocking out both 

gdsB_ER and gbnE seemed to promote gladiolin production compared to B. gladioli 

BCC1622_ΔgbnE (Figure 2.23). This indicated the GdsB ER domain was not the (only) homologue 

that could complement GbnE’s function. The increased production of gladiolin could because it 

shares common precursors with gladiostatin, so obstruction of gladiostatin biosynthesis by 

deletion of GdsB ER domain shifts metabolite flux towards gladiolin production. These results 

suggested other enzymes must be encoded by the genome that can complement GbnE. 
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Figure 2.23 LC-MS analysis of gladiolin production in B. gladioli BCC1622 wild type, BCC1622_ΔgbnE, 

BCC1622_ΔGdsB_ER and BCC1622_ΔgbnEΔGdsB_ER. Extracted ion chromatograms at m/z=799.5309±0.02 Da, 

801.5129±0.02 Da corresponding to [M+H]+ and [M+Na]+ ion of gladiolin (17.4 min) and iso-gladiolin (17.8 min). 

2.2.2 In vitro characterization of GbnE 

To complement the in vivo data, the proposed activity of GbnE in module 5 and module 10 was 

further characterized via in vitro biochemical assays.  

2.2.2.1 Enoyl reduction activity of GbnE 

To demonstrate the FMN-dependent enoyl reduction activity of GbnE, pET151-based constructs 

for recombinant N-His6-GbnE expression were first generated (described in 6.5.1). Unfortunately, 

overproduction and purification trials resulted in only trace amounts of recombinant N-His6-GbnE; 

whilst most of the material remained in the insoluble fraction. Optimization of overproduction 

conditions, including lowering IPTG concentration, changing expression cell lines (such as E. coli 

C43 (DE3) for avoiding possible toxicity, E. coli Rosetta (DE3) for possible rare codon usage), did 

not significantly increase the soluble N-His6-GbnE yield.  

Glutathione S-transferase (GST) and small ubiquitin-related modifier (SUMO) tags are known to 

successfully promote the solubility of many fusion proteins. Therefore, constructs of pGEX-4T1-

GbnE and pET-SUMO-GbnE were generated for to obtain N-GST-GbnE and N-His6-SUMO-GbnE 

constructs (described in 6.5.1). Overproduction and purification trials showed that, although the 

N-GST tag did not significantly promote the solubility of GbnE, a dramatic increase in the amout 

of GbnE was purified for the N-His6-SUMO-GbnE fusion protein (detailed in 6.5.3 and 6.5.4). It is 

was noted that the purified GbnE exhibited a strong yellow coloration, indicating GbnE was 
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purified with the flavin co-factor bound, consistent with its predicted FMN-dependent enoyl 

reduction activity. The purity and mass of the purified N-His6-SUMO-GbnE were confirmed by 

SDS-PAGE analysis and LC-MS analysis (Figure 2.24). 

 

Figure 2.24 SDS-PAGE and LC-MS analysis of purified N-His6-SUMO-GbnE. (A) 10% SDS-PAGE gel showing size 

and purity of N-His6-SUMO-GbnE, the yellow color of the protein indicated incorporation of a flavin cofactor. (B) 

Deconvoluted mass spectrum confirming the exact mass of N-His6-SUMO-GbnE (-N-Met).  Peaks labeled as ‘*’ 

refer to the spontaneous gluconoylation of His-tag on corresponding fusion proteins with additional 178 Da being 

observed147. See appendix for raw mass spectra. 

To characterize the enoyl reduction capability of GbnE, an in vitro assay was designed as shown 

in Scheme 2.4, using the GbnD2 ACP5 domain loaded with 2,4-hexadienoyl PPant as the substrate 

mimic of intermediate in module 5. Similar to the assays for testing the GbnD1 ER1 domain 

activity (section 2.1.2.2), the GbnD2 ACP5 domain was first loaded with the 2,4-hexadienoyl 

PPant unit using the phosphopantetheinylation enzyme cassette. The enoyl reduction was then 

initiated by addition of GbnE and cofactor. Both NADPH and NADH were tested as the hydride 

donating cofactor for FMN. As GbnE was purified with flavin co-factor bound no additional 

FMNH2 or FMN was added into the reaction. A negative control reaction was conducted using 

the same conditions, but lacking GbnE. The enoyl reduction activity was monitored by LC-MS 

analysis of the intact GbnD2 ACP5 domain.  
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Scheme 2.4 Design of in vitro assay for examination of enoyl reduction activity of GbnE. The GbnD2 ACP5 

domain was first loaded with 2,4-hexadienoyl PPant unit using the corresponding pantetheine form substrate 

mimic and phosphopantetheinylation enzymes cassette, followed by addition of GbnE and cofactor NAD(P)H. 

By comparison of the ejected PPant ions activated from GbnD2 ACP5-bound species (Figure 2.25), 

a ratio of 95:5 of the 4-hexenoyl-PPant ion: 2,4-hexadienoyl-PPant ion was observed in both 

reaction groups with NADPH or NADH added. In contrast, only the 2,4-hexadienoyl-PPant ion 

could be detected in the control reaction. This result showed the FMN-NAD(P)H-dependent enoyl 

reduction activity of GbnE and also provided evidence of trans-acting activity towards the ACP 

domain of module 5.  

 

Figure 2.25 LC-MS analysis of in vitro enoyl reduction activity of GbnE. Mass spectra of PPant ejected ion 

activated from 2,4-hexadienoyl-ACP5 incubated with (from top to bottom) GbnE and NADPH, GbnE and NADH, 

only NADPH.  

2.2.2.2 GbnE exhibits specific interactions with the gladiolin PKS 
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Having established the trans-acting activity of GbnE towards the ACP domain in module 5, the 

specific interaction between GbnE and the assembly line was then interrogated. In addition to 

GbnD2 ACP5 domain, GbnE is hypothesized to interact with ACP domain in module 10 (Figure 

2.2). As α, β-double bonds of the intermediate formed in module 3, 4 and 12 are retain in the 

final product, the ACP domains from these modules should not interact with GbnE. To examine 

these specific interactions, module 3, 4,10 and 12 ACP domains, were selected to be 

overproduced as recombinant proteins for enoyl reduction assays with GbnE. The corresponding 

pET28a (+) based constructs for all ACPs were generated and overexpressed in E. coli BL21 (DE3). 

All ACP domains, except for the GbnD1 ACP4 domain with no overproduction being observed, 

were purified as N-His6 fusion protein successfully (procedures detailed in 6.5.3 and 6.5.4, 

plasmid construction and purification of the GbnD5 ACP12 domain were conducted by Dr. 

Matthew Jenner). The purity and mass of the purified ACP domains was confirmed by SDS-PAGE 

and LC-MS analysis (Figure 2.26).  

 

Figure 2.26 SDS-PAGE and LC-MS analysis of N-His6-GbnD1 ACP3, N-His6-GbnD4 ACP10 and N-His6-GbnD5 

ACP12. (A) 15% SDS-PAGE gel showing the size and purity of N-His6-GbnD1 ACP3, N-His6-GbnD4 ACP10 and N-

His6-GbnD5 ACP12. Deconvoluted mass spectra confirming the exact mass of (B) N-His6-GbnD1 ACP3(-N-Met), (C) 

N-His6-GbnD4 ACP10 (-N-Met) and (D) N-His6-GbnD5 ACP12(-N-Met). Peaks labeled as ‘*’ refer to the 
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spontaneous gluconoylation of His-tag on corresponding fusion proteins with additional 178 Da being observed147. 

See appendix for raw Mass spectra. 

All ACPs were then subjected for the same in vitro enoyl reduction assays with GbnE (detailed in 

6.6.3) (scheme 2.4). Successful loading of 2,4-hexadienoyl-PPant unit onto all ACP domains were 

first confirmed by LC-MS analysis (Figure 2.27). The enoyl reduction assays were initiated by 

addition of GbnE and NADPH. GbnE was omitted from all control reactions. The reduced product, 

4-hexenoyl-PPant ion, could only be detected when the substrate was loaded on the GbnD2 ACP5 

and GbnD4 ACP10 domain, with only 2-5% 2,4-hexadienoyl PPant ion observed (Figure 2.28 left). 

Meanwhile no 4-hexenoyl-PPant ion was found in all control groups (Figure 2.28 right). These 

data provided evidence that only the GbnD2 ACP5 and GbnD4 ACP10 domain can effectively 

deliver the enoyl substrate to GbnE for reduction, whereas the GbnD1 ACP3 and GbnD5 ACP12 

domain cannot. It thus confirmed the specific interactions between GbnE and ACP domains from 

module 5 and 10 as proposed. 

 

Figure 2.27 LC-MS analysis of 2,4-hexadienoyl-PPant loading onto the GbnD1 ACP3 (A), GbnD2 ACP5 (B), GbnD4 

ACP10 (C) and GbnD5 ACP12 domain(D). Deconvoluted mass spectra of apo-ACP (top) and following incubation 



PhD Thesis: Xinyun Jian  Chapter 2 

62 

with 2,4-hexadienoyl-Pant and loading enzymes cassette in the presence of MgCl2 and ATP (bottom). 

 

Figure 2.28 LC-MS analysis of GbnE in vitro enoyl reduction with GbnD2 ACP5, GbnD4 ACP10, GbnD1 ACP3, and 

GbnD5 ACP12 domain. Mass spectra of PPant ejected ion activated from 2,4-hexadienoyl-ACPs incubated with 

both GbnE and NADPH (left), or with only NADPH (right). Spectra from top to bottom of both groups were from 

assays conducted with the GbnD2 ACP5, GbnD4 ACP10, GbnD1 ACP3 and GbnD5 ACP12 domain respectively. 

2.2.2.3 Probing catalytic mechanism of GbnE 

As discussed in section 1.2.2.5 ’trans-acting enoyl reductases’, the catalytic mechanism of trans-

acting ERs from trans-AT PKS remains unclear and requires further investigation. However, the 

structure and catalytic mechanism of their phylogenetically and structurally-related homologue 

FabK, the FMN-dependent enoyl-ACP reductase involved in the bacterial fatty acid biosynthesis, 

has been well studied150,151,152. The enoyl reduction catalyzed by FabK proceeds via a Bi-Bi double 

displacement mechanism, with the active site first bond with NAD(P)H cofactor to reduce the 

FMN group, followed by the resulting NAD(P)+ being displaced by the enoyl substrate, which is 

then reduced by the FMNH2 group, thereby returning the enzyme to its original state151,152. The 

X-crystal strucutre of FabK from Streptococcus pneumoniae suggested that a histidine residue 

(His144) (Figure 2.29), which is located in the active site and also near the FMN cofactor, is the 

key catalytic residue150. This was also supported by the observation that the side chain of His144 
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was found to be involved in a conformational change with and without substrate bound, which 

is consistent with the Bi-Bi double displacement mechanism. 

 

Figure 2.29 Structure of active site in FabK from Streptococcus pneumoniae. The X-crystal structure of FabK 

shows His144 located in the active site to the FMN cofactor. Generated using Pymol from PDB: 2Z6I150. 

In order to probe the catalytic mechanism of GbnE, a site-directed mutagenesis study for 

identification of the key catalytic residue(s) of GbnE was also pursued. Multiple sequence 

alignment between GbnE, other homologous trans-acting ERs from trans-AT PKSs, the PUFA 

biosynthesis ER PfaD and enoyl-ACP reductase FabK were performed (see appendix for full 

sequence alignment results). The proposed catalytic histidine residue (His144 in the FabK) was 

found to be conserved in the GGHTD motif in most of the sequences, and was located at position 

His198 in GbnE (Figure 2.30).  

 

Figure 2.30 Partial result of multiple sequences alignment between GbnE and homologous enzymes. The 

conserved Histidine in the GGHTD motif is highlighted with a red star. Full sequence alignment result is shown in 

the appendix. 

A mutant construct pETSUMO-GbnE(H198V) was generated by site-directed mutagenesis 

(detailed in 6.5.2), and GbnE(H198V) was successfully overproduced and purified as a soluble N-
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His6-SUMO fusion protein through the same process as for the wild type GbnE (detailed in 6.5.3 

and 6.5.4). Notably, the solubility and yellow color of the mutant GbnE suggested it was correctly 

folded, and structurally unaffected by the H198V mutation. The purity and mass of the N-His6-

SOMO-GbnE-H198V were then confirmed by SDS-PAGE analysis and LC-MS analysis (Figure 2.31). 

 

Figure 2.31 LC-MS analysis of purified N-His6-SUMO-GbnE, N-His6-SUMO-GbnE(H198V). Deconvoluted 

spectrum confirming the exact mass of (A) N-His6-SUMO-GbnE (-N-Met), and (B) N-His6-SUMO-GbnE(H198V) (-

methionine). Peaks labeled as ‘*’ refer to the spontaneous gluconoylation of His-tag on corresponding fusion 

proteins with additional 178 Da being observed147. See appendix for raw Mass spectra. 

To evaluate the enoyl reduction activity of GbnE(198V), the same in vitro assay (Scheme 2.4) was 

performed with GbnE(H198V), together with WT protein as control. The LC-MS analysis of the 

GbnD2 ACP5 domain with 2,4-hexadinoyl PPant bound following incubation of GbnE(H198V) and 

cofactor showed (Figure 2.32) the enoyl reduction activity of GbnE was completely abolished in 

the mutant protein. This confirmed the critical catalytic role of His198 in GbnE catalysing enoyl 

reduction. 
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Figure 2.32 LC-MS analysis of in vitro enoyl reduction activity of GbnE (H198V). Mass spectra of PPant ejected 

ions activated from 2,4-hexadienoyl-ACP5 incubated with (from top to bottom) GbnE and NADPH, GbnE and 

NADH, GbnE(H198V) and NADPH, GbnE(H198V) and NADH, only NADPH.  

2.3 Conclusions and future work 

In this chapter, for identification of the ER required for module 5 of the gladiolin PKS, as well as 

to probe the potential impact of this enoyl reduction event to the non-iterative usage of this 

module, in vivo and in vitro approaches were combined to characterize the candidate ERs, cis-

acting enoyl reductase GbnD1 ER1 domain and trans-acting enoyl reductase GbnE,  

In-frame deletion and site-directed mutagenesis to inactivate the GbnD1 ER1 domain in the 

gladiolin PKS, followed by the metabolite profiling of the mutants, identified a new derivative to 

be the proposed unreduced gladiolin 32. This suggests the GbnD1 ER1 domain has intra-modular 

enoyl reduction activity in module 1. This was further confirmed in vitro by incubating the 

purified recombinant GbnD1 ACP1-ER1 di-domain, loaded with a 2,4-hexadienoyl unit, with 

NADPH which resulted in successful reduction of the substrate. No in vivo data supported the 
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inter-modular enoyl reduction activity in module 5 of the GbnD1 ER1 domain, which was also 

confirmed by the in vitro assay that isolated GbnD1 ER1 domain was not capable of reducing the 

2,4-hexadienoyl unit tethered on GbnD2 ACP5 domain. 

In-frame deletion of gbnE and metabolite profiling indicated GbnE plays an important role in 

supporting efficient processing of the gladiolin assembly line as a decreased yield of gladiolin and 

related derivatives was observed when gbnE was absent. The FMN-dependent trans-acting enoyl 

reduction activity of GbnE was biochemically characterized. Incubation of GbnE with NADPH and 

four different ACP domains (GbnD1 ACP3, GbnD2 ACP5, GbnD4 ACP 10 and GbnD5 ACP12) 

showed GbnE is capable of catalysing reduction of substrates tethered on ACP domains from 

module 5 and 10 but not from module 3 and 12. This suggested the gladiolin assembly line 

recruits the trans-acting GbnE specifically in module 5 and module 10. Besides, the catalytic 

mechanism of trans-acting ERs was probed by site-directed mutagenesis and biochemical assays, 

which identified a conserved catalytic essential histidine residue (H198).  

As trans-acting enoyl reduction is a widely employed strategy to install the saturated C-C bond in 

trans-AT polyketide biosynthesis, the molecular mechanism underlying the specific interaction 

between the ERs and the ACP domains is of great interest and could guide future engineering 

efforts. Bioinformatic and biophysical studies need to be employed to better understand the 

nature of this specific protein-protein interaction. 
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Chapter 3 

Probing the molecular mechanism of chain 

length control in gladiolin biosynthesis 

The work described in chapter 2 identifies a trans-acting ER, GbnE, as the catalytic entity 

responsible for installing a saturated center at C26-C27 in gladiolin biosynthesis (Figure 3.1), and 

accounts for one of the principle structural differences between etnangien and gladiolin. In place 

of a saturated C-C bond, etnangien possesses three double bonds, which are hypothesized to 

originate from iterative use of EtnE Module 5. Although the etnangien biosynthetic gene cluster 

also harbors a trans-acting ER, EtnL, it is possible that it does not engage in a productive 

interaction with the ACP domain of EtnE Module 5, and thus the module undergoes three rounds 

of chain extension, keto-reduction and dehydration to generate the triene moiety. However, 

given the high degree of similarity between the gladiolin and etnangien PKSs, it is possible that 

the equivalent module, GbnD2 Module 5, can also catalyse iterative chain elongation, 

ketoreduction and dehydration, which is prevented by the action of GbnE (Figure 3.1). 

This details efforts to examine the iterative nature of GbnD2 Module 5, and the effect of GbnE on 

this process using in vitro biochemical methods. 
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Figure 3.1 Comparison of partial biosynthetic pathways of gladiolin (A) and etnangien (B). Schematic view 

shows the iterative use of EntE Module 5 and non-iterative use of GbnD2 Module 5, and the proposed roles of 

the trans-acting ERs in controlling these behavious. 

3.1 Iterative nature of GbnD2 Module 5 

3.1.1 Production of recombinant GbnD2 Module 5 

To examine whether GbnD2 Module 5 exhibits iterative activity, an in vitro biochemistry approach 

was employed. Using standard cloning procedures, pET28a-GbnD2_Module 5 (KS-DH-KR-ACP) 

was generated for overproduction and purification as an N-His6 construct (detailed in 6.5.1). 

Large scale overproduction followed by nickel affinity chromatography and size exclusion 

purification (detailed in 6.5.3 and 6.5.4), afforded the purified GbnD2 Module 5 tetra-domain 

protein, with the size and purity of the construct confirmed by SDS-PAGE and LC-MS analysis 

(Figure 3.2). 
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Figure 3.2 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD2 Module 5. (A) 6% SDS-PAGE gel showing the 

size and purity of N-His6-GbnD2 Module 5. (B) Deconvoluted mass spectrum confirming the mass of N-His6-

GbnD2 Module 5 (-N-Met). Peak labeled ‘*’ corresponds to the spontaneous gluconoylation of His-tag on fusion 

proteins with additional 178 Da being observed147. See appendix for raw Mass spectra. 

3.1.2 Investigating the activity of GbnD2 Module 5 in vitro 

Initial attempts to probe chain elongation in GbnD2 Module 5 centered on monitoring the 

covalently tethered growing acyl chain, using intact protein mass spectrometry. However, due to 

the large size of GbnD2 Module 5, the acquired mass spectra of the intact module resulted in a 

broad peak (Figure 3.2 B), which made resolution of small mass increments due to elongation 

extremely difficult. Therefore, an alternative strategy based on monitoring the isolated GbnD2 

ACP5 domain, which is significantly smaller in size and thus allowing discrimination of small mass 

shifts on the acyl chain, was devised (Scheme 3.1 A). In this assay, instead of loading malonyl-

PPant onto the integral ACP domain, the preacylated-KS domain of GbnD2 Module 5 was supplied 

with the malonylated GbnD2 ACP5 domain as a stand-alone protein. Upon interaction of 

malonylated ACP5 domain with the acylated-module 5, chain elongation, ketoreduction and 

dehydration can then occur, with the extended acyl chain attached to the isolated GbnD2 ACP5 

domain (Scheme 3.1 B). If GbnD2 Module 5 is capable of catalyzing multiple rounds of chain 

extension, then the isolated ACP5 domain can transfer the attached extended acyl chain back to 

the KS domain and itself become holo form, priming GbnD2 Module 5 for a second round of 

elongation (Scheme 3.1 B). This process can occur multiple times resulting in iterative activity. In 

this way, the isolated malonyl-GbnD2 ACP5 domain would be continually consumed to form 
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species of the GbnD2 ACP5 domain with iteratively extended products tethered, and the holo-

GbnD2 ACP5 species would be accumulated accordingly as every back transfer occurs. 

 

Scheme 3.1 Design of in vitro assay (A) and proposed mechanism (B) for examining the iterative nature of 

GbnD2 Module 5. (A) The GbnD2 ACP5 domain is loaded with a malonyl unit by Svp catalyzed malonyl-CoA 

loading reaction, followed by incubation with GbnD2 Module 5 pre-acylated using 2,4-hexadienoyl-SNAC. (B) The 

pre-acylated GbnD2 Module 5 is supplied with the isolated manoyl-GbnD2 ACP5 domain. The chain extension 

reaction yields a product tethered to the isolated GbnD2 ACP5 domain which is transferred back to the KS domain 

and the holo-GbnD2 ACP5 domain is formed. The second round of chain extension proceeds via condensation 
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with another molecule of the malonylated GbnD2 ACP5 domain and further rounds of these process to produce 

the iteratively-extended product. 

The in vitro assay was conducted as described, and was allowed to proceed for up to 20 hours to 

allow maximum possible conversion to product (detailed in 6.6.4.1). Intact protein mass spectra 

of the GbnD2 ACP5 domain were collected at three time points, 2, 5 and 20 hours. The 

deconvoluted mass spectra of the intact GbnD2 ACP5 domain at these time points displayed 

multiple additional peaks when compared to the malonyl-ACP5 starting material (Figure 3.3 A). 

Calculation of the mass shifts for the newly formed peaks in the 2 and 5 hours reactions revealed 

three new species, corresponding to one to three rounds of chain elongation, reduction and 

dehydration, ultimately generating a pentaene acyl chain (Figure 3.3 A). Allowing the reaction to 

proceed for 20 hours resulted in a fourth chain extension and reduction, yielding a hexaene as 

well as a small amount of β-keto unmodified species (Figure 3.3 A). The formation of all iteratively 

extended products increased with time. Moreover, an increasing formation of the holo GbnD2 

ACP5 domain and consumption of malonylated GbnD2 ACP5 domain over time was observed as 

expected. Peaks corresponding to the acetylated GbnD2 ACP5 domain were also observed, which 

are likely the result of decarboxylation of the malonyl unit (either in the MS, spontaneous or KS-

catalysed). As an additional observation, during the course of these reactions, the solution turned 

yellow indicating polyene formation in the test tube (Figure 3.3 B). 

These observations strongly suggest that GbnD2 Module 5 is able to catalyze iterative chain 

elongation using the isolated GbnD2 ACP5 domain. The ability of the GbnD2 ACP5 domain to re-

acylate the KS domain of module 5, and therefore re-prime the module for elongation, is an 

interesting observation. However, whether this activity is an artifact of the in vitro set-up of the 

reaction, or indeed a feature exclusive to iterative modules requires further study, as detailed in 

section 3.1.3.  
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Figure 3.3 LC-MS analysis of in vitro reconstitution of iterative activity of GbnD2 Module 5. (A) Deconvoluted 

mass spectra of the isolated malonyl-GbnD2 ACP5 domain, following incubation with 2,4-hexadienoyl-acylated-

GbnD2 Module 5 and NADPH for 2 hours (top), 5 hours (middle) and 20 hours (bottom). The peaks labelled with 

a black dot were found to be the sodium adduct of the corresponding protonated ion as their intensities showed 

the same peak intensity pattern. (B) Yellow colour of the reaction solution indicates polyene formation. 

3.1.3 Probing the ACP-selectivity of GbnD2 Module 5 iteration 

The results described in 3.1.2 demonstrate the ability of GbnD2 Module 5 to catalyse iterative 

chain elongation using a stand-alone GbnD2 ACP5 domain. The key step which promotes iterative 

activity is the reacylation of the KS domain by the chain-extended ACP5 domain. In these 

experiments, the GbnD2 ACP5 domain is supplied as an isolated entity, which is different to the 

integrated situation of the ‘native’ module, and therefore the reacylation activity may be an 

artifact of ‘dissected’ nature of the assay. However, equally, the ability of GbnD2 ACP5 domain to 

reacylate the KS domain could be a result of specific protein-protein interaction that facilitates 

the chain translocation between the GbnD2 ACP5 domain and the KS domain of module 5 (as 

introduced in section 1.2.2.5 ‘Acyl carrier protein domains and their interactions with other 
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domains’). This would mean that other ACP domains may not possess this ability. To test this 

hypothesis, ACP domains from the gladiolin PKS modules containing the same set of reductive 

domains (i.e. KS-DH-KR) were selected, cloned, overexpressed and purified. The GbnD1 ACP3 and 

the GbnD4 ACP10 domains, used in the Chapter 2, were selected as candidates to test this theory.  

It was noted that the purified recombinant N-His6-GbnD1 ACP3 and N-His6-GbnD4 ACP10 

domains underwent considerable gluconoylation (Figure 2.26). The mass addition of the 

gluconoylated species (+ 178 Da) is similar to an ACP species with two rounds of iteratively 

extended product tethered (+ 172 Da). In addition to this, another set of peaks corresponding to 

the gluconoylated species would also be formed during the reaction, which would bring 

complexity to the data analysis. Thus, the His-tag cleavage of both N-His6-GbnD1 ACP3 and N-

His6-GbnD4 ACP10 domains was cleaved using thrombin. The cleavage was confirmed by SDS-

PAGE analysis and LC-MS (Figure 3.4).  

 

Figure 3.4 SDS-PAGE analysis and LC-MS analysis of N-His6-tag cleaved GbnD1 ACP3 and GbnD4 ACP10 domains. 

15% SDS-PAGE gel (top) and deconvoluted mass spectra (bottom) confirming the identity of His-tag cleaved 

GbnD1-ACP3 (A) and GbnD4 ACP10 domains (B). See appendix for raw mass spectra. 

The in vitro assay in Scheme 3.1 A was then repeated using the purified GbnD1 ACP3 (-His-tag) 

and GbnD4 ACP10 (-His-tag) respectively under the same conditions (detailed in 6.4.4.1). The 
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deconvoluted mass spectra of the intact ACP species from the corresponding reactions showed 

that, unlike in the reaction using the GbnD2 ACP5 domain (Figure 3.5 a), no chain extension 

products were observed for the GbnD1 ACP3 domain (Figure 3.5 b). Intrestingly, additional to first 

round chain extension, the GbnD2 ACP10 domain was able to undergo the second and third chain 

extension reaction. (Figure 3.5 c). However, the obvious difference in intensity of the iteratively 

extended products between reactions using the GbnD2 ACP5 and GbnD4 ACP 10 domains could 

still supports the conlcusion that there is a specific interaction between the GbnD2 ACP5 domain 

and the GbnD2 KS5 domain during the intermediate back-transfer, or reacylation process for 

iteration.  

 

Figure 3.5 LC-MS analysis of in vitro iteration control assays for GbnD2 Module 5. Deconvoluted mass spectra 

of the isolated malonyl-GbnD2 ACP5 (a), malonyl-GbnD1 ACP3 (b) and malonyl-GbnD4 ACP10 (c) following 

respective incubation with 2,4-hexadienoyl-acylated-GbnD2 Module 5 and NADPH. 

The minor interaction between the GbnD4 ACP10 domain and the GbnD2 KS5 domain was 

tentatively attributed to the structural similarity between the GbnD2 ACP5 and the GbnD4 ACP10 

domain, as this was consistent with the findings that they are the only ACP domains from the 

gladiolin assembly line that are capable of interacting with GbnE. It was therefore plausible to 
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speculate that the GbnD2 ACP5 domain interacts with the GbnD2 KS5 domain for intra-modular 

translocation in a similar way that it interacts with GbnE for enoyl reduction. Thus, in a 

competitive situation, GbnE could prevent the GbnD2 ACP5 domain from transfering the one-

round extended product back to the GbnD2 KS5 domain. 

3.2 The effect of GbnE on GbnD2 Module 5 iteration 

Having established the iterative nature of GbnD2 Module 5, and that a specific interaction exists 

with its cognate ACP domain, the next step was to examine the effect of the trans-acting ER 

domain upon the iterative activity. The hypothesis outlined in Figure 3.1 A dictates that, following 

enoyl reduction of the α,β-unsaturated intermediate, iterative chain elongation is halted. 

3.2.1 GbnE abolishes iteration of GbnD2 Module 5 

To probe whether the GbnE has an impact on the iterative activity of this module5, the in vitro 

iteration assay was repeated in the presence of GbnE. In the same manner as in section 3.1.2, 

the GbnD2 KS5 domain was pre-acylated with a 2,4-hexadienoyl unit, followed by incubation with 

isolated malonylated GbnD2 ACP5, NADPH and GbnE (Scheme 3.2). The ratio of pre-acylated 

GbnD2 Module 5: malonyl-GbnD2 ACP5: GbnE was set as 1:2:1.  

 

Scheme 3.2 Design of in vitro iteration assays for monitoring GbnD2 Module 5 iteration in the presence of 

GbnE .  
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The reaction in the presence of GbnE appeared to abolish the production of any iteratively-

extended products (Figure 3.6 b). The formation of the holo-GbnD2 ACP5 domain, resulting from 

the back transfer process (Figure3.6 b) was consistently found to be much lower compared to the 

reaction without GbnE (Figure 3.6 a), indicating no back transfer occurred.  

Interestingly, although the one-round elongated product was observed (Figure3.6 b), it was found 

to be the un-reduced species. This indicated that, with GbnE present, the isolated malonyl-GbnD2 

ACP5 domain could still interact with the GbnD2 KS5 domain for the chain elongation, but the 

interaction of the resulting the elongated β-keto-GbnD2 ACP5 with the KR and DH domains for 

the chain modification was blocked in the in vitro reconstituted condition. This could be due to 

the high affinity between GbnE and the discrete GbnD2 ACP5 domain.  

 

Figure 3.6 LC-MS analysis of in vitro GbnD2 Module 5 iteration assays with and without addition of GbnE. 

Deconvoluted mass spectra of isolated malonyl-GbnD2 ACP5 domain following incubation with 2,4-hexadienoyl-

acylated-GbnD2 Module 5 and NADPH without (a) and with (b)addition of GbnE.  

These data strongly support that GbnE is able to prevent the iterative activity of GbnD2 Module 

5 during the gladiolin biosynthesis. However, the mechanism by which this occurs requires 
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further investigation. In principle, two routes for this phenomenon exist: a) GbnE engages in 

protein-protein interactions with the GbnD2 ACP5 domain preventing intermediate back. b) The 

catalytic activity of GbnE results in a saturated intermediate, which prevents the back-transfer 

process due to a substrate specificity of the GbnD2 KS5 domain or the kinetic difference in 

acylation of the upstream KS5 domain and the downstream GbnD2 KS6 domain.  

3.2.2 Protein-protein interactions between GbnE and the GbnD2 ACP5 domain 

prevent re-acylation of the GbnD2 KS5 domain  

In order to investigate whether protein-protein interactions between GbnE and GbnD2 ACP5 

domain have an effect on the iteration, the catalytically inactivated GbnE mutant, GbnE(H198V), 

was employed. It was previously shown to be well folded in Chapter 2, and therefore can still 

engage in protein-protein interactions with the GbnD2 ACP5 domain.  

The assay outlined in Scheme 3.2 was repeated, but this time in the presence of GbnE(H198V). 

Interestingly, the subsequent LC-MS analysis of the GbnD2 ACP5 domain revealed that iteration 

of GbnD2 Module 5 was inhibited by the presence of GbnE(H198V), yielding an almost identical 

spectrum to WT GbnE (Figure 3.7). These observations strongly suggest that merely the presence 

of GbnE, and the protein-protein interactions between itself and GbnD2 ACP5 domain, are 

sufficient to halt iterative activity. 
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Figure 3.7 LC-MS analysis of in vitro GbnD2 Module 5 iteration assays with and without addition of GbnE 

(H198V). Deconvoluted mass spectrum of the isolated malonyl-GbnD2 ACP5 domain following incubation with 

2,4-hexadienoyl-acylated-GbnD2 Module 5 and NADPH without (a) and with (b)addition of GbnE (H198V).  

3.2.3 The ‘gate-keeping’ role of the GbnD2 KS6 domain 

The data presented in 3.2.2 convincingly shows how the mere presence of GbnE, and not 

necessarily its catalytic activity, is all that is required to abolish iteration in GbnD2 module 5. 

However, whether formation of a saturated acyl intermediate, resulting from the GbnE catalysis, 

contributes to the directionality or flux of the assembly line at this biosynthetic stage also 

required investigation. Genetic data from chapter 2 showed that deletion of GbnE in the gladiolin 

producing strain resulted in a general ‘slowing down’ of the assembly line (section 2.1.1.1) This 

suggested that the fidelity of the assembly line is preserved by the downstream KS domains in a 

‘gate-keeping’ fashion to preferentially accept the GbnE processed α,β-saturated intermediate.  

A KS domain conducts two catalytic processes during the chain elongation cycle: chain 

translocation and Claisen-like chain elongation. Substrate specificity of KSs from modular PKS, 

especially from trans-AT PKS, have been revealed in both processes.62,153 Thus, to fully examine 

the proposed ‘gate-keeping’ function of the GbnD2 KS6 domain, the substrate specificity of it in 
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both processes was inspected. 

3.2.3.1 Construct design and protein overproduction  

GbnD2 Module 6 consists of a KS domain and two tandem ACP domains (Figure 2.2). This type of 

enzymatic domain architecture is typically associated with β-branching, with the latter ACP 

domain aiding in the interaction with the trans-acting β-branching enzymes.154 Therefore, the 

GbnD2 ACP6b domain was considered not needed for both the chain translocation and 

elongation process. Unfortunately, initial construct of GbnD2 KS6-ACP6a yielded insoluble 

protein. In an effort to obtain a soluble construct, instead of further isolation of GbnD2 KS6 and 

GbnD2 ACP6a as individual domains, the entire module 6 with the second ACP domain 

inactivated was explored as an alternative.  

Expression construct pET28a-GbnD2 Module 6 was initially generated, followed by mutation of 

the conserved serine residue (S941) for phosphopantetheinylation of the second ACP domain, to 

alanine via site-directed mutagenesis, to achieve the final construct pET28-GbnD2 Module 6 

(S941A). N-His6-GbnD2 Module6 (S941A) was then overproduced and purified as described in 

6.5.3 and 6.5.4. The identity of the purified N-His6-GbnD2 Module6 (S941A) was confirmed by 

SDS-PAGE and LC-MS analysis (Figure 3.8). 

 

Figure 3.8 SDS-PAGE and LC-MS analysis of purified N-His6-GbnD2 Module 6(S941A). (A) 6% SDS-PAGE gel of N-

His6-GbnD2 Module 6 (S941A). (B) Deconvoluted mass spectrum confirming the exact mass of N-His6-GbnD2 

Module 6 (S941A). The Peak labeled ‘*’ corresponds to the spontaneous gluconoylation of His-tag on 

corresponding fusion proteins with additional 178 Da being observed147. See appendix for raw mass spectra. 



PhD Thesis: Xinyun Jian  Chapter 3 

80 

3.2.3.2 Substrate specificity of the GbnD2 KS6 domain in chain translocation 

In order to examine the substrate specificity of the GbnD2 KS6 domain towards α,β-saturated 

and α,β-unsaturated substrates in the chain translocation step, a comparative in vitro assay was 

conducted (Scheme 3.3). Utilizing GbnD2 Module 6 and the upstream GbnD2 ACP5 domain 

loaded with either a 4-hexenoyl or a 2,4-hexadienoyl acyl chain, the ability of the GbnD2 ACP5 

domain to transfer these intermediates to the GbnD2 KS6 domain could be measured. This could 

be achieved by monitoring the ratio of acyl-GbnD2 ACP5 to the newly formed holo-GbnD2 ACP5 

species.  

Both 2,4-hexadienoyl-GbnD2 ACP5 and 4-hexenoyl-GbnD2 ACP5 were first synthesized via 

phosphopantetheinylation enzymes cassette catalyzed acyl-PPant loading assays, using the 

corresponding pantetheine form substrates synthesized by PhD student Christian Hobson. The 

full conversion from apo form to respective acyl-PPant-loaded form were first confirmed (Figure 

3.9), to ensure the GbnD2 KS6 domain is provided with equal concentration of the acyl transfer 

partner. 

 

Scheme 3.3 Design of in vitro assays for monitoring substrate specificity of GbnD2 KS6 domain in the 

translocation process. The GbnD2 ACP5 domain is respectively loaded with 4-hexenoyl-Pant (top) and 2,4-

hexadienoyl-Pant (bottom) via phosphopantetheinylation enzymes cassette, followed by incubation with GbnD2 

Module 6(S941A) for inter-modular chain translocation. 



PhD Thesis: Xinyun Jian  Chapter 3 

81 

 

Figure 3.9 LC-MS analysis of in vitro PPtase catalyzed 2,4-hexadienoyl-PPant and 4,-hexenoyl-PPant loading of 

GbnD2 ACP5 domain. Deconvoluted mass spectrum of apo-GbnD2 ACP5 (bottom), following incubation with 

phosphopantetheinylation catalytic enzymes cassette, Svp, MgCl2, and 4-hexenoyl-Pant (bottom), or 2,4-

hexadienoyl-Pant (top). Successful loading results in mass shift of 435 Da for 2,4-hexadienoyl-PPant unit and 437 

Da for 4-hexenoyl unit-PPant. 

The acyl transfer reaction was initiated by incubating the saturated and unsaturated acyl-GbnD2 

ACP5 domain with GbnD2 Module 6(S941A) in a ratio of 1:3 (as detailed in 6.6.5.1). Control 

reactions were conducted lacking the GbnD2 Module 6(S941A). The assays were allowed to 

proceed for up to 8 hours and data were collected at 4 time points. The deconvoluted mass 

spectrum of the GbnD2 ACP5 domain from each assay was compared. This showed the increasing 

formation of the holo-GbnD2 ACP5 domain from the 4-hexenoyl-GbnD2 ACP5 was incubated with 

GbnD2 Module 6 (Figure 3.10 A). However, very little holo-GbnD2 ACP5 when the 2,4-

hexadienoyl-GbnD2 ACP5 was used compared to the control reaction (Figure 3.10 B). These 

observations clearly demonstrated the preference of the GbnD2 KS6 domain for α, β-saturated 

acyl units over α, β-saturated acyl units in the chain translocation step.  
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Figure 3.10 LC-MS analysis of in vitro chain translocation between the GbnD2 ACP5 domain and GbnD2 KS6 

domain. (A) Deconvoluted mass spectra of 4-hexenoyl-GbnD2 ACP5 (top) following incubation with GbnD2 

Module 6(S941A) for 2 hours, 4 hours, 6 hours, 8 hours. (B) Deconvoluted mass spectra of 2,4-hexadienoyl-GbnD2 

ACP5 (top) following incubation with GbnD2 Module 6(S941A) for 2 hours, 4 hours, 6 hours, 8 hours. ‘CL’ refers 

to control reaction lacking GbnD2 Module 6(S941A) after 8 hours incubation.  

3.2.3.3 Substrate specificity of the GbnD2 KS6 domain in chain elongation 

In addition to the chain translocation step, the GbnD2 KS6 domain was also tested for substrate 

preference at the chain elongation stage, utilizing the in vitro assays outlined in scheme 3.4. In 

the first instance, acylation of GbnD2 KS6 domain active site with a α, β-saturated or a α,β-

unsaturated acyl units was required, in order to provide the same starting point for the 

comparison of the elongation reactions. Although substrate preference can be observed for the 

ACP-bound acyl chains, it is possible to obtain reasonable levels of KS acylation using acyl-SNAC 

substrates. Therefore, in an attempt to equally supply GbnD2 KS6 domain with saturated and 

unsaturated acyl substrates, GbnD2 Module 6 (S941A) was incubated with the same 

concentration of 2,4-hexadienoyl-SNAC and 4-hexenoyl-SNAC (detailed in 6.6.5.2). The acylation 
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reactions were analysed by intact protein mass spectrometry, showing a expected similar 

acylation percentage (around 30%) (Figure 3.11).  

 

Scheme 3.4 Design of in vitro assays for monitoring substrate specificity of GbnD2 KS6 domain during chain 

elongation. The KS domain of GbnD2 Module 6(S941A) is respectively acylated by 2,4-hexadienoyl-SNAC (top 

route) and 4-hexenoyl-SNAC (bottom route) to reach a similar acylation level, followed by supply with extender 

unit via Svp catalyzed malonyl-CoA loading reaction for the KS domain catalyzed chain elongation reaction.  

 

Figure 3.11 LC-MS analysis of acylation of the KS domain in GbnD2 Module 6(S941A). Deconvoluted mass 

spectra of apo-GbnD2 Module 6(S941A) (bottom) following incubation with 2,4-hexadienoyl-SNAC (middle) and 
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4-hexenoyl-SNAC (top) respectively. Acylation by 2,4-hexadienoyl and 4-hexenoyl unit was observed as 95 Da and 

97 Da mass shift respectively.  

With acylated GbnD2 Module 6 (S941A) in hand, the elongation assays were initiated by providing 

the GbnD2 ACP6a domain with a malonyl extender unit via the PPtase catalyzed malonyl-PPant 

loading reaction (detailed in 6.6.5.2). The deconvoluted mass spectra of intact GbnD2 Module 6 

(S941A) species from both assays showed that both 4-hexenoyl- and 2,4-hexadienoyl-elongated 

products are observed with similar turnover ratio (Figure 3.12). This indicated that the GbnD2 

KS6 domain does not have strict substrate specificity in the chain elongation process.   

 

Figure 3.12 LC-MS analysis of GbnD2 Module6 (S941A) in vitro chain elongation assays. Deconvoluted mass 

spectra of 4-hexenoyl-acylated-GbnD2 Module 6(S941A) (top) and 2,4-hexadienoyl-GbnD2 Module 6 (S941A) 

(bottom) respectively following loading with malonyl-PPant by PPtase. 

3.3 Conclusions and future work. 

In this chapter, insights into the key structural difference between the construction of etnangien 

and gladiolin were obtained via investigation of the molecular mechanism underlying the non-

iterative usage of module 5 in the gladiolin PKS. Firstly, an optimized in vitro iterative chain 

extension assay was developed for examining the ability of GbnD2 Module 5 to act iteratively in 

which the pre-acylated GbnD2 Module 5 was supplied with isolated malonyl-ACP5 ‘in trans’. This 
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allowed multiple turnovers to be achieved in addition to facilitating convenient reaction 

monitoring. With this strategy, GbnD2 Module 5 was successfully demonstrated to be capable of 

catalyzing up to 4 cycles of chain elongation and modification in vitro.  

Furthermore, the addition of the trans-acting ER, GbnE abolished the iterative activity of GbnD2 

Module 5. Utilizing the catalytically inactivated GbnE, it was possible to show that interactions 

between GbnE and the GbnD2 ACP5 domain are all that is required to shut-down iteration. This 

could be due to a multitude of complex factors, likely centered around protein-protein 

interactions preventing intermediate back transfer and higher order protein structural 

rearrangements, and requires further investigation. In addition, GbnD2 KS6 domain appeared to 

show a preference towards α,β-saturated acyl chains over an α,β-unsaturated ones. This suggests 

that although GbnE can abolish the module iteration process, the gatekeeping activity of GbnD2 

KS6 domain also prevents chain translocation before enoyl reduction has occurred.  

Using the aforementioned data, a molecular mechanism for chain length control in gladiolin 

biosynthesis can be proposed, and is outlined in (Figure 3.12). Following GbnD2 Module 5-

catalysed chain elongation and subsequent ketoreduction and dehydration; the α,β-unsaturated 

intermediate is rejected by the downstream ‘gate-keeping’ GbnD2 KS6 domain for chain 

translocation (route b). However, the back-transfer of this α,β-unsaturated intermediate from the 

GbnD2 ACP5 domain to the GbnD2 KS5 domain (route c) is blocked by the efficient protein-

protein interaction between GbnE and the GbnD2 ACP5 domain during the enoyl reduction event 

(route a). The GbnE-catalysed enoyl reduction event generates the α, β-saturated intermediate 

which is then preferentially accepted by the downstream GbnD2 KS6 domain (route d). Therefore, 

the single chain extended, α, β-unsaturated intermediate, is provided with a ‘fast-track’ to enoyl 

reduction and subsequent passage to the downstream GbnD2 KS6 domain, thereby maintaining 

the fidelity of gladiolin biosynthesis.  
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Figure 3.12 Schematic diagram of the proposed mechanism of the chain length control in the gladiolin 

biosynthesis. The iteration of module 5 is shut down via the recruitment of the trans-acting GbnE to this module. 

The direction and fidelity of chain assembly at this biosynthetic stage is preserved by the protein-protein 

interaction between GbnE and the GbnD2 ACP5 and ‘gate-keeping’ GbnD2 KS6 domains. The routes labeled by 

green are denoted as the free routes, the routes labeled by red are denoted as obstructed routes.   

It is possible to extend this hypothesis to the etnangien system. Here, logic would dictate that the 

equivalent trans-acting ER domain (EtnL), located within the etnangien BGC, is unable to interact 

with the EntE ACP5 domain. Assuming an analogous sequence of events, the α, β-unsaturated 

intermediate formed by one cycle of chain extension and modification is not accepted by the 

downstream EtnE KS6 domain. Therefore, the chain is back-transferred onto the EntE KS5 domain 

to undergo another cycle of chain extension and reduction. This sequence would have to happen 

once more before being passed onto the EtnE KS6 domain. Whether the three cycles of chain 

extension and reduction is programmed, or merely an artifact of kinetics remains to be elucidated. 

For future work, efforts could be made to further pin down the mechanism that GbnE uses to 

shut down the iteration of gladiolin module 5. This could include kinetic analysis of the GbnE 
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catalyzed enoyl-GbnD2 ACP5 enoyl reduction, and the GbnD2 KS6 domain catalyzed intermodular 

transfer and the GbnD2 KS5 domain catalyzed intramodular transfer. In order to obtain a 

complete picture, initially the analogous set of biochemical assays should be conducted using the 

etnangien EtnE Module 5 and the corresponding EtnL ER domain. In addition, a ‘cross-talk’ 

approach to in vivo engineering of both biosynthetic pathways could be a investigated, e.g. either 

swapping the GbnD2 ACP5 domain with the EntE ACP5 domain or GbnE with EntL in attempts to 

elicit iteration in gladiolin biosynthesis, or shut down the iteration in etnangien biosynthesis.
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Chapter 4 

Investigation of a double chain initiation 

mechanism in icosalides biosynthesis 

As discussed in section 1.3.3, IcoA, responsible for the biosynthesis of icosalides, contains an 

unusual domain architecture due to the presence of an internal starter C domain (IcoA C4 domain) 

in module 3, which is directly adjacent to an LCL domain (IcoA C3 domain). The domain 

architecture suggests the IcoA C3 domain and the IcoA C4 domain are required to co-operate for 

accomplishing a second round of chain initiation and an elongation event (Scheme 4.1). Firstly, 

the IcoA A3 domain is proposed to load the IcoA PCP3 domain with an L-serine residue. This 

would be followed by the IcoA C4 domain initiating a second round of chain assembly via 

condensation of the serine residue with a 3-hydroxyacyl unit, presumably hijacked from 3-

hydroxyacyl-ACP in fatty acid biosynthesis126,127. Lastly, the IcoA C3 domain is proposed to 

catalyse a second condensation event, forming an ester bond between the β-hydroxyl acyl unit 

and the intermediate tethered to upstream IcoA PCP2 domain. If so, the IcoA C4 domain is 

believed to be the first example of an embedded starter C domain (Scheme 4.1). 
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Scheme 4.1 Proposed biosynthetic events in IcoA Module 3. Green arrows indicate which domains are proposed 

to catalyse each reaction. The black dots in the fatty acid biosynthesis represent ACP domains. IcoA A3 domain 

first load the downstream PCP3 domain with L-serine followed by C4 domain initiate a second round of chain 

assembly by incorporation of a 3-hydroxycayl unit hijacked from fatty acid biosynthesis, the C3 domain finally 

accomplish the biosynthesis in this module to link the newly formed Ser-hydroxydectonyl unit with the upstream 

assembled peptide chain by forming an ester bond.  

4.1 Characterization of the IcoA C4 domain  

The catalytic ability of the IcoA C4 domain to acylate the serine residue tethered onto the IcoA 

PCP3 domain with a 3-hydroxyacyl chain was first examined in vitro. 

4.1.1 Production of recombinant IcoA C4 domain 

The constructs pET151-IcoA_PCP3 and pET28a-IcoA_C4 were generated for the corresponding N-

His6-tag recombinant protein over production and purification (detailed in 6.5.1). The N-His6-IcoA 

PCP3 domain and N-His6-IcoA C4 domain were overproduced and purified as described in 6.5.3 

and 6.5.4 The mass and purity of purified recombinant protein was confirmed by SDS-PAGE and 

LC-MS analysis (Figure 4.1)  
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Figure 4.1 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA PCP3 and N-His6-IcoA C4. (A) 12% SDS-PAGE gel 

and 10%SDS-PAGE gel showing the size and purity of N-His6-IcoA PCP3(left) and N-His6-IcoA C4(right) respectively, 

(B) Deconvoluted mass spectra confirming the exact mass of N-His6-IcoA PCP3 (-N-Met) (left) and N-His6-IcoA C4 

(-N-Met) (right) respectively. Peak labeled as ‘*’ corresponds to the spontaneous gluconoylation of the His-tag on 

fusion proteins, with an additional 178 Da observed.147 See appendix for raw mass spectra. 

4.1.2 Characterization of the N-acylation activity of the IcoA C4 domain 

An in vitro assay outlined in Scheme 4.2 was utilized to characterize the N-acylation activity of 

the IcoA C4 domain. Due to the intrinsic instability of L-serine-Pant (found by Dr. Douglas Roberts 

during the synthesis trials), L-alanine-Pant (synthesised by Dr. Douglas Roberts) was alternatively 

used as a substrate mimic to first generate L-Ala-PPant-PCP3 as a substrate for the IcoA C4 domain. 

Loading of the L-Ala-PPant unit onto the IcoA PCP3 domain was achieved using the 

phosphopantetheinylation enzymes cassette as detailed in 6.6.1.2. The successful attachment of 

the L-alanine-PPant unit was confirmed by LC-MS analysis of the intact IcoA PCP3 domain 

following the loading reaction, with the expected 412 Da mass addition being observed (Figure 

4.2 A).  
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Scheme 4.2 Design of in vitro assays for testing the N-acylation activity of the IcoA C4 domain. IcoA PCP3 

domain. IcoA PCP3 domain is first loaded with L-Ala by phosphopantetheinylation enzyme cassette, followed by 

incubation with the IcoA C4 domain and 3R or 3S-hydroxybutyryl-Pant 

 

Figure 4.2 LC-MS analysis of the N-acylation activity of the IcoA C4 domain. (A) Deconvoluted mass spectra of 

the apo IcoA PCP3 domain (top) and following incubation with Svp, CoA, MgCl2, ATP and L-Ala (bottom). L-Ala-

PPant loading was observed as a 412 Da mass shift from apo protein. (B) deconvoluted mass spectra of the L-Ala-

PPant-IcoA PCP3 species (top) and following incubation with the IcoA C4 domain and 3-hydroxylacyl-Pant with 3R 

configuration (middle) or 3S configuration (bottom).   

The subsequent condensation reaction was then conducted by incubation of L-Ala-PPant-IcoA 

PCP3 with the IcoA C4 domain and 3-hydroxybutyryl-pantetheine, which mimics the predicted 

natural substrate 3-hydroxyoctanoyl-ACP (see 6.6.6). The 3-hydroxyacyl-ACPs are produced 

exclusively in the 3R-configuration during fatty acid biosynthesis. To examine whether the IcoA 
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C4 domain has this proposed stereo specificity towards the fatty acid substrate, both R and S 

configured 3-hydroxybutyryl-pantetheine (synthesised by Dr. Matias Rey) were tested in the assay. 

LC-MS analysis of the intact L-Ala-PPant-IcoA PCP3 following condensation reactions revealed a 

peak corresponding to the condensed L-Ala-hydroxybutyryl product in both reactions, while no 

equivalent peak was detected in the control reaction lacking the IcoA C4 domain (Figure 4.2 B).  

This result demonstrated the catalytic ability of the IcoA C4 domain to utilise a 3-hydroxyacyl 

moiety to re-prime the NRPS chain assembly but without any of the predicted stereospecificity. 

It is possible the promiscuous stereo specificity of the IcoA C4 domain was due to the substrate 

mimics not being close enough to the natural substrate.  

4.2 Characterization of the IcoA C4-A3-PCP3 tri-domain 

To probe whether using more accurate substrate mimics would increase the specificity of the 

IcoA C4 domain, an L-serine and a fatty acid substrate with a longer alkyl chain were required. 

Due to the instability of L-serine-pantetheine noted in the previous study, direct loading of L-

serine by the IcoA A3 adenylation activity was attempted. Instead of separately including the 

isolated IcoA A3 domain into the assay, the IcoA C4-A3-PCP3 tri-domain was used. 

4.2.1 Production of recombinant IcoA C4-A3-PCP3 tri-domain 

Construct pET28-IcoA_C4-A3-PCP3 was generated for producing the N-His6 recombinant IcoA C4-

A3-PCP3 tri-domain. As the activity of the IcoA C4 domain within the tri-domain construct was 

also planned to be monitored via intact protein mass spectrometry, an appropriate negative 

control was also designed. As introduced in section1.3.2.2, C domains from modular NRPSs 

contain a conserved catalytic core motif HHxxxDG, and the catalytic role of the second histidine 

residue as a general base in several systems has been confirmed by mutagenesis studies.119,118,129 

This putative catalytic histidine was therefore located within the conserved HHxxxDG motif of the 

C4 domain and was mutated to an alanine on the pET28-IcoA_C4-A3-PCP3 construct, via site-

directed mutagenesis as detailed in 6.5.2. The N-His6 recombinant IcoA C4-A3-PCP3 and IcoA C4*-

A3-PCP3 (H143A) tri-domains were overproduced and purified as detailed in 6.5.3 and 6.5.4. The 
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mass and purity of the purified recombinant proteins were confirmed by SDS-PAGE and LC-MS 

analysis (Figure 4.3). Surprisingly, a certain percentage of the holo form of both constructs was 

detected, suggested the PPase from primary metabolism in E. coli BL21(DE3) could recognize and 

modify the IcoA PCP3 domain. Although this is unusual it was also observed following 

reconstitution of the valinomycin NRPS in E. coli.155  

 

Figure 4.3 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA C4-A3-PCP3 and N-His6-IcoA C4*-A3-

PCP3(H143A). (A) 6% SDS-PAGE gel showing the size and purity of N-His6-IcoA_C4-A3-PCP3 (left) and N-His6-IcoA 

C4*-A3-PCP3(H143A) (right). Deconvoluted mass spectra confirming the exact mass of N-His6-IcoA_C4-A3-PCP3 

(-N-Met) (B) and N-His6-IcoA_C4*-A3-PCP3(H143A) (-N-Met) (C). Peak labeled as ‘*’ corresponds to spontaneous 

gluconoylation of the His-tag on fusion proteins with additional 178 Da observed.147 The peak labeled as ‘●’ refers 

to the holo species with mass addition of 341 Da. For raw mass spectra see appendix. 

4.2.2 Characterization of the chain initiation activity of the IcoA C4-A3-PCP3 tri-

domain  

An in vitro assay outlined in Scheme 4.3 using 3R or 3S-hydroxyoctanoyl-pantetheine was planned 

to reconstitute the chain initiating activity of the IcoA C4-A3-PCP3 tri-domain. Both wild type and 

mutant apo-C4-A3-PCP3 tri-domain were converted to their holo form by treatment with the 

PPant transferase, Svp, and coenzyme A, and subsequently incubated with ATP and L-Ser for the 

adenylation reaction. Intact protein mass spectrometry showed the expected mass shift of 428 

Da from the apo form to the L-Ser loaded form (Figure 4.4). This demonstrated the proposed 

serine adenylation activity of the IcoA A3 domain, however a significant amount of the holo 

species was also detected in each instance. This could be the result of the hydroxy group in the 
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serine residue, without following condensed to fatty acid chain, attacking the thioester bond and 

thus causing the hydrolysis of serine residue from the IcoA PCP3 domain. 

 

Scheme 4.3 Design of in vitro assay for examination of the chain priming activity of IcoA C4-A3-PCP3. The tri- 

domain is converted to holo form by Svp catalyzed PPant unit loading, followed by incubation with L-Ser, MgCl2 

and ATP for the A domain catalyzed L-Ser loading reaction and subsequently incubated with 3R or 3S-

hydroxyoctanoyl-Pant for the C domain catalyzed condensation reaction. 

 

Figure 4.4 LC-MS analysis of the L-serine adenylation activity of A domain in IcoA C4-A3-PCP3 and IcoA C4*-A3-

PCP3 (H143A). Deconvoluted mass spectra of the apo (top) IcoA C4-A-PCP tri-domain (A) and the IcoA C4-A-

PCP(H143A) tri-domain (B) following incubation with Svp, CoA, MgCl2, ATP and L-Ser(bottom). Holo modification 

and Ser-PPant loading were observed as 341 Da and 428 Da mass shift from apo protein respectively 

To avoid hydrolysis of the serine residue from the IcoA PCP3 domain to allow for maximum 

turnover for the following condensation reaction, the activity of the IcoA C4-A3-PCP3 tri-domain 

was monitored using a one-pot adenylation and condensation reaction outlined in Scheme 4.4. 

In this assay the apo-IcoA C4-A3-PCP3 tri-domain was first converted to its holo form, and 
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subsequently incubated with L-Ser, ATP and either 3R- or 3S-hydroxyoctanoyl-pantetheine (see 

6.6.7). The control reaction was conducted under the same conditions using the IcoA C4*-A3-

PCP3 (H143A) tri-domain. 

 

Scheme 4.4. Optimized in vitro one-pot assay for reconstitution of the chain initiating activity of IcoA C4-A3-

PCP3. The tri-domain is first converted to holo form by Svp catalyzed PPant unit loading, followed by incubation 

with L-Ser and MgCl2 and ATP 3R or 3S-hydroxyoctanoyl-Pant for the one-pot L-Ser adenylation and subsequent 

condensation reaction. 

LC-MS analysis of the intact IcoA C4-A3-PCP3 tri-domain following incubation with 3R-

hydroxyoctanoyl-Pant resulted in a peak corresponding to condensation of L-Ser with 3-

hydroxyoctanoyl, with peaks for the holo- and L-Ser-loaded forms also observed (Figure 4.5 A). 

However, no equivalent peak was observed when 3S-hydroxyoctanoyl-Pant was used as a 

substrate or in the control reactions using the IcoA C4-A3-PCP3(H143A) tri-domain mutant using 

either 3R or 3S configured substrates (Figure 4.5 B). These results suggested the IcoA C4 domain 

is responsible for the embedded hydroxyacyl initiating activity and it does harbor the proposed 

stereospecificity for the 3R-configured hydroxyoctonyl group.  
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Figure 4.5 LC-MS analysis of in vitro reconstitution of chain initiating activity of IcoA C4-A3-PCP3. Deconvoluted 

mass spectra of (A) IcoA C4-A-PCP tri-domain and (B) IcoA C4-A-PCP(H143A) tri-domain following incubation with 

ATP, L-Ser and 3R-hydroxyoctanoyl-Pant (top) or 3S-hydroxyoctanoyl-Pant (bottom). L-Ser-PPant loading and 

subsequent condensation with 3-hydroxyoctanoyl unit were observed as an 87 Da and further 142Da mass shift 

from the holo proteins respectively.  

4.3 Characterization of IcoA Module 3 

The second condensation event in IcoA Module 3 is proposed to be the IcoA C3 domain catalyzed 

ester bond formation between the free hydroxyl group of the β-hydroxyl acyl unit and the 

intermediate tethered to the upstream IcoA PCP2 domain. An in vitro one-pot assay (Scheme 4.6.) 

using the full length IcoA Module 3 and a substrate mimic of the upstream assembled peptide 

chain, Ser-(D)-Leu-butyryl-SNAC was designed to reconstitute the activity of the whole module in 

vitro. 
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Scheme 4.5 Design of on-pot in vitro assay for reconstitution of the activity of IcoA Module 3. The IcoA Module 

3 is first converted to holo form by Svp catalyzed PPant unit loading, followed by the one-pot incubation with L-

Ser, MgCl2, ATP, 3R or 3S-hydroxyoctanoyl-Pant and Ser-(D)-Leu-butyryl-SNAC. 

The construct pET28-IcoA_module 3 was generated and the corresponding N-His6 fusion protein 

was overproduced and purified as detailed in 6.5.1, 6.5.3 and 6.5.4. SDS-PAGE analysis of the 

purified N-His6-IcoA Module 3 showed good purity (Figure 4.6 A) however intact protein mass 

spectrometry analysis identified 3 peaks in the deconvoluted chromatogram (Figure 4.6 B). The 

peak with m/z of 169,584 Da, corresponding to the expected N-His6-IcoA Module 3 (calculated 

m/z=169,584 Da), was the lowest intensity species, with the major species containing an increase 

in mass of 594 Da. A further peak was also observed with an additional 178 Da mass compared 

to the major species, which corresponds to the spontaneous gluconoylation of a His-tag fusion 

protein. This suggested the major species was also an overproduced N-His6 fusion protein and 

was therefore a derivative of N-His6-IcoA Module 3. 

 

Figure 4.6 SDS-PAGE and LC-MS analysis of purified N-His6-IcoA Module 3. (A) 6% SDS-PAGE gel showing the size 
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and purity of N-His6-IcoA Module 3. (B) Deconvoluted mass spectra confirming the existence and the exact mass 

of N-His6-IcoA Module 3 (-N-Met) as well as displayed another two peaks. The peak labeled as ‘?’ refers to 

dominated species with observed m/z=170.178 Da (with additional 594 Da than expected mass of IcoA Module 

3). The peak labeled ‘*’ corresponds to the spontaneous gluconoylation of His-tag on the ‘major species’ with 

additional 178 Da observed.147 Row MS spectrum see appendix. 

To further characterize the identity of the purified IcoA Module 3 derivative, one-pot 

phosphopantetheinylation and L-serine adenylation of all three species was attempted using 

conditions previously described (see 6.6.8). Intact protein mass spectrometry analysis of the 

reaction showed the expected mass shift could only be observed on the authentic apo-IcoA 

Module 3 species but not the major species (Figure 4.7). This strongly indicated that for the major 

species, the serine residue of the PCP3 domain which undergoes phosphopantetheinylation was 

occupied. Given that the IcoA C4-A3-PCP3 tri-domain purified largely in its holo form, the 

detection of this major species (+594 Da) was tentatively explained as follows; the PCP domain 

of IcoA module 3 was converted to its holo form by the PPtase from the E. coli primary 

metabolism and the IcoA A3 domain and IcoA C4 domain subsequently performed their functions 

utilizing the available intracellular substrate. Addition of the proposed natural substrates of 

module 3, a serine residue and 3-hydroxydectonoyl unit, would account for a mass shift of 598 

Da. It is unclear why this reaction did not occur during overproduction of the IcoA C4-A3-PCP3 

tri-domain. 

To probe this possibility, an analogue of the proposed substrate of the IcoA C3 domain, Ser-(D)-

Leu-butyryl-SNAC, was directly incubated with the purified module 3 to see if a mass shift 

corresponding to fully assembled product of module 3 could be observed (6.6.8). Unfortunately, 

a dramatically decreased intensity and resolution of peaks corresponding to module 3 and its 

derivatives was observed by intact mass spectrometry, likely due to the high concentration of the 

small molecule SNAC substrate greatly depressing the signal of the  1̴70 kDa IcoA Module 3.  
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Figure 4.7 LC-MS analysis following apo to holo modification and L-Serine loading of IcoA module 3 and 

proposed identity of the unknown derivative of IcoA module 3. Deconvoluted mass spectra of IcoA Module 3 

(bottom) following incubation with Svp, CoA, MgCl2, (middle) and additional L-Ser, ATP (Top). Apo to holo 

conversion and subsequent loading of L-Ser were observed as a 341 Da and 428 Da mass shift from apo IcoA 

Module 3 respectively. The peak labelled as ‘?’ denotes the ‘major species discussed above and was predicted to 

be IcoA Module 3 with an analogue of the 3-hydroxyldectonyl-serinyl-PPant unit attached on the PCP domain. 

4.4 Trials for in vitro reconstitution of icosalides derivatives 

biosynthesis 

Since the IcoA C4 domain showed some substrate promiscuity with respect to the chain length 

of the fatty acid substrate, biosynthesis of novel icosalides derivatives via incorporation of new 

fatty acid moieties was attempted.  

As icosalides are assembled from simple acyl chain and amino acid building blocks, and by a 

relatively small assembly line, in vitro reconstitution of the entire NRPS with unnatural substrate 

is an attractive approach for the production of novel icosalides derivatives (Figure 4.8). This 
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approach would also avoid any interference from the cellular natural fatty acid substrates. To first 

reconstitute the functional icosalide NRPS two strategies have been attempted.  

 

Figure 4.8 Schematic view of in vitro reconstituted biosynthesis of novel icosalides derivatives. The required 

components for in vitro biosynthesis of novel icosalides derivatives are shown. The naturally incorporated fatty 

acid moieties in Icosalide A1 and proposed substrate analogues are highlighted in orange. 

4.4.1 Strategy 1: two-piece reconstitution 

Successful in vitro reconstitution of small or partial assembly lines have been reported,155,156,157 

with a maximal protein molecular weight of   ̴350 kDa. The icosalide NRPS is a single protein 

with a molecular weight of  5̴50 kDa, so two constructs were planned to reconstitute the entire 

NRPS with the excision site between the IcoA C3 domain and the IcoA C4 domain (Figure 4.9 A). 

This cut site was chosen because both domains have previously been successfully isolated in 

soluble form (data for the IcoA C3 domain not shown). 

The DNA encoding for IcoA-Part I and IcoA-part II was separately cloned into pET28a (+) via 

Gibson assembly (Figure 4.9 A) and the corresponding recombinant N-His6 fusion proteins were 

overproduced and purified (detailed in 6.5.1, 6.5.3 and 6.5.4). The purified proteins were 

analysed by SDS-PAGE, showing bands of approximately the correct molecular weight, although 

a protein standard of sufficiently large molecular weight to confirm this was not available (Figure 

4.9 B). 
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Figure 4.9 In vitro reconstitution of IcoA by a two-part strategy. (A) Schematic diagram of the DNA cloning 

strategy used to create icoA expression constructs (B) 6% SDS-PAGE gel analysis of purified recombinant N-His6-

IcoA-Part I and N-His6-IcoA-Part II. 

The two purified proteins were incubated with L-serine, L-leucine, 3R-hydroxyoctanoyl-PPant, ATP, 

MgCl2, CoA and SvP (detailed in 6.6.9.). The reaction was then extracted and the extracts we 

analysed by LC-MS analysis. Unfortunately, the expected enzymatic product was not observed.  

4.4.2 Strategy 2: one-piece reconstitution 

The failure of the first strategy was very likely due to the linker region between the IcoA C3 and 

IcoA C4 domains being important for the function of the entire NRPS. Therefore, cloning and 

expression of the entire IcoA NRPS as a single protein was attempted. Due to the challenges 

associated with purification of a protein of   ̴550 kDa molecular weight, the novel icosalides 

derivatives production was then planned to be attempted by cell free assays following confirming 

the functionality of the IcoA NRPS. 

First, icoA ( 1̴5 kb) was captured from the genomic DNA by transformation associated 

recombination (TAR) cloning (detailed in 6.8). The icoA fragment was then cloned into pET28a(+) 

to generate pET28a(+)-icoA and the sequence was confirmed by restriction digestion (Figure 4.10) 
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Figure 4.10 Restriction digestion map of the pET28a(+)-icoA. Expected restriction map for pET28a(+)-icoA 

digested with BamHI (A) or ScaI (B). (C) DNA electrophoresis gel of the restriction digestion results confirming the 

pET28a(+)-icoA construct.  

To first confirm the overproduction and functionality of IcoA, pET28a(+)-icoA was expressed in E. 

coli BAP1, an engineered E. coli strain with NRPS and PKS specific PPtase encoded gene integrated 

into the genome158, for monitoring the icosalides production (detailed in 6.9). After 20 hours 

induction the cells were extracted and LC-MS analysis was used to search for icosalides 

production. Unfortunately, no icosalides were detected in the extracts.  

4.5 Conclusions and future work 

In this chapter, in vitro biochemical assays were employed to elucidate the biosynthetic reactions 

catalyzed by module 3 of the icosalide NRPS. The N-acylation activity of the IcoA C4 domain was 

first demonstrated by incubating the IcoA C4 domain with the PCP3 domain loaded with L-Ala 

and 3-hydroxybutyryl-pantetheine, which resulted in production of a 3-hydroxybutyryl-alaninyl-

IcoA PCP3 species. This represents the first example of an embeded chain initiating C domain. 

The adenylation and stereospecific chain initiating activity of the IcoA A3-C4-PCP3 tri-domain was 

reconstituted in vitro using natural substrate L-serine and closer substrate mimic 3-

hydroxyoctonyl-pantetheine. The observed 3R- stereoselectivity of IcoA C4 domain towards the 

3-hydroxyacyl moiety suggested the proposed origin of this moiety from fatty acid biosynthesis.  



PhD Thesis: Xinyun Jian  Chapter 4 

103 

The full length IcoA Module 3 was overproduced and purified to investigate the ability of the IcoA 

C3 domain to catalyse the second condensation reaction of this module. Intact protein mass 

spectrometry analysis of the recombinant module 3, showed IcoA Module 3 had a higher than 

expected molecular weight that was close to the additional mass, which would be expected if a 

serine and a 3-hydroxydectonyl moiety were assembled on the holo PCP domain by the activity 

of the C and A domain. The PCP domain must be loaded since IcoA Module 3 could not be 

converted to holo form or loaded with serine by A domain. Since minor holo modification was 

also observed in the purified IcoA C4-A3-PCP3 tri-domain, this indicated the promiscuity of the 

PPtase from E. coli primary metabolism towards the icosalide NRPS. 

In vitro reconstitution of the entire icosalide NRPS was also attempted in order to develop a 

system that could produce novel icosalides derivatives. A two-piece reconstitution strategy was 

firstly employed, in which IcoA was purified as two separate recombinant proteins which were 

then incubated with the required amino acid and fatty acid building blocks and cofactors. 

However, none of the expected final product was detected. The IcoA encoding gene was then 

captured by TAR cloning and the entire NRPS was overproduced in E. coli. This also did not result 

in success as no icosalide production was observed in the IcoA overproducing cells. 

In the future, the mechanism for the stereoselectivity of the IcoA C4 domain towards the 3R-

hydroxyacyl unit could be probed via a structural study. The substrate scope of the IcoA C4 

domain could also be investigated to allow for rational engineering of icosalides derivative. As 

the proposed promiscuity of PPtase from E. coli primary metabolism towards IcoA is quite 

intriguing, proteomics should be used to confirm the identity of the purified IcoA Module 3 

derivative. Optimization of IcoA overproduction conditions and confirmation of the 

corresponding gene expression should also be performed to complete the in vitro reconstitution 

of icosalides production experiments. Successful generation of such a system would lead to the 

ability to access novel icosalides derivatives through feeding precursor analogues.
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 Chapter 5 

Conclusions and future perspectives 

Antimicrobial activity-guided and genomics-driven natural product discovery in Burkholderia 

gladioli BCC0238 has resulted in the identification of a polyketide macrolide antibiotic, gladiolin, 

that exhibits potent activity against Mycobacterium tuberculosis, and a set of cyclic 

lipopeptodilide compounds, icosalides, originally believed to be fungal metabolites. The 

biosynthetic pathways for both of these metabolites have interesting features that have been 

explored using various in vivo and in vitro methodologies in this thesis. 

Gladiolin is structurally related to etnangien, isolated from the myxobacterium Sorangium 

cellulosum. However, etnangien suffers from significant instability due to the presence of a 

conjugated polyene in the side chain, originating from programmed iteration of EtnE Module 5. 

In comparison, though it has the same domain organization, GbnD2 Module 5 does not iterate, 

instead recruiting a trans-acting enoyl reductase to reduce the double bond generated from a 

single cycle of chain elongation. Despite their critical structural differences, the trans-AT 

polyketide synthases (PKSs) responsible for the biosynthesis of these compounds are remarkably 

similar, with 70 out of 71 enzymatic domains identical in the assembly line. This study aimed to 

identify the ER activity required by GbnD2 Module 5 and to probe the chain length control 

mechanism in gladiolin biosynthesis. 

The presence of an ER domain in module 1 of the gladiolin PKS (the GbnD1 ER1 domain) in place 

of an ACP domain at the corresponding position in the etnangien PKS, represents the sole 

difference between the architecture of gladiolin and etnangien PKSs. The GbnD1 ER1 domain was 

therefore assigned as the first candidate to provide the required enoyl reduction activity in 

GbnD2 Module 5, in an inter-modular manner. Using a combination of in vivo in-frame deletion, 
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point-mutations and in vitro biochemical assays, the GbnD1 ER1 domain was shown to only 

perform enoyl reduction in module 1 but not module 5. An alternative candidate was a trans-

acting ER, GbnE which is present in gladiolin biosynthetic cluster with its counterpart EntL 

presenting in the one of etnangien, was originally proposed to provide a trans-acting enoyl 

reduction in module 10 of each assembly line. By applying similar approaches, GbnE was shown 

to catalyse enoyl reduction specifically in both module 5 and module 10 of the gladiolin assembly 

line. Furthermore, biochemical evidence was provided for the inherent iterative nature of 

module 5 of the gladiolin PKS and the ability of GbnE to abolish the iteration of this module. The 

results also suggested the abolishment of the iteration is facilitated by the protein-protein 

interaction between GbnE and the ACP domain in this module. In addition, the ‘gate-keeping’ 

role of the downstream GbnD2 KS6 domain by preferentially accepting the GbnE processed α,β-

saturated intermediate was also biochemically characterized. The results suggest GbnE and the 

GbnD2 KS6 domain play an important role in conserving the biosynthetic fidelity of the gladiolin 

biosynthesis, however, the kinetics that facilitate this process require further investigations (as 

detailed in 3.3). 

In order to obtain a complete picture, initially the analogous set of biochemical assays should be 

conducted using the etnangien EtnE module 5 and the corresponding trans-acting ER EtnL. If our 

hypothesis is correct, the presence of EtnL should have no effect on the ability of EtnE module 5 

to iterate (Figure 5.1 A). An even more intriguing study would be to examine whether there is 

‘cross-talk’ between the trans-acting ERs (EtnL/GbnE) and the ACP domain in module 5 in 

etnangien and gladiolin pathways, for example as shown in Figure 5.1 B. This has the potential to 

shed light on the evolutionary origin of the intricate differences between these two PKS pathways. 

This work also forms the basis for further studies to uncover the molecular mechanism underlying 

the specific recruitment of trans-acting ERs in trans-AT PKS assembly lines, which could ultimately 

guide future bioengineering efforts. GbnE can be used as a model system to better understand 

the nature of the specific protein-protein interactions between trans-acting ERs and the 

corresponding ACP domains. This could be achieved using a suite of biochemical and biophysical 

techniques (Figure 5.1 C), including: 1) bio-layer interferometry analysis of the binding affinity 

between interacting ACPs and GbnE to provide further kinetic information of this specific 
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interaction. 2) sequence alignment and phylogenetic analysis of interacting ACP domains and 

trans-acting ERs, coupled with saturation mutagenesis to identify the conserved residue(s) that 

important for this specific interaction. 3) structural studies of GbnE and interacting ACP domains 

by crystallography, NMR or carbene footprinting to identify the structural features required for 

this specific interaction. 

 

Figure 5.1 Future perspectives of different chain length control mechanisms employed by the gladiolin and 

etnangien assembly lines. (A) In vitro reconstitution of the trans-acting ER activity of EntL and iterative activity 

of module 5 of the etnangien PKS, showing non-interaction between EntL and the EntE ACP5 domain allows the 

iteration. (B) In vivo ‘cross-talk’ engineering of etnangien biosynthetic pathway using the chain length control 

logic from gladiolin assembly line. (C) Bioinformatics and biophysics studies of the nature of the specific 

interaction between GbnE and GbnD2 ACP5 domain.  

The NRPS responsible for the biosynthesis of icosalides exhibits an unprecedented domain 

architecture revealing a starter C domain (IcoA C4 domain) situated directly adjacent to a LCL 

domain (IcoA C3 domain) suggesting an unusual double chain initiation mechanism for icosalides 

assembly. The ability of the isolated IcoA C4 domain to load a 3-hydroxyacyl unit by N-acylation 

activity to re-prime the peptide chain assembly was biochemically characterized. The 

stereoselectivity of the IcoA C4 domain towards the 3R-configured hydroxyl-acyl moiety was also 

demonstrated using the IcoA C4-A3-PCP3 tri-domain, confirming the proposed origin of this 
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moiety as being from primary fatty acid biosynthesis. This represents the first example of an 

experimentally examined internal starter C domain. Given the relatively modest size of the NRPS 

icoA gene (15 kb), cloning of this gene into a heterologous expression vector was also achieved, 

with the aim to reconstitute the entire icosalide NRPS in vitro which could be used to produce 

novel icosalides derivatives by feeding unnatural fatty acid substrates. IcoA overproduction in E. 

coli requires further optimization of the expression conditions to confirm the functionality of the 

reconstituted NRPS as well as for the production of novel derivatives. 

Recent studies have shown that it is possible to create ‘hybrid’ NRPSs via assembly of exchange 

units (XUs).159 The XU region of an NRPS is comprised of an A-PCP-C mobile unit, which can be 

swapped in and out of NRPS pathways. Using this approach in conjunction with a functional in 

vitro IcoA NRPS, in theory every position of the icosalides structure could be altered using this 

combinatorial biosynthesis approach (Figure 5.2). 

 

Figure 5.2 Schematic view of rational engineering of novel icosalides derivatives via a combinatorial 

biosynthesis strategy. Structurally diverse novel icosalides derivatives could be achieved by swapping the 

‘exchangeable unit’ (A-PCP-C tri-domain) to incorporate different amino acid building blocks (X-aa) and feeding 

novel fatty acid moieties to the starter C domains (number highlighted in red). 
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Chapter 6 

Materials and methods 

6.1 Materials 

6.1.1 Growth Media 

Luria-Bertani (LB) medium was purchased from Sigma Aldrich. In 1 L H2O, 25 g LB powder was 

added. For agar plate 15 g bacto agar (Sigma Aldrich) was added. 

Tryptic Soy Broth (TSB) was purchased from Sigma Aldrich. In 1 L H2O, 12 g TSB powder was 

added. For agar plate 15 g bacto agar (Sigma Aldrich) was added. 

Basal salts medium (BSM): In 1 L H2O, 4.25 g K2HPO4·3H2O, 1 g NaH2PO4·H2O, 2 g NH4Cl, 0.2 g 

MgSO4·7H2O, 0.012 g FeSO4·7H2O, 0.003 g MnSO4·H2O, 0.003 g ZnSO4·7H2O, 0.003g CoSO4·7H2O, 

0.10 g nitrilotriacetic acid, 0.2 g yeast extract and 4 g glycerol were added. pH was adjusted to 

7.2. For agar plate 15 g bacto agar (Sigma Aldrich) was added. 

M9 minimal medium: In 1 L H2O, 6 g Na2HPO4, 3 g KH2PO4, 0.5 g NaCl, 1 g NH4Cl and 10 g sucrose, 

1mL 1M MgSO4 and 100ul 1M CaCl2 were added and pH was adjusted to 7.4. For agar plate 15 g 

bacto agar (Sigma Aldrich) was added. 

6.1.2 Buffers 

10X Tris/Borate/EDTA (TBE) buffer: 890 mM Tris, 890 mM boric acid, 20 mM pH 8.0 EDTA. Stored 

at room temperature and diluted to 1X before use. 

Loading buffer：20 mM Tris-HCl, 300 mM NaCl, 20 mM Imidazole, pH 8.0. Sterile filtered and 
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stored at 4 °C. 

Imidazole elution buffer：20 mM Tris-HCl, 300 mM NaCl, with serial imidazole concentration (50 

mM, 100 mM, 200 mM, 300 mM, 500 mM) pH 8.0. Sterile filtered and stored at 4 °C 

Storage buffer: 20 mM Tris-HCl, 300 mM NaCl, pH 8.0. Sterile filtered and stored at 4 °C. 

5X SDS-PAGE sample buffer: 10% w/v SDS, 10 mM 2-mercaptoethanol, 20% w/v glycerol, 0.2 M 

Tris-HCl (pH 6.8), 0.05 % w/v bromophenol blue. Stored at -20 °C and diluted to 1X with protein 

sample when used. 

10X SDS-PAGE running buffer: 25 mM Tris, 192 mM glycine, 0.1% w/v SDS. Stored at room 

temperature and diluted to 1X before use. 

Chemically competent cell preparation buffer I (CCC I): 30 mM CH3CO2K, 80 mM CaCl2, pH 5.8. 

Autoclaved and stored at 4 °C. 

Chemically competent cell preparation buffer II (CCC II): 30 mM CH3CO2K, 80 mM CaCl2, 15% 

w/v glycerol, pH 5.8. Autoclaved and stored at 4 °C. 

Yeast plasmid isolation solution 1: 10% w/v sucrose, 50 mM pH 8.0 Tris-HCl, 10 mM EDTA 

Yeast plasmid isolation solution 2: 0.2 M NaOH, 1% w/v SDS 

Yeast plasmid isolation solution 3: 3 M CH3CO2K, pH 8.0 

6.1.3 Reagents and Kits 

Antibiotics: 

Table 6.1 List of antibiotics  

Antibiotic* Working Conc. Strain to be applied 

Ampicillin 100 μg/mL E. coli carrying recombinant pET151 

Kanamycin 50 μg/mL E. coli carrying recombinant pET28a(+) or pRK2013 

Trimethoprim 50 μg/mL E. coli carrying recombinant pGPI-SceI 

150 μg/mL Burkholderia carrying recombinant pGPI-SceI 
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Tetracycline 50 μg/mL E. coli carrying pDAI-SceI 

200 ug/mL Burkholderia carrying pDAI-SceI 

Polymyxins 600 U/mL For triparental mating selection 

* All antibiotics were purchased from Sigma Aldrich 

Restriction enzymes and T4 DNA ligase were purchased from New England Biolabs. 

MagJET Genomic DNA Kit was purchased from Thermo Fisher Scientific. 

GeneJET Gel Extraction Kit was purchased from Thermo Fisher Scientific.  

GeneJET Plasmid Miniprep Kit was purchased from Thermo Fisher Scientific. 

Champion™ pET151 Directional TOPO® Expression Kit was purchased from Thermo Fisher 

Scientific. 

Champion™ pET SUMO Protein Expression System Kit was purchased from Thermo Fisher 

Scientific.  

Gibson Assembly® Master Mix was purchased from New England Biolabs. 

GeneArt™ Seamless Cloning and Assembly Kit was purchased from Thermo Fisher Scientific. 

Q5® Site-Directed Mutagenesis Kit was purchased from New England Biolabs. 

6.1.4 Bacterial strains 

Table 6.2 List of bacterial strains 

Name Description Source or ref.  

Escherichia coli 

E. coli TOP10 mcrA, Δ(mrr-hsdRMS-mcrBC), Phi80lacZ(del)M15, 

ΔlacX74, deoR, recA1, araD139, Δ(ara-leu) 

7697, galU, galK, rpsL(SmR), endA1, nupG, host for 

general cloning 

Invitrogen 

https://international.neb.com/products/e0554-q5-site-directed-mutagenesis-kit
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E. coli BL21 (DE3) E. coli B dcm ompT hsdS(rB
-mB

-) gal, host for 

recombinant protein expression 

Invitrogen 

E. coli BAP1 E. coli BL21 (DE3) ΔprpRBCD (sfp), host for 

recombinant protein expression 

reference158 

E. coli SY327 araD, Δ(lac pro) argE(Am) recA56 rifR nalA  λpir , 

donor strain for conjugation between E. coli and 

Burkholderia 

reference160 

E. coli HB101/ 

pRK2013 

F- Lambda- araC14 leuB6(Am) DE(gpt-proA)62 

lacY1 glnX44(AS) galK2(Oc) recA13 rpsL20(strR) 

xylA5 mtl-1 thiE1 hsdS20(rB
-, mB

-), carries pRK2013, 

helper strain for conjugation between E. coli and 

Burkholderia 

reference161 

Burkholderia 

B. gladioli BCC1622 Wild type, gladiolin and icosalides producing strain Mahenthirali

ngam/Challis 

labs 

B. gladioli BCC0238 Wild type, gladiolin and icosalides producing strain Mahenthirali

ngam/Challis 

labs 

Saccharomyces 

S. cerevisiae VL6-48N MATα trp1-Δ1 ura3-Δ1 ade2-101 his3-Δ200 lys2 

met14 cir°, host for TAR cloning  

ATCC MYA-

3666 

 

6.1.5 Vectors 
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Table 6.3 List vectors 

Name Description Source or ref. 

pGPI-SceI oriR6K TpR mob+ carries I-SceI cut site, for gene deletion in 

Burkholderia 

reference144 

pDAI-SceI oripBBR1 TetR mob+ Pdhfr FLAG epitope, carries the I-SceI, reference144 

pMLBAD pBBR1 ori araC-PBAD TpR mob+, for gene expression in 

Burkholderia 

reference149 

pET28a(+)  pBR322 ori KanR T7lac f1 N-His6 C-His6, for recombinant 

protein expression in E. coli  

Novagen 

pET151-TOPO® pBR322 ori AmpR T7lac N-His6-V5, carries TOPO-cloning 

site, for N-His6-V5 recombinant protein expression in E. 

coli 

Thermo 

Fisher 

Scientific 

pET-SUMO pBR322 ori KanR T7lac N-His6-SUMO, carries TA-cloning 

site, for N-His6-SUMO recombinant protein expression in 

E. coli 

Thermo 

Fisher 

Scientific 

pCAP1000 pUC ori ARSH4/CEN6 Kan/NeoR TRP1 φC31int-attP oriT 

(RP4) pAHD-URA3, for gene cluster capturing 

Challis lab 

 

6.2 General DNA manipulation 

6.2.1 Genomic DNA isolation 

Preparation of genomic DNA for PCR was achieved using MagJET Genomic DNA Kit. 

Preparation of genomic DNA for TAR cloning was achieved on a large scale using the following 

method. Cells were harvested from a 5 mL Burkholderia overnight culture by centrifugation (4000 

xg, 10 mins) and the pellet was washed with 5 mL SET buffer. The cell pellet was then re-
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suspended in 500 μL SET buffer and 60 μL 10% w/v SDS and 14 µL proteinase K (20 mg/mL) was 

added. The cell resuspension was incubated at 55 °C for 1 h followed by addition of 200 μL NaCl 

(5 M) and thorough mixing of the solution. The mixture was then supplemented with 500 μL PCI 

(Phenol/chloroform/isoamylol=25:24:1) solution, mixed thoroughly and centrifuged at 12,000 

rpm for 10 min. The supernatant was transferred to a fresh Eppendorf tube and 500 μL 

chloroform was added, mixed thoroughly and centrifuged at 12,000 rpm for 10 min. The 

supernatant was transferred to a fresh Eppendorf tube and 0.6 CV isopropanol was added to 

allow the genomic DNA precipitation. The precipitate DNA was centrifuged at 12,000 rpm for 10 

min and washed with 70 % v/v ethanol. The pellet was dry in air and finally dissolved in 100 μL 

sterile water.     

6.2.2 Polymerase chain reaction (PCR) 

Q5® Hot Start High-Fidelity DNA polymerase was used for DNA fragment PCR and OneTaq® Hot 

Start DNA polymerase was used for colony PCR screening and TA cloning PCR. A typical reaction 

was set up is detailed in Table 6.4. 

Table 6.4 Components of typical PCR reactions 

Component Volume 

Q5® Hot Start High-Fidelity 2X Master Mix/ 

OneTaq® Hot Start Quick-Load 2X Master Mix 

12.5 μL 

10 μM Forward primer 1.25 μL 

10 μM Reverse primer 1.25 μL 

DNA template variable 

DMSO 1-2μL* 

Nuclease-Free Water To 25μL  

*4% or 8% DMSO was added depending on the GC content of target region of DNA template. 
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Thermocycling conditions was set up as in Table 6.5 using Master Cycler nexus GX2 (Eppendorf): 

Table 6.5 Thermocycling conditions for a routine PCR 

Step Temperature Time 

Initial denaturation 98/95 °C* 3 min 

 

30 cycles 

Denaturation 98/95 °C* 30 s 

annealing 58-70 °C 30 s 

Extension 72 °C 30 s/kb or 1 

min/kb** 

Final extension 72 °C 10 min 

Hold  4 °C - 

* 98 °C or 95 °C was applied at denaturation step when using Q5® Hot Start High-Fidelity DNA 

polymerase or OneTaq® Hot Start DNA polymerase respectively.  

** 30 s/Kb or 1 min/Kb speed was applied at extension step when using Q5® Hot Start High-

Fidelity DNA polymerase or OneTaq® Hot Start DNA polymerase respectively. 

6.2.3 Fragment DNA purification 

DNA products from PCR reaction or plasmid DNA digestion were separated on 0.7% agarose gel 

electrophoresis in TBE buffer and gel slices containing desired DNA fragments were excised and 

purified using GeneJET Gel Extraction Kit. Purified DNA fragments were dissolved in 30-100 μL 

sterile deionized water and the resulting concentration was measured on a NanoDrop™ Lite 

Spectrophotometer.  

6.2.4 DNA restriction digestion and ligation 

Typical DNA restriction enzyme digestions were set up as detailed in Table 6.6. 
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Table 6.6 Components of DNA restriction digestion reactions 

Component Volume/Amount 

DNA 1 μg 

10X CutSmart buffer 5 μL 

Restriction enzyme(s)* 1μL (10 units)  

Sterile water To 50 μL 

* 1μL for each enzyme was added when double digestion applied. 

The reaction was mixed gently and incubated at 37 °C for 1.5 - 3 h followed by incubation at 65 °C 

for 5 min to inactivate the enzymes. 

Purified digested DNA fragments and linearized vector plasmid DNA were ligated using T4 DNA 

ligase. A typical DNA ligation was set up as Table 6.7. 

Table 6.7 Components of typical DNA ligation reactions 

Component Volume/Amount 

Linearized vector DNA 50 ng 

Fragment DNA 3 x of linearized vector molar concentration 

10X T4 DNA ligae buffer 2 μL 

T4 DNA ligase 1μL 

Sterile water To 50 μL 

The reaction was mixed gently and incubated at room temperature for overnight and stored at -

20 °C before transformation or electroporation. 

6.2.5 TOPO® cloning 

TOPO cloning within this work was achieved using Champion™ pET151 Directional TOPO® 
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Expression Kits. A 4 nucleotide CACC- overhang was added to the 5’ of forward primer for primer 

design to allow directional cloning into pET151. Insert fragment DNA was amplified using Q5® 

Hot Start High-Fidelity DNA polymerase and purified by gel extraction before the cloning. A 

typical TOPO cloning reaction is detailed in Table 6.8. 

Table 6.8 Components of TOPO® cloning reactions 

Component Volume/Amount 

Purified fragment DNA 0.5-4 μL* 

Salt solution 1 μL 

TOPO® vector 1 μL 

Sterile water To 6 μL 

* Variable volume of fragment DNA was added to reach the fragment DNA: TOPO® vector molar 

ratio as 0.5:1 to 2:1. 

The reaction was mixed gently and incubate for 1 h at room temperature and then transformed 

into E. coli TOP10 chemical competent cells. 

6.2.6 TA® cloning 

TA cloning within this work was achieved using Champion™ pET SUMO Protein Expression System 

Kit. No special primer design was required for TA cloning. Insert fragment DNA was amplified 

using OneTaq® Hot Start DNA polymerase to give the both 5’ and 3’ A overhang and purified by 

gel extraction before the cloning. The typical TA cloning reaction was set as in Table 6.9. 

Table 6.9 Components of typical TA® cloning reactions 

Component Volume/Amount 

Purified fragment DNA 1-7 μL * 

10X Ligation buffer 1 μL 
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pET-SUMO vector 1 μL (25 ng) 

T4 DNA ligase 1μL 

Sterile water To 10 μL 

* Variable volume of fragment DNA was added to reach the fragment DNA: TOPO® vector molar 

ratio as 1:1. 

The reaction was mixed gently and incubate for 1 h at room temperature and then transformed 

into E. coli TOP10 chemical competent cells. 

6.2.7 Gibson assembly and GeneArt assembly 

Multiple DNA fragment assembly into a vector within this study were achieved using Gibson 

Assembly® Master Mix or GeneArt™ Seamless Cloning and Assembly Kit. For primers design, 20 

bp was set as length of overlapping region. Before assembly reaction, the insert fragment DNA 

was amplified using Q5® Hot Start High-Fidelity DNA polymerase and purified by gel extraction 

and vector was linearized by restriction digestion and purified by PCR purification. The typical 

assembly cloning reaction was set as in Table 6.10 and Table 6.11. 

Table 6.10 Components of typical Gibson assembly reactions 

Component Volume/Amount 

Linearized vector (10 μL in 

total) 

100 ng 

Purified Fragments Variable* 

2X Gibson Assembly Master Mix  10 μL 

Sterile water To 20 μL 

*Variable amount of each fragment was added to reach each fragment: vector molar ratio as 3:1, 

and total amount of fragments and vector are need to be between 0.03-0.2 pmol to give the best 

cloning efficiency.  

The reaction was mixed gently and incubate for 2 h at 50 °C and stored at -20 °C before 
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transformed into E. coli TOP10 chemical competent cells. 

Table 6.11 Components of typical GeneArt assembly reactions 

Component Volume/Amount 

Linearized vector 100 ng 

Purified Fragments Variable* 

5X Reaction buffer 4  

Sterile water to 18 μL 

10X enzyme mix  2 μL** 

*Variable amount of each fragment was added to reach each fragment: vector molar ratio as 2:1. 

**10X enzyme mix must be added at last step and needed be returned back to -80 °C immediately.  

The reaction was mix gently and incubate for 30 min at temperature and placed on ice less than 

5 min and immediately proceed to the transformation step. 

6.2.8 DNA purification for electroporation  

All the above cloning reactions (described in 6.2.4 - 6.2.7) were purified by ethanol precipitation 

before electroporation. The ethanol precipitation was as follows; 1/10 reaction volume of 3 M 

pH 5.2 sodium acetate was added to the reaction mixture followed by addition of 2.5X reaction 

volume of ethanol and mixed thorough. The mixture was frozen at -20 °C for 20 min, and was 

centrifuged at 13,000 rpm, 4 °C for 30 min. The supernatant was decanted carefully and the pellet 

was washed with 70% ethanol and dried. 15 μL of water was added to dissolved the purified DNA.     

6.2.9 Transformation and electroporation 

Preparation of competent cells 

For chemical transformation of E. coli TOP10 or BL21(DE2), chemically competent cells were first 



PhD Thesis: Xinyun Jian  Chapter 6 

119 

made. A single colony of E. coli TOP10 or BL21(DE2) was inoculated in 5 mL LB and grown at 37 °C, 

180 rpm overnight. Subculture the overnight culture 0.5 mL/50 mL LB in 250 mL flask at 37 °C, 

180 rpm shaker for around 3.5 h to reach the OD600 value of 0.4-0.6. The culture was then cooled 

on ice for 30 min to stop cells growing and cells were harvested by centrifuging for 10 min at 3000 

rpm and 4°C. The supernatant was removed and the cell pellet was resuspended in 30 mL CCC I 

buffer and kept on ice for 1 h. Cells were then harvested by centrifuging for 10 min at 3000 rpm 

and 4°C and supernatant was removed. The cell pellet was washed with 30 mL CCC I buffer again 

and resuspended in 1.5 mL CCC II buffer and aliquoted into 80 μL. Aliquots were flash froze and 

stored at -80 °C. 

Similar cell growing and harvest process were applied when preparing the electrocompetent cells 

except the cell pellet was washed and resuspended in 15% glycerol, and aliquoted into 80 μL. 

Chemical transformation 

Frozen chemical competent cells were thawed on ice, and 50-100 ng of plasmid DNA or 8 μL of 

cloning reaction mixture was added and gently mixed. Mixture was left on ice for 30 min and heat 

shocked at 42 °C for 60 s and cooled on ice for 2 min. 500 μL was added and the cell resuspension 

was incubated at 37 °C for 1 h. 100 μL culture was spread on appropriate selective LB agar plate 

and incubated at 37 °C for overnight. 

Electroporation 

Frozen electrocompetent cells were thawed on ice, and 50-100 ng of plasmid DNA or 10 μL of 

purified cloning reaction (described in 6.2.8) was added and gently mixed. The mixture was left 

on ice for 5 min before transferred to a pre-cooled 1 mm gap electroporation cuvette (Bio-Rad). 

The electroporation was performed with the Gene Pulser II (Bio-Rad) set at 2.5 kV, 25 μF and 200 

Ω. Immediately after electroporation 500 μL LB was added to the cuvette and cell resuspension 

was incubated at 37 °C for 1 h. 100 μL culture was spread on appropriate selective LB agar plate 

and incubated at 37 °C for overnight. 

6.2.10 Plasmid DNA mini-prep 
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5 mL E. coli overnight culture was used for a typical plasmid DNA mini-prep using GeneJET 

Plasmid Miniprep Kit. Purified plasmid DNA was dissolved in 50 μL sterile deionized water and 

concentration was measured by NanoDrop™ Lite Spectrophotometer. 

6.3 Genetic manipulation of Burkholderia 

6.3.1 Targeted in-frame gene deletion in Burkholderia  

The in-frame deletion of genes from Burkholderia gladioli BCC1622 was conducted using the 

following methodology.144 First, the deletion construct was generated. Here, ~1 kb homologous 

region that sit upstream and downstream of the gene of interest were amplified, purified and 

cloned into pGPI-SceI vector (using the DNA restriction digest and ligation or Gibson Assembly 

method (see 6.2.4 and 6.2.7)) and transferred into E. coli SY327 by electroporation. The resulting 

plasmid was isolated from candidate E. coli SY327 colonies and confirmed by restriction digestion 

and sequencing. The plasmid was mobilized into Burkholderia gladioli BCC1622 via tri-parental 

mating (described in 6.3.3). Single trimethoprim resistance colonies were selected as candidates 

of the single cross-over mutant followed by colony PCR screening. pDAI-SceI was introduced into 

the single crossover mutant strain by tri-parental conjugation and exconjugants were selected for 

with tetracycline resistance (to select for pDAI-SceI) and trimethoprim sensitive (indicating the 

loss of the integrated plasmid). Candidates with TcRTpS phenotype were either wild-type or 

double crossover mutants which can be discriminated by PCR screening. The in-frame deletion 

was confirmed by sequencing. The mutant was grown on minimal medium M9 to remove pDAI-

SceI and confirmed by the loss of tetracycline resistance. Related primers and expected PCR 

products size for the deletion mutants: B. gladioli BCC1622_ΔgbnD1_ER1, B. gladioli 

BCC1622_ΔgbnE, B. gladioli BCC1622_ΔgdsB_ER, B. gladioli BCC1622_ΔgbnEΔgdsB_ER are listed 

in Table 6.12. 

6.3.2 Site-directed mutagenesis in Burkholderia 

Site-directed mutagenesis of gbnD1_ER1 on Burkholderia genomic DNA was achieved via the in-
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frame knocking in of the mutated gbnD1_ER1 encoded segment into BCC1622_ΔgbnD1_ER1. The 

gbnD1_ER1 fragment, flanked by the same homologous arms used for gbnD1_ER1 in-frame 

deletion, was first subcloned onto pCR-Blunt vector to generate pCR-Blunt-gbnD1_ER1. 

Mutagenesis of G388S/G399P was then conducted using the Q5 site directed mutagenesis kit 

following the protocol in section 6.5.2. to generate pCR-Blunt-gbnD1_ER1*. The mutated 

gbnD1_ER1 segment with flanking arms were then cloned into pGPI-SceI vector using restriction 

site of XbaI and EcoRI to generate pGPI-gbnD1_ER1*and transferred into E. coli SY327 by 

electroporation. In-frame knocking-in gbnD1_ER1* followed the same procedure as in-frame 

deletion in section 6.3.1.1, via mobilizing pGPI-gbnD1_ER1* into BCC1622_ΔgbnD1_ER1 and 

selection for double crossover mutants. Related primers for pCR-Blunt-gbnD1_ER1* construction, 

double crossover mutant PCR screening and expecting PCR products size are listed in Table 6.12. 

6.3.3 Gene complementation in Burkholderia  

For gbnE complementation in Burkholderia, the arabinose-inducible PBAD promoter carrying 

expression vector pMLBAD149 was used to construct pMLBAD-gbnE. GbnE was amplified with the 

primers listed in Table 6.12 below, purified and cloned into pMLBAD via Gibson assembly 

(described in 6.2.7). The confirmed pMLBAD-gbnE was electroporated into E. coli SY327 

(described in 6.2.9) and mobilized into B. gladioli BCC1622_ΔgbnE via tri-parental mating 

(described in 6.3.3). Exconjugants with TpR phenotype were picked as B. gladioli 

BCC1622_ΔgbnE::gbnE candidates and were confirmed by PCR with primers listed in Table 6.12. 

Table 6.12 Overview of constructs used in gene in-frame deletion, site-directed mutagenesis and 

complementation in Burkholderia 

Construct 

(use) 

Primer (restriction site)  Product 

size* 

pGPI-gbnD1_ER1 

(gbnD1_ER1 

5’-For: CTGTCTAGATTGTCGTCCTCGTCGC (XbaI) 

5’-Rev: CAGAAGCTTGAGCGCGTGCACGGTA (HindIII) 

1008 bp 



PhD Thesis: Xinyun Jian  Chapter 6 

122 

in-frame deletion) 3’-For: GCAAAGCTTGTGGTGATCCGCCATCG (HindIII) 

3’-Rev: GCCGAATTCCACGCCATGCACGGGA (EcoRI) 

975 bp 

Screening-For: CGCGGCTCTACGATCATGTGACGAT 

Screening--Rev: GCCCGACATGCCCACCACGGCGAT 

MT: 449 bp  

WT:1361 bp  

pGPI-gbnE 

(gbnE 

in-frame deletion) 

5’-For: ATATCTAGAAGCAAGCGGTCCGACAGG (XbaI) 

5’-Rev: ATAAAGCTTATCGGCGTTGCCAAGCGA (HindIII) 

928 bp 

3’-For: TATAAGCTTTCGATGGCCGATTCGGGC (HindIII) 

3’-Rev: ATAGAATTCTGGCGGGTCGAGCCCATC (EcoRI) 

941 bp 

Screening-For: CTGTTGCAAGCGCACGATTAGC 

Screening-Rev: GACCAGGGGCAGTCGCAGCGA 

MT: 457 bp  

WT: 1756 bp  

pGPI-gdsB_ER 

(gdsB_ER 

in-frame deletion) 

5’-For: gatcccaagcttcttctagAGCACTGTTCGAGAAGTAC 

5’-Rev: gttgggtgaaGTAGGCGTACTTGAGCTT 

1020 bp 

3’-For: gtacgcctacTTCACCCAACTGCTCCG 

3’-Rev: aacggctgacatgggaattcGAAGATCGACGAGAG 

1023 bp 

Screening-For: CAGGGCGTCGAGACATTCC 

Screening-Rev: CCTTGTCGCGCACGGATT 

MT: 606 bp  

WT: 1851 bp  

pCR-blunt-

gbnD1_ER1* 

(gbnD1_ER1 

mutagenesis) 

For: CTGTCTAGATTGTCGTCCTCGTCGC (XbaI) 

Rev: GCCGAATTCCACGCCATGCACGGGA (EcoRI) 

2865 bp 

G388S/G399P-For: 

GACCGCCACCagtcctTGCGGTCTCGCCG 

G388S/G399P-Rev: GCCCGACATGCCCACCACGGCGAT 

6389 bp 

pGPI-gbnD1_ER1* Screening-For: CTGTTGCAAGCGCACGATTAGC WT: 449 bp   
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(gbnD1_ER1 

mutagenesis) 

Screening-Rev: GACCAGGGGCAGTCGCAGCGA MT: 1361 bp   

pMLBAD-gbnE 

(gbnE 

complementation) 

For: tgggctagcaggaggaattcATGGCAATGATTACCGCA 

Rev: tgggctagcaggaggaattcATGGCAATGATTACCGCA 

Screening primers are the same as For and Rev primers 

1398 bp 

*MT denotes mutant, WT denotes wild type. Italic letters denote the overlapping regions used 

for Gibson assembly. Underlying letters denote the restriction sites. Italic and underlying letters 

denote region for site-directed mutagenesis. 

6.3.4 General tri-parental mating procedures 

Transferring plasmids into Burkholderia strain from E. coli was achieved via the tri-parental 

mating process. Donor strains were E. coli SY327 carrying recombinant pGPI-SceI or pMLBAD or 

pDAI-SceI and helper strain was E. coli HB101 carrying pRK2013. In each tri-parental mating 

experiment, both donor strain and helper strain were inoculated into 5 mL LB medium containing 

appropriate antibiotics respectively and incubated overnight in a 37 °C shaking incubator. The 

host Burkholderia strain was grown in 5 mL TSB medium overnight in a 30 °C shaking incubator. 

Cells from the above cultures were harvested and resuspended in 5 mL LB medium containing 10 

mM MgCl2 and this procedure was repeated. 100 μL of each culture was mixed, resulting in a 300 

μL mixture, and 100 μL of the mixture was plated onto sterile nitrocellulose disks which were 

placed onto LB agar containing 10 mM MgCl2. The plate was allowed to dry and incubated 

overnight at 30 °C in duplicate. The cells were then removed from the disc and resuspended in 

0.9% NaCl. A serial dilution from 0 to -5x was carried out and 100 μL from each dilution were 

plated onto selective agar plate, TSA (Tp 150 μg/mL, PMX 600 U/mL) was applied when donor 

strain was E. coli SY327 carrying recombinant pGPI-SceI or pMLBAD, TSA (Tc200 μg/mL, PMX 600 

U/mL) was applied when donor strain was E. coli SY327 carrying pDAI-SceI. This selects against E. 

coli and wild type Burkholderia cells. The plates were incubated for 48-72 h at 30 °C to allow the 

exconjugants to grow. 100 μL of helper strain, donor strain and Burkholderia culture were plated 
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onto corresponding selective plate respectively as negative controls and these should remain 

clear with no growth. 

6.4 Burkholderia metabolite extraction and LC-MS analysis 

6.4.1 Metabolite production and extraction 

Production of gladiolin, icosalides and their respective derivatives was achieved by growth of B. 

gladioli BCC1622 wild type or related gene deletion and mutagenesis mutants at 30 °C on solid 

minimal medium containing glycerol as a sole carbon source (BSM). For restoring gladiolin 

production in the gene complementation mutant, L-arabinose with final concentration of 0.2% 

or 2% was used as inducer and added to the BSM medium. Following incubation for 3 days the 

growth was removed by scraping with a spatula from the agar plate, any remaining bacteria were 

killed with chloroform vapor, and the agar was cut into ~0.5 cm cubes. Approximately 4 mL of 

acetonitrile was added per 1 plate of agar and the resulting mixture was left for 1 h. The extract 

was filtered and 100 μL of the resulting supernatant was then subjected for LC-MS analysis. 

6.4.2 Metabolite LC-MS analysis 

LC-MS analysis of Burkholderia metabolite was performed using a Dionex UltiMate 3000 UHPLC 

connected to a Zorbax Eclipse Plus column (C18, 100 × 2.1 mm, 1.8 μm) coupled to a Bruker MaXis 

IMPACT ESI-QTOF mass spectrometer. The UHPLC elution profile is detailed in Table 6.13. The 

mass spectrometer was operated in positive ion mode with a scan range of 50-3000 m/z. Source 

conditions were: end plate offset at −500 V; capillary at −4500 V; nebulizer gas (N2) at 1.6 bar; dry 

gas (N2) at 8 L min−1; dry temperature at 180 °C. Ion transfer conditions were: ion funnel RF at 

200 Vpp; multiple RF at 200 Vpp; quadrupole low mass at 55 m/z; collision energy at 5.0 eV; 

collision RF at 600 Vpp; ion cooler RF at 50–350 Vpp; transfer time at 121 s; pre-pulse storage 

time at 1 s. Calibration was performed with 1 mM sodium formate through a loop injection of 20 

µL at the start of each run. 
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Table 6.13 UHPLC elution profile metabolite LC-MS analysis 

Time (min) Water / 0.1% FA (%) MeCN / 0.1% FA (%) Flow Rate (mL/min) 

0.0 80 20 0.2 

5.0 80 20 0.2 

35.0 0 100 0.2 

40.0 0 100 0.2 

45.0 80 20 0.2 

6.5 Recombinant protein overproduction and purification 

6.5.1 Cloning of recombinant protein expression constructs: 

The constructs used for recombinant protein expression in E. coli are cloned via different methods, 

and are listed in Table 6.14. All insert DNA fragments were amplified from B. gladioli BCC0238 

gDNA and purified as described in 6.2.2 and 6.2.3. The detailed cloning procedures are described 

in 6.2.4 -6.2.7. 

Table 6.14 Overview of primers and cloning methods for constructs used for recombinant protein 

expression  

Construct  

(Inset size) 

Primer* Cloning 

method 

pET151-gbnD1_ER1-ACP1 

(1639 bp) 

For: CACCCCGGAACCGGCTGAGGCG  

Rev: TCACGGCGCATGCGTCTCGCT 

TOPO 

cloning® 

pET151-gbnD1_ER1 

(1183 bp) 

For: CACCGCTGCGCCTTCGCCTTCC 

Rev: TCACGGCGCATGCGTCTCGCT 

TOPO 

cloning® 



PhD Thesis: Xinyun Jian  Chapter 6 

126 

pET151-gbnD2_ACP5 

(376 bp) 

For: CACCCCGAATCCAGCGTCGCTTTCG 

Rev: TCAGACCTCCGCCTTGGCCGTCTC 

TOPO 

cloning® 

pET28a(+)-gbnD1_ACP3 

(419 bp) 

For: ATATCATATGACCGCCACGGTTCCGACC 

Rev: ATATGAATTCTCAGATCGCGGGCCCGGAGG 

Digestion & 

ligation 

pET28a(+)-gbnD2_ACP4 

(566 bp) 

For: ATATCATATGCCGGCAACGCAACGCGCC 

Rev: ATATGAATTCTCACGCGCTCGCTGTCGCAGG 

Digestion & 

ligation 

pET28a(+)-gbnD4_ACP10 

(467 bp) 

For: ATATCATATGGCCCAGGCGAAGCCGGTT 

Rev: ATATAAGCTTTCAGCCCTCGGGCAGGCCAA 

Digestion & 

ligation 

pET151-gbnE 

(1402 bp) 

For: CACCATGGCAATGATTACCGCATCA 

Rev: CTATTGCCTCTGGAGTTGAAGTGA 

TOPO 

cloning® 

pET-SUMO-gbnE 

(1398 bp) 

For: ATGGCAATGATTACCGCA 

Rev: CTATTGCCTCTGGAGTTGAAGTGA 

TA cloning 

pET28a(+)-gbnD2_Module 5 

(4643 bp) 

For: ATATGCTAGCGCGGGCGCGAGGACGATG 

Rev: ATATAAGCTTTCAGACCTCCGCCTTGGCCGT 

Digestion & 

ligation 

pET28a(+)-gbnD2_KS6-ACP6a 

(2652 bp) 

For: ATTCATATGACGGCCAAGGCGGAGGTC 

Rev: ATAAAGCTTTCAGACATCCTGGTC 

Digestion & 

ligation 

pET28a(+)-gbnD2_Module 6 

(3141 bp) 

For: ATAGCTAGCGACGGCGAGACGGCCAAG 

Rev: ATAAAGCTTTCACGGGGCGTTTCCGGTCTT 

Digestion & 

ligation 

pET151-icoA_C4 

(1461 bp) 

For: CACCGATGTCTCGCGTCTGGTCGA 

Rev: TCAGGTAGCCTCGGGCGTGCGCTT 

TOPO 

cloning® 

pET151-icoA_PCP3 

(260 bp) 

For: CACCAGATACGAAGCACCGCAAGGC 

Rev: TCAGGCGCGACGCTTCGGCTT 

TOPO 

cloning® 
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pET28a(+)-icoA_C4-A3-PCP3 

(3222 bp) 

For: ATACATATGGATGTCTCGCGTCTGGT 

Rev: ATAAAGCTTTCACGCGACGCTTCGGCT 

Digestion & 

ligation 

pET28a(+)-icoA_Module3 

(4593 bp) 

For: GCCCATATGCGCGCTCATGATCTCGTT 

Rev: ATAAAGCTTTCACGCGACGCTTCGGCT 

Digestion & 

ligation 

pET28a(+)-

IcoA-partI 

IcoA-partI-a 

(3831 bp) 

For: gccgcgcggcagccaATGTGGTTTTCGCAGCAACG 

Rev: tggaagcgTGGGCGTATCGACGTCGC 

Gibson 

assembly 

IcoA-partI-b 

(3971 bp) 

For: tacgcccaCGCTTCCATTCGGCCTCG 

Rev: ccagtcatgctagccaCAGACGCGAGACATCCGG 

pET28a(+)-

IcoA-partII 

IcoA-partII-a 

(3571 bp) 

For: gccgcgcggcagccaGATGTCTCGCGTCTGGTC 

Rev: cttcctcctcgCATAGACGCAACCATTCG 

Gibson 

assembly 

IcoA-partII-b 

(3713 bp) 

For: cgtctatgCGAGGAGGAAGCCACGCA 

Rev: ccagtcatgctagccaTCATGCGTTCTCGGTAGCC 

*upper italic denotes un-annealing region, lower italic denotes overlapping regions used in 

Gibson assembly, underlined denotes restriction sites. 

6.5.2 Site-directed mutagenesis 

Mutant constructs listed in Table 6.16 were generated using Q5 Site-directed Mutagenesis Kit. 

Firstly, the linear mutant plasmids were amplified using corresponding primers, noting the 

amount of DNA template was limited to 1-25 ng/μL. The PCR products were analyzed by taking 5 

μL of crude PCR product to DNA electrophoresis for confirming product yield and purity. 

Following Kinase, Ligase and DpnI (KLD) treatment was set up as in Table 6.15. 
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Table 6.15 Components of Q5® Site-Directed Mutagenesis reactions 

Component volume 

PCR product 1 μL 

2X KLD reaction buffer 5 μL 

10X KLD Enzymes Mix 1 μL 

Nuclease free water 3μL 

The reaction was left at room temperature for 5 min and immediately transformed to E. coli 

TOP10 chemically competent cells.  

Table 6.16 Overview of the primers and mutations for mutant constructs 

Mutant Construct  Primers* Mutation 

pET-SUMO-gbnE 

(H198V)  

For: TTCGGGCGGTgtTACCGATCGC 

Rev: TCGGCCTCCACGCAGATGTC 

CAT→GTT 

(His→Val) 

pET28a(+)-gbnD2_Module 6 

(S941A) 

For: ACTGGGCATCGATgCGGTGGTCG 

Rev: TCGGCGAACGGCGTGTCG 

TCG→GCG 

(Ser→Ala) 

pET28a(+)-icoA_C4-A3-PCP3 

(H143A) 

For: GCGTTCGCCTgctGTGCAGAACGAC 

Rev: AACGCCACCAGCACGCTA 

CAT→GCT 

(His→Ala) 

* The lower case and italic letters indicate un-annealing nucleotide(s).  

6.5.3 Recombinant protein overproduction 

For general recombinant protein overproduction procedures, single transformants of E. coli 

BL21(DE3) carrying the recombinant plasmid were inoculated in 10 mL LB with the appropriate 

antibiotic and grown at 37 °C in a 180 rpm shaker for overnight as seed culture. A 1L scale LB flask 

with appropriate antibiotic was sub-cultured from overnight seed cultures at 37 °C in a 180 rpm 

shaker for ~3.5 h to reach an approximate OD600 value of 0.6-0.8, and then induced with 0.5 mM 
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IPTG, and was left shaking at 15°C for 16 - 20 h. For large scale protein production, followed by 

FPLC purification and size exclusion purification, the expression volume was scaled up to 3 - 5 L. 

For large size proteins (≥100 kDa, e.g. N-His6-IcoA_C4-A3-PCP3 and N-His6-IcoA Module 3) or 

proteins with solubility issues (e.g N-His6-SUMO-GbnE), or proteins with both features (e.g. N-

His6-GbnD2 Module 5), the culture was induced with 0.1-0.25 mM IPTG to slow the 

overproduction process. Following expression, the cells were harvested by centrifuging 5000 rpm, 

4 °C for 15 min and resuspended in 10 mL of loading buffer per litre of culture. 

6.5.4 Recombinant protein purification 

The harvested cell was lysed using a Constant Systems Cell disruptor. The lysate was clarified by 

centrifugation at 17,000 rpm, 4 °C for 30 min and the supernatant was filtered with 0.22 μM 

syringe filter. The resulting supernatant was subjected to different purification procedures (as 

listed in Table 6.17) depending on the soluble recombinant protein yield and purity. The following 

purification procedures are described in 6.5.4.1-6.5.4.3.   

Table 6.17 Overview of tag type, size and purification method for recombinant protein 

Recombinant protein Fusion tag Size (kDa) Purification method* 

GbnD1 ER1-ACP1 N-His6-V5  61.3 Bench-top IMAC 

GbnD1 ER1 N-His6-V5  44.9 Bench-top IMAC 

GbnD2 ACP5 N-His6-V5 16.8 Bench-top IMAC 

GbnD1 ACP3 N-His6 16.6 Bench-top IMAC 

GbnD2 ACP4 N-His6 21.2 Bench-top IMAC 

GbnD4 ACP10 N-His6 17.5 Bench-top IMAC 

GbnE N-His6-V5  54.8 FPLC IMAC followed by size exclusion 

N-His6-SUMO 64.4 FPLC IMAC followed by size exclusion 

GbnE(H198V) N-His6-SUMO 64.3 FPLC IMAC followed by size exclusion 
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GbnD2 Module 5 N-His6 161.7 FPLC IMAC followed by size exclusion 

GbnD2 KS6-ACP6a N-His6 95 Bench-top IMAC 

GbnD2 Module 6 (S941A) N-His6 111.6 FPLC IMAC followed by size exclusion 

IcoA C4 N-His6-V5 57.4 Bench-top IMAC 

IcoA PCP3 N-His6-V5  12.7 Bench-top IMAC 

IcoA C4-A3-PCP3 N-His6 119.4 Bench-top IMAC 

IcoA C4-A3-PCP3 (H143A) N-His6 119.3 Bench-top IMAC 

IcoA Module3 N-His6 169.7 Bench-top IMAC 

IcoA_PartI N-His6 288.2 Bench-top IMAC 

IcoA_PartII N-His6 266.0 Bench-top IMAC 

* IMAC referred to immobilized metal-ion affinity chromatography  

6.5.4.1 Bench-top immobilized metal-ion affinity chromatography  

The filtered supernatant was loaded on a 1 mL HiTrap® HP Chelating Column (GE Healthcare), 

pre-charged with 100 mM NiSO4 and equilibrated with loading buffer. The loaded column was 

washed with 15 mL loading buffer to remove any non-specifically binding protein impurities, 

followed by serial elution with 5 mL 50 mM, 3mL 100 mM, 3 mL 200 mM, 3 mL 300 mM imidazole 

elution buffer. Fractions were analyzed by SDS-PAGE (described in 7.5.5) and target protein 

containing fractions were collected and concentrated by Viva-spin concentrator (GE Healthcare) 

with an appropriate MWCO according to the recombinant protein size (listed in Table 6.17). The 

concentrated fractions were washed with 10 CV storage buffer and aliquoted and stored at -80 °C. 

6.5.4.2 Fast protein liquid chromatography (FPLC) 

FPLC purification was performed with ÄKTA pure (GE Healthcare) connected with 5mL HiTrap® 

HP pre-charged column and Fraction Collector (GE Healthcare) F9-C. After loading with filtered 
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lysate, the column was washed with loading buffer until the UV280 absorption trace was flat 

followed by elution over a gradient of 0 - 100% 500 mM imidazole elution buffer in 100 mL. 2mL 

fractions were collected and analyzed by SDS-PAGE. Target protein-containing fractions were 

collected and concentrated to 2 mL by Viva-spin concentrator (GE Healthcare) with an 

appropriate MWCO according to the recombinant protein size (listed in Table 6.17) and subjected 

to the following size exclusion purification. 

6.5.4.3 Size exclusion chromatography 

Size exclusion purification was performed on ÄKTA pure (GE Healthcare) connected with 

HiLoad 16/600 Superdex 200 pg column (GE Healthcare) and Fraction Collector (GE Healthcare) 

F9-C. 2 mL nickel affinity chromatography purified protein was loaded on pre-equilibrated column 

with storage buffer. The column was then eluted over 1.2 CV with storage buffer and 2 mL 

fractions were collected and analyzed by SDS-PAGE. Pure target protein containing fractions were 

collected and concentrated by Viva-spin concentrator (GE Healthcare) with an appropriate 

MWCO according to the recombinant protein size (listed in Table 6.17) and aliquoted and stored 

at -80 °C.  

6.5.5 SDS-PAGE analysis of protein 

SDS-PAGE was used to analyse the size of recombinant protein overproduction, yield and purity 

of purification fractions. Protein samples were mixed with 5X SDS-PAGE loading buffer and loaded 

onto different percentage Tris-glycine SDS-polyacrylamide gels (recipe in Table 6.18) depending 

on the size of protein, 15% for ≤20 kDa, 10% for 20-80 kDa, 6% for ≥ 80 kDa. The gel was run in 

SDS-PAGE running buffer using Bio-Rad mini gel electrophoresis system. PageRuler Prestained 

Protein Ladder (Thermo Sientific) was used as reference to estimate the size of protein. Gel was 

stained in InstantBlue™ Protein Stain (Expedeon). 
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Table 6.18 Recipe of Tris-glycine SDS-polyacrylamide gels 

 

Component 

Volume of component (mL) 

5 mL Resolving gel  2 mL 

Stacking gel 6% gel 10% gel 15% gel 

H2O 2.6 1.9 1.1 1.4 

30% acrylamides mix 1.0 1.7 2.5 0.33 

1.5 M Tris* 1.3 1.3 1.3 0.25 

10% SDS 0.05 0.05 0.05 0.02 

10% ammonium persulfate 0.05 0.05 0.05 0.02 

TEMED 0.004 0.002 0.0002 0.002 

*pH 8.8, 1.5 M Tris was used for resolving gel and pH 6.8, 1.5 M Tris was used for stacking gel. 

6.6 In vitro biochemical assays  

6.6.1 General PPTase-catalysed phosphopantetheinyl loading ACP assays 

6.6.1.1 CoA substrate loading assays162 

100 μM ACP was incubated with 2 μM Svp (PPtase from Streptomyces verticillus162), 10 mM MgCl2 

and 500 μM CoA or CoA thioester in storage buffer in a total volume of 50 μL. The reaction was 

allowed to proceeded at room temperature for 30 min. The completion of the loading reaction 

was monitored by LC-MS (section 6.7). 

6.6.1.2 Pantetheine substrate loading assays163 

100 μM ACP was incubated with 2 μM Svp, 2 μM pantethenate kinase (PanK), 2 μM 

phosphopantethein adenylytranferase (PPAT) and 2 μM dephosphocoenzyme A kinase (DPCK) in 
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the presence of 10 mM MgCl2, 5 mM ATP and 1 mM acyl-pantetheine substrate in storage buffer 

in total volume of 50 μL. The reaction was allowed to proceeded at room temperature for 1h. 

The completion of loading reaction was monitored by LC-MS (section 6.7). 

6.6.2 Characterization of GbnD1 ER1 domain 

6.6.2.1 GbnD1 ACP-ER1 di-domain enoyl reduction assay 

GbnD1 ACP-ER1 was first loaded with a 2-butenoyl-PPant unit using 2-butenoyl-CoA according to 

procedures described in 6.6.1.1. 50 μM crotonyl-GbnD1 ACP-ER1 was then incubated with 500 

μM NADPH/NADH in storage buffer in a final volume of 50 μL. The reaction was allowed to 

proceeded at room temperature for 5h. The control reaction was conducted under the same 

conditions without adding cofactor NADPH/NADH. The enoyl reaction was monitored LC-MS 

analysis (section 6.7). 

6.6.2.2 Stand-alone GbnD1 ER1 enoyl reduction assay 

From an ACP bound substrate 

GbnD1 ACP5 was loaded with 2,4-hexadienoyl-PPant unit using 2,4-hexadienoyl pantetheine as 

described in 6.6.1.2. Then, 50 μM 2,4-hexadienoyl-GbnD2 ACP5 was incubated with 50 μM 

GbnD1 ER1 and 500 μM NADPH or NADH in storage buffer in a final volume of 50 μL. The reaction 

was allowed to proceed at room temperature for 5 h. A control reaction was conducted under 

the same conditions without adding GbnD1 ER1. The enoyl reaction was monitored by injection 

ion generated from intact protein species in LC-MS analysis (section 6.7). 

From a pantetheine substrate 

50 μM GbnD1 ER1 was incubated with 1 mM 3-methyl-butenoyl-Pant in storage buffer in a final 

volume of 50 μL. The reaction was allowed to proceeded at room temperature for 5 h. Control 

reaction was conducted at same condition with boiled GbnD1 ER1. The completed reaction was 

extracted with (2x 100 μL) of acetonitrile and the extracted products was dissolved in 100 μL 
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methanol and subjected for LC-MS analysis (section 6.4.2). 

6.6.3 Characterization of GbnE  

GbnD2 ACP5 (or GbnD1 ACP3, GbnD4 ACP10 and GbnD5 ACP12 in corresponding assays) was first 

loaded with 2,4-hexadienoyl-PPant unit using 2,4-hexadienoyl pantetheine using procedures 

described in 6.6.1.2. 50 μM 2,4-hexadienoyl-ACP was than incubated with 50 μM GbnE or 

GbnE(H198V) and 500 μM NADPH or NADH in storage buffer in a final volume of 50 μL. The 

reaction was allowed to proceed at room temperature for 5 h. Control reaction was conducted 

under the same conditions but lacking GbnE. The enoyl reaction was monitored by injection ion 

generated from intact ACP species in LC-MS analysis (section 6.7).  

6.6.4 Characterization of GbnD2 Module5  

6.6.4.1 Characterization of the iterative nature of GbnD2 Module5  

50 μM GbnD2 Module 5 was incubated with 1 mM 2,4-hexadienoyl-NAC in storage buffer in a 

final volume of 50 μL at room temperature for 3h followed by concentration to 150 μM using a 

Viva-spin concentrator (GE Healthcare).  Meanwhile, GbnD2 ACP5 domain was loaded with a 

malonyl unit using malonyl-CoA following the procedures in 6.6.1.1. 50 μM acylated-GbnD2 

Module 5 was incubated with 100 μM malonyl-GbnD2 ACP5, and 800 μM of NADPH in storage 

buffer to a final volume of 50 μL. The reaction was allowed to proceed at room temperature for 

20h and monitored over time (2 h and 5 h and 20 h). Control reactions were conducted under 

the same conditions using GbnD1 ACP3 and GbnD4 ACP10 respectively instead of GbnD2 ACP5. 

For detection of iteration, intact ACP species were monitored by LC-MS analysis (section 6.7).  

6.6.4.2 Probing the ability of GbnE to stop the iteration of GbnD2 Module5  

The pre-acylation of GbnD2 Module 5 and malonylation of GbnD2 ACP5 followed the same 

conditions and procedures as in 7.6.4.1. 50 μM GbnE or GbnE(H198V) was then mixed with 50 

μM acylated-GbnD2 Module 5, 100 μM malonyl-GbnD2 ACP5 and 800 μM of NADPH in storage 
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buffer to a final volume of 50 μL. The reaction was allowed to proceeded at room temperature 

for 5 h and monitored by LC-MS analysis of intact GbnD2 ACP5 species (section 6.7).  

6.6.5 Characterization of GbnD2 Module 6 (S941A)  

6.6.5.1 GbnD2 Module 6 (S941A) and GbnD2 ACP5 domain acyl transferring assays 

GbnD2 ACP5 was first loaded with 4-hexenoyl-PPant or 2,4-hexadienoyl-PPant units using the 

corresponding pantetheine substrates using procedures described in 6.6.1.2. 100 μM GbnD2 

ACP5 with substrate loaded was then incubated with 300 μM GbnD2 Module 6(S941A) in storage 

buffer in a final volume of 50 μL. The reaction was allowed to proceed at room temperature for 

8h. To detect the acyl transferring from GbnD2 ACP5 to KS domain in GbnD2 Module 6(S941A), 

intact GbnD2 ACP5 species were monitored over time course (2 h ,4 h, 6 h and 8 h) by LC-MS 

analysis (section 6.7). 

6.6.5.2 GbnD2 Module6 (S941A) elongation assay  

50 μM GbnD2 Module 6(S941A) was first incubated with 1 mM 4-hexenoyl- or 2,4-hexadienoyl-

NAC respectively in a final volume of 50 μL. The reaction was allowed to proceed at room 

temperature for 3h. For confirmation of acylation, intact GbnD2 Module 6 (S941A) species was 

monitored by LC-MS analysis. 50 μM acylated GbnD2 Module 6 (S941A) was then incubated with 

1 μM Svp, 500 μM Malonyl-CoA, and 10 mM MgCl2 in storage buffer in a final volume of 50 μL. 

The reaction was allowed to proceeded at room temperature for 5h. To detect the elongation the 

intact GbnD2 Module 6 (S941A) species was monitored by LC-MS analysis (section 6.7). 

6.6.6 Characterization of IcoA C4 domain 

IcoA PCP3 was first loaded with L-Ala PPant unit using L-Ala pantetheine as described in 6.6.1.2. 

100 μM L-Ala-IcoA PCP3 was incubated with 100 μM IcoA C4 and 1 mM of 3R-hydroxyoctanoyl 

pantetheine or 3S-hydroxyoctanoyl pantetheine in storage buffer in a final volume of 50 μL. The 

reaction was allowed to proceed at room temperature overnight. For detection of condensation, 
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intact IcoA C4 species was monitored by LC-MS analysis (section 6.7).   

6.6.7 Characterization of IcoA C4-A3-PCP3 tri-domain 

IcoA C4-A3-PCP3 tri-domain was converted to its holo form as described in 6.6.1.1. 100 μM holo-

IcoA C4-A3-PCP3 was then incubated with 500 μM L-Ser, 500 μM ATP, 10 mM MgCl2, 1 mM of 

(3R)-hydroxyoctanoyl pantetheine or 3S-hydroxyoctanoyl pantetheine in storage buffer in a final 

volume of 50 μL and the reaction was allowed to proceed for 6h at room temperature. The control 

reaction was conducted using the same conditions while using IcoA C4-A3-PCP3(H143A) instead 

of IcoA_C4-A3-PCP3. For detection of condensation, intact wild type and mutant IcoA C4-A3-

PCP3 species was monitored by LC-MS analysis (section 6.7).  

6.6.8 Characterization of IcoA Module 3 

Holo modification of IcoA Module 3 was following the procedures decribed in 6.6.1.1. Serine 

adenylation of IcoA Module 3 was conducted by incubation of 100 μM holo IcoA Module 3 with 

500 μM L-Ser, 500 μM ATP, 10 mM MgCl2 in storage buffer in a final volume of 50 μL and the 

reaction was allowed to proceed for 3h at room temperature. For detection of holo modification 

and serine adenylation, intact IcoA Module 3 species was monitored by LC-MS analysis (section 

6.7). 

6.6.9 Two-piece In vitro reconstitution of icosalides biosynthesis  

IcoA_Part I and IcoA_Part II were first converted to holo form by incubation of 40 μM recombinant 

protein with 2 μM Svp, 200 μM CoA, 5 mM MgCl2 in the total volume of 50 μL at room 

temperature for 30 min. 20 μM of each holo form protein were than incubated with 5 mM L-

serine, 5 mL L-leucine, 1 mM 3R-hydroxyoctonyl-Pant and 1mM ATP in a total volume of 100 μL 

at room temperature for 5 h. The completed reaction was extracted with ethyl acetate (2 x 100 

μL) and the solvent was evaporated. The extracted product was dissolved in 100 μL acetonitrile 

and analysed by LC-MS analysis (section 6.4.2).   
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6.7 LC-MS analysis of proteins and in vitro intact protein assays 

All proteins and in vitro assays were analysed on a Bruker MaXis II electrospray ionisation time-

of-flight mass spectrometer (ESI-TOF-MS), connected to a Dionex 3000 RS UHPLC fitted with an 

ACE C4-300 RP column (100 x 2.1 mm, 5 μm, 30 °C). The UHPLC elution profile is detailed in Table 

6.19. 

The mass spectrometer was operated in positive ion mode with a scan range of 200–3000 m/z. 

Source conditions were: end plate offset at −500 V; capillary at −4500 V; nebulizer gas (N2) at 1.8 

bar; dry gas (N2) at 9.0 L min−1; dry temperature at 200 °C. Ion transfer conditions were: ion funnel 

RF at 400 Vpp; multiple RF at 200 Vpp; quadrupole low mass at 300 m/z; collision energy at 8.0 

eV; collision RF at 2000 Vpp; transfer time at 110.0 µs; pre-pulse storage time at 10.0 µs. 

Table 6.19 UHPLC elution profile for intact protein LC-MS analysis 

Time (min) Water / 0.1% FA (%) MeCN / 0.1% FA (%) Flow Rate (mL/min) 

0.0 95 5 0.2 

5.0 95 5 0.2 

35.0 0 100 0.2 

40.0 0 100 0.2 

45.0 95 5 0.2 

 

6.8 Full length icosalide NRPS encoded gene cloning 

6.8.1 Capturing plasmid construction 

The capturing plasmid pCAP1000-Icos was constructed from the optimized capturing vector 

pCAP1000 (generated by Dr. Chuang Huang) with the homologous flanking arms and counter 

selective marker pADH-URA3 encoded fragments assembled via GeneArt assembly as described 
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in 6.2.7 (primers listed in Table 6.20).   

Table 6.20 Overview of primers for construct pCAP1000-icoA 

PCR product Primer * Product size 

icosA-5’-arm 

 

For: ttctacaaagatcgactagtcatatgTGGTTTTCGCAGCAACG 

Rev: gttgttgtagGTGACCAGGCCATTGGCGAG 

1109 bp 

icosA-3’-arm 

 

For: gcaaaactaaAATACGAAGCGCCGCAAGGC 

Rev: caggtacctcaagtctcgaggctagcTCATGCGTTCTCGGTAGCCA 

1121 bp 

pADH-URA3 

 

For: ggcctggtcacCTACAACAACTAAGAAAAT 

Rev: gcttcgtattTTAGTTTTGCTGGCCGCATC 

1543 bp 

* Italic letters denote overlapping region used in GeneArt assembly. 

6.8.2 Yeast transformation 

Burkholderia gladioli BCC238 genomic DNA was isolated as described in 6.2.1. Purified genomic 

DNA was digested with ApaLI and capturing plasmid pCAP1000-Icos was digested with PmeI. Both 

the digestions were purified by ethanol precipitation method described in 7.2.8. 2 µg of digested 

genomic DNA and 50 ng of linearized pCAP1000-Icos were used for yeast spheroplast 

transformation. The yeast spheroplast preparation and transformation were conducted 

according to previously reported protocol.164 

6.8.3 Candidate yeast colonies screening 

To identify candidate yeast colonies harboring cluster captured pCAP1000 plasmid (pCAP1000-

icoA) colonies were picked and grown on a selective plate at 30 °C overnight and then screened 

by colony PCR. Specifically, the cells were scooped and resuspended in 200 µl yeast plasmid 

isolation 1 buffer containing 0.1% v/v 2-mercaptoethanol and 0.2 mg/mL zymolyase 20T. The 

suspension was incubated at 37 °C for 2 h and then mixed with 400 µl solution 2 by inversion. 
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300 µl solution 3 was added and the mixture was centrifuged for 10 min at 13000 rpm. The 

supernatant transferred was then mixed with equivalent volume isopropanol to allow the DNA 

precipitation. The precipitated DNA was collected by centrifuging for 10 min at 13000 rpm and 

the pellet was dried in air and dissolved in 100 µl water. 1 µl of the isolated DNA was used for 

PCR screening using IcoA_C4-For and IcoA_C4-Rev (listed in Table 6.14).  

6.8.4 IcoA containing plasmid DNA extraction and confirmation 

The PCR screened positive candidate colony was grown in 10 mL selective liquid medium at 30 °C 

shaker for 20-30 h. The cells were collected and plasmid DNA was isolated by similar procedures 

as described in section 6.8.3, except after addition of solution 3 and centrifuging the supernatant 

was transferred and extracted with 500 µL PCI(Phenol/chloroform/isoamylol=25:24:1) solution 

and centrifuged at 13000 rpm for 10 min. The resulting supernatant was then mixed with 500 µL 

isopropanol to allow the DNA precipitation and centrifuged at 13000 rpm for 10 min. The pellet 

was then washed with 70 % ethanol and dried in air and finally dissolved in 20 µl water. 10 µl of 

isolated plasmid DNA was transferred into E. coli TOP10 by electroporation for replication 

(described in 6.2.9). The transformants were grown in 5 mL LB and plasmid DNA was isolated by 

mini-prep kit. The cluster containing plasmid pCAP1000-Icos-cluster was finally confirmed by SacI 

and BamHI restriction enzyme digestion. Expecting fragments size were 4784, 4428, 3105, 2490, 

237, 162, 642, 8174 bp for SacI digestion and 1081, 1203, 210, 1837, 1442, 1196, 6361, 210, 

10464 bp for BamHI digestion. 

6.9 Icosalides full length NRPS heterologous expression in E. coli 

For heterologous expression in E. coli, icoA was first cloned onto pET28a (+) from pCAP1000-Icos-

cluster using NdeI and EcoRI site. The plasmid pET28a(+)-icoA was confirmed by restriction 

digestion and transformed to E. coli BAP1158 cells were transformed. A single colony was picked 

for over production of the recombinant IcoA. Specifically, the overnight culture was sub-cultured 

in 50 mL LB containing 50 µg/mL kanamycin and induced with 0.1 mM IPTG at 15 °C for 20 h after 

cell density reaching OD600 0.6-0.8. For confirmation of the functionality of the over produced 
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NRPS, 10 mL of the induced and non-induced culture was extracted with 20 mL ethyl estate. The 

extract was dried and dissolved in 500 µl acetonitrile for LC-MS analysis to monitor icosalides 

production.  
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Appendix 

Protein sequences 

N-His6-GbnD1 ER1 

MHHHHHHGKP IPNPLLGLDS TENLYFQGID PFT 

10         20         30         40         50         60  

AAPSPSGEAS TPLPAGDYGL VVRTVHALDE LSVEPWTPGE PGDDEVLIEV RASALNFPDV  

 

        70         80         90        100        110        120  

MCVQGLYPTQ PAYPFVPGFE VAGVVAAVGR AVVGIRVGEA VLALTGERMG GLASRVVVPA  

 

       130        140        150        160        170        180  

ANVLPKPSRL SFEEAASLPV AFLTAHHAFE TGRLAAGERV LIQTATGGCG LAAIQLARLR  

 

       190        200        210        220        230        240  

GARVYGTSSR AAKRALLERI GVEHVLDYRA AFDRELAGLT DGRGVDVVLN MLSGDAIQRG  

 

       250        260        270        280        290        300  

LDSLAPAGRY VEIAVHGLRT SGTLDLSRLV DNQSFHSIDL RRARARGLDW GETLAGLLPL  

 

       310        320        330        340        350        360  

FETGALVPIV SRVYPAEQLG EALRYVATGE HVGKVVIRHR GGALDDCVEA CVSRLVAQRE  

 

       370        380        390  

IAAREAARPA SLPVVPRRAS AAAQPASETH AP 

 

N-His6-GbnD1 ACP1-ER1 

MHHHHHHGKP IPNPLLGLDS TENLYFQGID PFT 

10         20         30         40         50         60  

PEPAEAGNVA VQATDADSFD LNISHDEIIE RSVAPDAATS RRRTIDSGPD LILERELAES  
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        70         80         90        100        110        120  

LGQSLYLPAD EIDPERPFVE LGLDSIVGVE WARAINKAYG IALPATRLYD HVTIRLLAAH  

 

       130        140        150        160        170        180  

LVEQWGVARR DSARPAEPPV GLVAPVTRAP IAAAPSPSGE ASTPLPAGDY GLVVRTVHAL  

 

       190        200        210        220        230        240  

DELSVEPWTP GEPGDDEVLI EVRASALNFP DVMCVQGLYP TQPAYPFVPG FEVAGVVAAV  

 

       250        260        270        280        290        300  

GRAVVGIRVG EAVLALTGER MGGLASRVVV PAANVLPKPS RLSFEEAASL PVAFLTAHHA  

 

       310        320        330        340        350        360  

FETGRLAAGE RVLIQTATGG CGLAAIQLAR LRGARVYGTS SRAAKRALLE RIGVEHVLDY  

 

       370        380        390        400        410        420  

RAAFDRELAG LTDGRGVDVV LNMLSGDAIQ RGLDSLAPAG RYVEIAVHGL RTSGTLDLSR  

 

       430        440        450        460        470        480  

LVDNQSFHSI DLRRARARGL DWGETLAGLL PLFETGALVP IVSRVYPAEQ LGEALRYVAT  

 

       490        500        510        520        530        540  

GEHVGKVVIR HRGGALDDCV EACVSRLVAQ REIAAREAAR PASLPVVPRR ASAAAQPASE  

 

 

THAP  

 

N-His6-SUMO-GbnE 

MGSSHHHHHH GSGLVPRGSA SMSDSEVNQE AKPEVKPEVK PETHINLKVS DGSSEIFFKI  

 

KKTTPLRRLM EAFAKRQGKE MDSLRFLYDG IRIQADQTPE DLDMEDNDII EAHREQIGG 

        10         20         30         40         50         60  

MAMITASSLG NADFRNDYRI KYAYLAGAMY RAIASKELVV ALGKAGLMGF LGTGGLRLDD  

 

        70         80         90        100        110        120  

IEAAILQIQA ELGVDGVYGM NLLADLERPE REEATVDLYL RHGVRHVEAA AYMRVTPALV  

 

       130        140        150        160        170        180  

RYRLRGASIG ADGRAVARHH VVAKVSRPEV ASQFMQPAPP ALVQQLVAAG RLDAREAELA  

 

       190        200        210        220        230        240  
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PQLPLAGDIC VEADSGGHTD RGVAYVLIPA MQSLRDELMT RHRYAKRIRI GAAGGIGTPQ  

 

       250        260        270        280        290        300  

AAAAAFVMGA DFIVTGSINQ CTREAGTSDV VKALLQELDV QDTAYAPAGD MFELGAKVQV  

 

       310        320        330        340        350        360  

ARRGLFFAAR ASRLHELYQQ HASLDEIDPA MRSQIEQKFF RRGFDEIWDE TRRHYASSRP  

 

       370        380        390        400        410        420  

DQIAEIERSP KKKMAAVFRW YFAHSTQLAL SGDDTRLTDF QVHCGPALGA FNRWVRGTPL  

 

       430        440        450        460  

ESWQNRHVAD LAERIMQGTA AWLEARLASM ADSGGQRPSL QLQRQ  

 

N-His6-GbnD1 ACP3 

MGSSHHHHHH SSGLVPRGSH  

       10         20         30         40         50         60  

TATVPTTVTT PTATENDALA ARAIEYFRKW LAAQLKVGAD QLDDDAPLDR YGIDSVRVMQ  

 

        70         80         90        100        110        120  

LTSALESRFG PLSKTLFFEY RNVAELSRHF VQAHRERMLD LLGLASPSAA PLPTSRPAGP  

 

       130  

APRPVLSSGP AI 

 

N-His6-GbnD2 ACP4 

MGSSHHHHHH SSGLVPRGSH 

       10         20         30         40         50         60  

PATQRADVRD EITALYRQIQ AGSIERGEAA ARIARLRALA RDGGSDGSSG TDDGPAVPLA  

 

        70         80         90        100        110        120  

AIVEAVKTRV AAVLEVPLAR IEVDAPLDRY GIDSVTVMRL TGEFERELGP LSKTLLFEYR  

 

       130        140        150        160        170        180  

TVGEVSRYFS VSHAASVARW LGVAASAPSA PPGAYQAGAR TMRAMAVATR GLAVPPATAS A  
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N-His6-GbnD2 ACP5 

MHHHHHHGKP IPNPLLGLDS TENLYFQGID PFT 

        10         20         30         40         50         60  

PNPASLSSVP GGQDATRAAS AALLADEALR HVKRQLAAVI RLPVERIDED ASFEEYGIDS  

 

        70         80         90        100        110        120  

VMAVELTDRL ERACGPLSKT LLFEYQSVRD LTAFLVRHHA EGLGAALGLG EASSDGETAK  

 

 

AEV  

 

N-His6-GbnD4 ACP10 

MGSSHHHHHH SSGLVPRGSH 

        10         20         30         40         50         60  

AQAKPVAGAA PAAAGVPAPA PIADAAELGA RVDAALARAV CEILRIGESD VDAETDFSAY  

 

        70         80         90        100        110        120  

GFDSISLTEF SNRIGERLGV ELLPTIFYEY PSLLALRGFL LAEHGAALAA ALQVQPAAGR  

 

       130        140  

QVEPDPEPHR ESNRESNPGA AAVGLPEG 

 

N-His6-GbnD5 ACP12 

MHHHHHHGKP IPNPLLGLDS TENLYFQGID PFT 

        10         20         30         40         50         60  

VAAGYDGARA AALAAGESTR ASFDEALRRF VTDQLAAQGV ALAGRLGDDT PFFDAGLDST  

 

        70         80         90        100        110  

HLLALVRALE THCGRTFYPT LLFEHQTLRE LAAHLHRETP AAFGQAVPVW SESVAA 

 

N-His6-GbnD2 Module5 

MGSSHHHHHH SSGLVPRGSH 
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        10         20         30         40         50         60  

AGARTMRAMA VATRGLAVPP ATASASLPQD RPEATATGTQ AVAVIGLAGR YPQAADLDAF  

 

        70         80         90        100        110        120  

WENLSTGRDC ITEIPSTRWD HEVYFDARKG QPGKSYSKWG GFLDGVDEFD PSFFSISPRE  

 

       130        140        150        160        170        180  

AQLMDPQERL FLQCAYHALE DAGHTRASLG AARVGVFVGV MYEEYPYHGS PSQGTTQPQA  

 

       190        200        210        220        230        240  

LGGSSASIAN RVSYAFNLNG PSIAMDTMCS SSLTALHLAC QSLRLGECEL ALAGGVNVSI  

 

       250        260        270        280        290        300  

HPNKYLGLSQ GQFASSEGRC RSFGAGGDGY VPSEGVGCVL LRPLAAAEAA GDRILGVIRA  

 

       310        320        330        340        350        360  

SAINHGGRTN GYTVPNPNAQ GELIAEALRA SGVDARAISY LEAHGTGTAL GDPIEIAGLV  

 

       370        380        390        400        410        420  

KAYGAWEGEP GEPGEPGDAR LEPCAIGSVK SNIGHCESAA GIAGLTKVLL QMRHGKLAPS  

 

       430        440        450        460        470        480  

LHAQTLNPLI DFGRTPFRVQ RELAPWRRPR VRVDGVEREM PRLAGISSFG AGGANAHVIV  

 

       490        500        510        520        530        540  

EEYVARAVEA ADARREGQPA IVVLSARSEA QVLIQARNLQ AAIEREAYGE GELAALAHTL  

 

       550        560        570        580        590        600  

QAGREAFEVR LATTVTSMAM LVERLASLAG EAPDYSAWMR GETRRDAADL PAPETVEGWL  

 

       610        620        630        640        650        660  

AQGRVEPLLR AWLDGLAFDW RRLRAADPPI RPLRLPGYPF ARQRYWADPP AAAAPRVARL  

 

       670        680        690        700        710        720  

HPLLHENRST AFEPQFVSHF DGREACLADH RVAHARVLPG AAQLEIARAA AALSLGEAAA  

 

       730        740        750        760        770        780  

LELTEVAWLQ PACFDEQGGS LRIALFVDSE TEAEFDIGSL DGDTVYSQGR LRLREAASPV  

 

       790        800        810        820        830        840  

VLELASLRAA CGQVPLAPEA LYASFAAAGL QYGPAHRAIA ELRTGLDTAG RPQVLARLEV  

 

       850        860        870        880        890        900  

PDGAADEALV LHPSLVDGAI QATIGLLLVP GGARRAMLPA RLGRVGVAAA TPARGWAWLR  
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       910        920        930        940        950        960  

FAEGSGPEDV APRIDLSICD EHGAVALEIE ALTLMPAPVA SQTGVETLWL APAWAEAEAP  

 

       970        980        990       1000       1010       1020  

LDAPRGAAQP TREVFVAGQL PEGVLAALAR RYGESRVHVA PGADAMPLAA GYVAAADALF  

 

      1030       1040       1050       1060       1070       1080  

AIVRERLADV ASGECLFQLL RVEDGTAGAA CLDGLGALLR TASIENPRFA TQSIRIDAAD  

 

      1090       1100       1110       1120       1130       1140  

ATDGETLLAL LDANARERDS REIAYLDGRR RQRRHLELSQ PGGDVPAWPA GTVALITGGL  

 

      1150       1160       1170       1180       1190       1200  

GGIGYRVAES IAASGPGTTL LLCGRSEPAD AAARLGALRA AGANAEFVRT DITDAAATEA  

 

      1210       1220       1230       1240       1250       1260  

LVAGIVARHG RLDTVIHSAG IVRDNFVIRK NASELHAVLA PKVAGLVNLD AATRSLPLRE  

 

      1270       1280       1290       1300       1310       1320  

LIVFSSVSGA FGNAGQADYA CANAFMDAFA AWRATRVAAG ERSGRTLSIG WPLWAEGGMR  

 

      1330       1340       1350       1360       1370       1380  

VDAAVEAKLR RDGLAPLDTA SGLAVLARCR QLPPELTQVV VLAGDAARLR ARHGLAAAAI  

 

      1390       1400       1410       1420       1430       1440  

GAAASAPNRA PNPAPNPASL SSVPGGQDAT RAASAALLAD EALRHVKRQL AAVIRLPVER  

 

      1450       1460       1470       1480       1490       1500  

IDEDASFEEY GIDSVMAVEL TDRLERACGP LSKTLLFEYQ SVRDLTAFLV RHHAEGLGAA  

 

      1510  

LGLGEASSDG ETAKAEV  

 

N-His6-GbnD2 KS6-ACP6a and N-His6-GbnD2 Module6(S941A) 

MGSSHHHHHH SSGLVPRGSH 

       10         20         30         40         50         60  

DGETAKAEVA VAALAAGAVA TARAAGPALA PVAPRTRRRP RGRLPGRESE PPRITAIAVI  

 

        70         80         90        100        110        120  

GLAGRYPQAA DLDAFWENLS TGRDCITEIP STRWDHEAYF DARKGQPGKS YSKWGGFLDG  
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       130        140        150        160        170        180  

VDEFDPFFFN ISPREAQLMD PQERLFLQCA YHALEDAGHT RASLGAVRVG VFVGVMYEEY  

 

       190        200        210        220        230        240  

HLLSDPAGGD LAQTYIPGGY LSSVANRVSY FGNFRGPSFG VDTMCSSSLT ALHLACQSLR  

 

       250        260        270        280        290        300  

LGECELALAG GVNVSIHPNK YLGLSQGQFA SSEGRCRSFG AGGDGYVPSE GVGCVLLRPL  

 

       310        320        330        340        350        360  

AAAEAAGDRI LGVIRASAIN HGGRTNGYTV PNPNAQGELI AEALRASGVD ARAISYLEAH  

 

       370        380        390        400        410        420  

GTGTALGDPI EIAGLVKAYG AWEGEPGEPG DARLEPCAIG SVKSNIGHCE SAAGIAGLTK  

 

       430        440        450        460        470        480  

VLLQMRHGKL APSLHAQTLN PLIDFGRTPF RVQRELAPWR RPRVRVDGVE REMPRLAGIS  

 

       490        500        510        520        530        540  

SFGAGGANAH LIVEEYVARA VEAADARREG QPAIVVLSAR SEAQVLIQAR NLQAAIAREA  

 

       550        560        570        580        590        600  

YGEGELAALA HTLQAGREAF EVRLATTVTS MAMLVERLAS LAGETPDYSA WMRGEARRDG  

 

       610        620        630        640        650        660  

NDALAHFAKD PELNEVLRKW LRAGNPVRIA ELWTRGLDID WAAMQEDGPA PARLRLPGYP  

 

       670        680        690        700        710        720  

FATKRYWMAR ADGSPALAAR AAVPARPEPP TRAAVPPAAV KVLAEVLADA PRVAIVLGEP  

 

       730        740        750        760        770        780  

GGFEARTEGA ARAASIRLAV LDPLDEFEPP AAPAAARQDD GQTAAAARQV PAGIEVSIER  

 

       790        800        810        820        830        840  

LRLSLAQMLC AEAADLGADV PFGELGLDSV VGVEWTRAIG REYGVTLAAA TLYDHPTLTT  

 

       850        860        870        880        890        900  

LAAWLAATVE AGAAIATAGR DVPPRPDAHP VRLVEPDQDV ATPLAAAAAV EGGNEAEVAA  

 

       910        920        930        940        950        960  

GMAMPIEALV ERLAGTLAQA LCAEREEIDP DTPFAELGID SVVGVEWVRD INRAFGTELK  

 

       970        980        990       1000       1010       1020  



PhD Thesis: Xinyun Jian  Appendix 

166 

ATVLFDHATV KLLAAHLAPL ACPAPHSVRV DPPAAPVEQL AAASAVPARE LADTARHAGS  

 

      1030       1040  

RGHVQAVEPA APVAKTGNAP  

 

N-His6-IcoA PCP3  

MHHHHHHGKP IPNPLLGLDS TENLYFQGID PFT 

        10         20         30         40         50         60  

RYEAPQGETE QAVAALWAEL LGVERIGRHD NFFALGGHSL LAVRMLNRLR AMQAGDLSLS  

 

        70         80  

SLFDHPTVSA VAQAIDSGSR SVA  

 

N-His6-IcoA Module 3 (C3-C4-A3-PCP3), N-His6-IcoA C4-A3-PCP3 and N-His6-IcoA C4 

MGSSHHHHHH SSGLVPRGSH 

        10         20         30         40         50         60  

MRAHDLVRID RNVTMPLSFA EQRVLAIEAG GTRGAMLNSS RLFILSGRVR EDVLDRALRA  

 

        70         80         90        100        110        120  

VVERHEILRT HYAGDETTGS FVPVIGRSAL FHLERREVAE DDAMPIAQSE AARHLDCFRG  

 

       130        140        150        160        170        180  

PVFGATLFVE SPRRAILMIA IHHIAMDAAS WNIVWRDFRQ AYAALAADEP PALAPLALQY  

 

       190        200        210        220        230        240  

RDYAAWTTKQ VDAERLAQLR QTWRERLAGA PVYLNLPADR PRPDKLSDRA GRIERMLAPE  

 

       250        260        270        280        290        300  

LVQGIRQIAT AYKVTPFIVL ETTLAIACAQ LARSRDIVIG TVTEGRTHAA TEDMVGLFVN  

 

       310        320        330        340        350        360  

TLPLRHRLDR TASVASHLLA TSRELLSALE ASELPFADVV AAVNPPRASS HDPIFQVFCQ  

 

       370        380        390        400        410        420  

FQQGPGKTRE TIADMTIEAI PRTRMARGAD LAVVFLDAGE YLSADVSYSA DLFDAESIDA  

 

       430        440        450        460        470        480  
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LIELFLRFLA ESVQRPDAVV DELWDAGVAS ARAVASGPDV SRLVDRPGSP AETWYALSPA  

 

       490        500        510        520        530        540  

QQAVWLQEQA ARPGTSFFSV AAMRCAPEID RMRLVAASRA LIAQNQAFWI QVSDAGLQCE  

 

       550        560        570        580        590        600  

ASTPTTRFQH FVEPTTMTGE AMRRAVIEWH EKLNEDPRDK SGAVAVFDSP GSVLVALRSP  

 

       610        620        630        640        650        660  

HVQNDGWSAL RYFERIGRNY AALESDPARA FDMDRIFLDT LSLDERYLCS PTYERDAAFW  

 

       670        680        690        700        710        720  

QSACARIDGQ PLVTLVADHA HPVDARGVVR SLRKVFPQTL QERVLNAARK LSLSPAECLT  

 

       730        740        750        760        770        780  

ALTALYLMRV TGERSTVLGV SFLNRTREAL DIPGQFAKVI PLPVSIGQGD IPLSSTLNGI  

 

       790        800        810        820        830        840  

RDAFKDVMQH GRFPFGEMVR RYGFDPRHIE ISVNTLFLRH PVEVGGQPAH VQWLSGPEHG  

 

       850        860        870        880        890        900  

LSFLFTQFGR SAPIDIELRY NGNAFDSESV ERHARRLLDF IERACEDDSV SARGIELVSS  

 

       910        920        930        940        950        960  

EERALLIDAL NATDAPYDRN QYLHGLFEAQ AKRTPEATAL IAGDERLSYA ELDARANRFA  

 

       970        980        990       1000       1010       1020  

RYLVDLGVGP DALVAVCLER STAMVVSLIG ILKAGGAYVP IDPAYPGPRI AHIVSDSAPA  

 

      1030       1040       1050       1060       1070       1080  

VVLVDATGRE ALVDALGDEK LAEYGLIDVS AASTPWNKLS SDSLSSNALG LNPRHLAYVI  

 

      1090       1100       1110       1120       1130       1140  

YTSGSTGMPK GVQNEHDALV NRLTWMQEAY RLGGQDVVLQ KTPFSFDVSV WEFFWTLANG  

 

      1150       1160       1170       1180       1190       1200  

ATLVIAEPGA HRDADYLTEI IAKHGVTTLH FVPSMLAGFL EAQDLTRCKT LSRIICSGEA  

 

      1210       1220       1230       1240       1250       1260  

LPAPIARRCL ERLPHAQLHN LYGPTESAID VTAFTCPPDF DAQAVPIGKP IANTRIYLLD  

 

      1270       1280       1290       1300       1310       1320  

ERQAPVPLGA IGELYIGGVG VARGYLNRAD LTAQRFLADP FARAAGHPEA RMYRTGDLAR  
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      1330       1340       1350       1360       1370       1380  

YLPDGNIVFL GRNDDQVKIR GFRIELGEIE VQLAKHEAVR DAIVIARQDS TGNARLLAYV  

 

      1390       1400       1410       1420       1430       1440  

TPQESASREE LARSLREHLT ARLPEYMVPA AFVVLETLPL TPNGKLDRRA LPEPADDAFV  

 

      1450       1460       1470       1480       1490       1500  

QSRYEAPQGE TEQAVAALWA ELLGVERIGR HDNFFALGGH SLLAVRMLNR LRAMQAGDLS  

 

      1510       1520  

LSSLFDHPTV SAVAQAIDSG SRSVA  

 

 

Protein Mass Spectra 

 

Figure S1 High resolution mass spectrum of N-His6-GbnD1 ER1. 

  

Figure S2 High resolution mass spectrum of N-His6-GbnD1 ACP1-ER1. 
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Figure S3 High resolution mass spectrum of N-His6-SUMO-GbnE 

 

Figure S4 High resolution mass spectrum of N-His6-SUMO-GbnE(H198V) 

 

Figure S5 High resolution mass spectrum of N-His6-GbnD1 ACP3 
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Figure S6 High resolution mass spectrum of GbnD1 ACP3 (His-tag cleaved) 

 

Figure S7 High resolution mass spectrum of N-His6GbnD2 ACP5. 

 

Figure S8 High resolution mass spectrum of N-His6 -GbnD4 ACP10 
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Figure S9 High resolution mass spectrum of GbnD4 ACP10 (His-tag cleaved) 

 

Figure S10 High resolution mass spectrum of N-His6-GbnD5 ACP12 

 

Figure S11 High resolution mass spectrum of N-His6-GbnD2 Module 5 
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Figure S12 High resolution mass spectrum of N-His6-GbnD2 Module 6 

 

 

Figure S13 High resolution mass spectrum of N-His6-IcoA C4 

 

Figure S14 High resolution mass spectrum of N-His6-IcoA C4-A3-PCP3 
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Figure S15 High resolution mass spectrum of N-His6-IcoA C4-A3-PCP3 (H143A) 

 

Figure S16 High resolution mass spectrum of N-His6-IcoA Module 3 (C3-C4-A3-PCP3) 
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Sequence alignments  

 

Figure S17 Multiple sequences alignment of GbnD1 ER1 domain with integrated ER domains from modular 

PKSs. Ery: erythromycin, Spn: spinosyn, Rap: rapamycin, Lkm: lankamycin, Cur:curicin. ‘ERx’ refer to the ER 

domain in the module x. 

* 
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Figure S18 Multiple sequence alignment of GbnE and trans-acting ERs from trans-AT PKS. Ent: etnangien, Ped: 

pederin, Bat: Batumin/kalimantacin, Pks: dihydrobacillaene, Mln: macrolactin, Mup: mupirocin, Lnm: leinamycin, 

Gdm: gladiostatin. 
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Figure S18 (continue) Multiple sequence alignment of GbnE and trans-acting ERs from trans-AT PKS. Ent: 

etnangien, Ped: pederin, Bat: Batumin/kalimantacin, Pks: dihydrobacillaene, Mln: macrolactin, Mup: mupirocin, 

Lnm: leinamycin, Gdm: gladiostatin. 
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Mass spectra of extracted ion chromatograms of gladiolin and related 

derivatives  

 

Figure S19 Comparison of high-resolution mass spectra of EICs at m/z= 777.5153 ± 0.02 Da and 799.4972 ± 0.02 

Da, corresponding to [M+H]+ and [M+Na]+ ions of gladiolin derivatives 33 and 34 in B.gladioli BCC1622 WT and 

32 in B.gladioli BCC1622_ΔgbnD1_ER1 

 

Figure S20 Comparison of high-resolution mass spectra of EICs at m/z= 777.5153 ± 0.02 Da and 799.4972 ± 0.02 

Da, corresponding to [M+H]+ and [M+Na]+ ions of gladiolin derivatives 33 and 34 in B.gladioli BCC1622 WT and 

32 in B. gladioli BCC1622_gbnD1_ER1*(G388S/G388P). 
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Figure S20 Comparison of high-resolution mass spectra of EIC at m/z=779.5309 ± 0.02 Da and 

801.5129 ± 0.02 Da, corresponding to the [M+H]+ and [M+Na]+ ions of gladiolin 7 and iso-gladiolin 

28 in B.gladioli BCC1622 WT and B.gladioli BCC1622_ΔgbnE  

 

Figure S 21 Comparison of high-resolution mass spectra of EICs at m/z= 777.5153 ± 0.02 Da and 

799.4972 ± 0.02 Da, corresponding to [M+H]+ and [M+Na]+ ions of gladiolin derivatives 33 and 34 

in B.gladioli BCC1622 WT and B.gladioli BCC1622_ΔgbnE 

 

 


