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Analysis of Energy Transfer Efficiency in

UAV-Enabled Wireless Networks

Hua Yan, Yunfei Chen, Shuang-Hua Yang

Abstract

Wireless power transfer (WPT) is a promising charging technology for battery-limited sensors. In

this paper, we study the energy transfer in a wireless network using an unmanned aerial vehicle (UAV).

Instead of charging the remote wireless sensors directly from the access point (AP), we study the schemes

of using a UAV to charge the remote wireless sensors after it is charged by the AP. To this end, two

schemes are proposed. The performances of these two schemes are examined and compared with the

conventional scheme without using a UAV. A distance threshold beyond which the new schemes have

superiority over the conventional scheme is derived by solving energy equations. Numerical results show

that the proposed schemes can achieve significantly higher energy efficiency than the conventional scheme

when the transmission distance is within the derived critical range.

Index Terms

Energy efficiency, energy harvesting, radio frequency, unmanned aerial vehicle, wireless power

transfer.

I. INTRODUCTION

In recent years, there has been increasing popularity in unmanned aerial vehicles (UAVs), as it has

been widely used in many public, military and civil applications [1] – [3]. For example, UAVs have been
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Fig. 1. The conventional direct energy transfer scheme.

adopted in environmental and natural disaster monitoring, for area or network coverage, as aerial base

stations (BSs) or relays, and for delivery of goods and construction.

In particular, as an aerial BS or relay, UAVs play a very important role in UAV-enabled wireless

networks. The authors in [4] optimized the altitude of a low-altitude aerial platform (LAP) to provide the

maximum radio coverage for the ground users. In [5], the authors considered this problem in a relaying

setting and studied the optimum placement of a relaying UAV for the maximum reliability. Furthermore,

works on mobile relaying and mobile BS were also studied in [6] and [7], respectively. Zeng et al.

[6] studied the throughput maximization problem in mobile relaying system by optimizing the transmit

power, while Lyu et al. [7] focused on minimizing the number of mobile BSs needed to provide effective

wireless coverage for several distributed ground terminals so that each ground terminal can have an

effective communication connection with the mobile BS. In the seminal paper [8], the authors proposed

a new cyclical multiple access (CMA) scheme to explore the periodic channel variations between a

mobile BS served by a UAV and ground terminals for maximum throughput. The results show that

there exists a trade-off between throughput and access delay in their proposed CMA scheme. For UAV

relaying networks or systems, the authors in [9] jointly investigated the optimization problem of UAV

node placement and communication resource allocation to achieve the maximum throughput. In [10], a

solution that jointly optimizes trajectory design and power control was proposed to minimize the outage

probability of the UAV relaying network. All of the above works have provided very useful insights

on the applications of UAV as a relay or a BS to provide information relay or information coverage.

However, energy is as important as information in communications systems, especially in wireless sensor

networks where the sensors are of limited battery life.

There have also been a large amount of literature on UAV-enabled wireless power transfer (WPT). For

example, in [11], a WPT system with a UAV-mounted energy transmitter was considered and for a basic

two-user scenario, the energy region and the amount of energy transferred over a fixed period of time was

studied jointly with the mobility and trajectory design of the UAV. In [12], the authors extended the two-
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Fig. 2. The proposed Scheme 1.

user scenario to more users and improved the minimum energy by optimizing the trajectory of the UAV.

In [13], both UAV’s optimal hovering locations for the sum-energy maximization and UAV’s optimal

hovering time allocations for maximizing the minimum received energy among all energy receivers were

investigated by trajectory optimization. In [14], a one-dimensional UAV trajectory was designed for a

multi-user WPT system. Also, reference [15] considered a two-user scenario, but the UAV was equipped

with a directional antenna for improving the energy transfer efficiency. In [16], the scenario was further

extended to the case of multi-UAVs and multiple ground users, and the throughput was maximized by

optimizing the user scheduling through considering the UAV trajectory and power control jointly. In [17],

energy harvesting amplify-and-forward (AF) relaying network was considered, where the UAV acts as a

relay. Reference [18] studied the energy trade-off between the uplink transmission energy of the ground

terminals and the propulsion energy for UAV’s movement. Other works include the related technologies,

principles and applications of wireless charging in [19] – [24], radio frequency (RF) energy models and

energy transfer channel models in [25] – [26], mobile charging technologies [27] – [29], wireless energy

harvesting [30] and propulsion power consumption model for rotary-wing UAV [31]. In [32], the authors

considered a framework for UAV-assisted wireless charging of sensor nodes using RF energy transfer.

All these works have considered the scenario where the UAV acts as a traditional static relay or an aerial

BS to provide energy relay or energy coverage by WPT. However, a realistic and important issue that has

been largely ignored is the power consumption of UAV. Some of these works (i.e., [13], [14], [15] and

[17]) have also ignored the RF-to-direct current (DC) energy conversion efficiency at energy receivers.

Besides, the path loss caused by the transmission distance seriously reduces the energy transfer efficiency.

To improve the energy transfer efficiency, one efficient method is to reduce the path loss caused by long

transmission distance. For this purpose, one interesting work is data ferry, where a third transceiver

receives the data from the BS in its close proximity and then carry the data to the sensors for another
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Fig. 3. The proposed Scheme 2.

transmission in close proximity. For example, in [33], the authors considered the method of using one

or more UAVs to relay messages between two distant ground nodes. A ”load-carry-and-deliver” (LCAD)

paradigm was proposed to let the UAV load data from a source node, carry the data to the destination

node, and finally deliver the data to the destination node. It has been shown in these works that data ferry

is more efficient than traditional direct transmission. Moreover, works on cooperative communications,

such as two-way multi-antenna cooperative relaying with comparison of one-hop direct transmission and

two-hop relay-aided transmission [34] – [38], have also provided very valuable insights on relay-aided

transmission strategies, and it is interesting to use UAV as a mobile relay following the idea of these

works.

Motivated by the above observations, in this paper, we study the WPT efficiency in a UAV-enabled

wireless network, where a UAV is used to charge the remote unmanned ground vehicle (UGV). We

propose two new schemes for UAV-enabled WPT. The new and conventional schemes (long distance

direct wireless charging without using a UAV) are compared by analysing their RF energy transfer

model, UAV energy consumption model and RF-to-DC conversion efficiency model. A critical distance

beyond which the new schemes have a higher energy transfer efficiency than the conventional direct

charging is derived. Numerical results are presented to show the influences of the RF-to-DC conversion

efficiency and the UAV flight height on the critical distance of the new schemes. Specifically, the critical

distance is reduced from 192.99 m to 75.0 m when the RF-to-DC conversion efficiency increases from

0.6 to 1.0 for a fixed UAV height of 6.4 m above ground level. Also, when the RF-to-DC conversion

efficiency is set to 0.6, the critical distance increases from about 59.69 m to 192.99 m when the UAV

height increases from 6.0 m to 6.4 m. The main contributions of this work can be summarized as follows:

• We propose two new schemes for UAV-enabled WPT in wireless networks.

• We derive and quantify the exact critical distance and the effective range beyond which the new
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schemes have superiority over the conventional direct charging.

• We examine the effects of different system parameters on the performance of the proposed schemes

to give useful guidance for system designs.

The rest of the paper is organized as follows. In Section II, the system models used in the proposed

schemes are introduced. The new schemes and the critical distance are studied in Section III. Numerical

results are presented in Section IV. Finally, we conclude the work in Section V. Some frequently used

symbols in this paper are summarized in Table I.

Table I: Symbols in the paper

Notations Description

Ls1−1
FS path loss from the BS to the UAV in Scheme 1

Ls1−2
FS path loss from the UAV to the UGV in Scheme 1

Ls2−1
FS path loss from the BS to the UAV in Scheme 2

Ls2−2
FS path loss from the UAV to the UGV in Scheme 2

ds1−1 transmission distance from the BS to the UAV in Scheme 1

ds1−2 transmission distance from the UAV to the UGV in Scheme 1

ds2−1 transmission distance from the BS to the UAV in Scheme 2

ds2−2 transmission distance from the UAV to the UGV in Scheme 2

L1 horizontal distance on both sides of the BS during the load stage

L2 horizontal distance on both sides of the UGV during the charge stage

P s1
uav−r received RF power at the UAV in Scheme 1

P s2
uav−r received RF power at the UAV in Scheme 2

P s1
uav−t transmit RF power from the UAV in Scheme 1

P s2
uav−t transmit RF power from the UAV in Scheme 2

P s1
ugv received RF power at the UGV in Scheme 1

P s2
ugv received RF power at the UGV in Scheme 2

Es1
uav−DC received DC energy of UAV from the BS in Scheme 1

Es2
uav−DC received DC energy of UAV from the BS in Scheme 2

Es1
fly−to energy consumption during the carry stage in Scheme 1

Es2
fly−to energy consumption during the carry stage in Scheme 2

Es1
fly−back energy consumption for flying back in Scheme 1

Es2
fly−back energy consumption for flying back in Scheme 2

II. SYSTEM MODEL

Consider three wireless charging scenarios as depicted in Fig. 1, Fig. 2 and Fig.3. In Fig. 1, an

unmanned ground vehicle (UGV), located L meters away from the BS, is charged via direct RF energy
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transfer. This is the conventional direct energy transfer scheme. In Fig. 2 and Fig. 3, a multi-rotor UAV

is used to load the energy near the BS and then deliver the energy to the UGV by charging it from a

short distance. These are the two new schemes.

To determine which scheme is more energy efficient, we need to know the energy consumption of

different parts of the system. For the conventional scheme, the energy consumption only comes from the

transmission loss from the BS to the UGV and the conversion loss from RF to DC at the UGV. For the

proposed schemes, the energy consumption comes from the transmission loss from the BS to the UAV

and from the UAV to the UGV, the conversion loss from RF to DC at the UAV and at the UGV, and the

UAV internal loss due to hovering, acceleration, deceleration and flying operations.

A. Transmission Loss

We assume a line-of-sight (LoS) communication link between the BS and the UAV, and between the

UAV and the UGV as in [11]– [15]. Also, the communication link between the BS and the UGV comes

with extra power loss caused by shadowing and non-LoS (NLoS). Denote the heights of the BS and

the UGV as Ht and Hr, respectively. According to the free-space path loss (FSPL) model [39], the

transmission loss LFS is expressed as

LFS(dB) = 20log10 {fc}+ 20log10 {d} − 147.55 dB, (1)

where d (d ≥ 1 m) is the distance between the transmitter and the receiver and fc is the operating

frequency.

In Fig. 1, for the conventional direct transfer scheme, since the distance between the BS and the UGV

is L, one has

d0 =

√
L2 + (Ht −Hr)

2, d0 ≥ 1 m. (2)

Hence, the transmission loss is

LcFS(dB) = 20log10 {fc}+ 20log10 {d0} − 147.55 +X dB, (3)

where X represents the extra power loss caused by shadowing.

In Fig. 2, for the proposed Scheme 1, the transmission distance from the BS to the UAV is

ds1−1 = Hloading −Ht, ds1−1 ≥ 1 m, (4)

and the distance from the UAV to the UGV is

ds1−2 = Hcharging −Hr, ds1−2 ≥ 1 m. (5)
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Where Hloading > Ht and Hcharging > Hr. Therefore, the transmission loss from the BS to the UAV

can be expressed as

Ls1−1
FS(dB) = 20log10 {fc}+ 20log10 {ds1−1} − 147.55 dB, (6)

and the transmission loss from the UAV to the UGV can be expressed as

Ls1−2
FS(dB) = 20log10 {fc}+ 20log10 {ds1−2} − 147.55 dB. (7)

For the proposed Scheme 2 in Fig. 3, the UAV is charged while flying over the horizontal distance of

L1 meters on both sides of the BS. We denote each L1 meters as one flight. Then, the flights within a

horizontal distance of L1 on both sides of the BS are symmetric, and thus we only need to consider the

process within one L1 meter distance. In essence, Scheme 2 charges and discharges the UAV while it

is flying instead of hovering. In order to simplify the calculation, we use the average speed of vloading

to approximatively calculate the energy obtained during the load stage. Since the UAV flies at a fixed

speed of vloading around the BS within a distance of L1 meters during loading and we denote the instant

time within L1 meters as t, the instantaneous transmission distance at time instant t from the BS to the

UAV can be expressed as

ds2−1 (t) =

√
(Hloading −Ht)

2 + (L1 − vloadingt)2, (8)

where Hloading > Ht and L1 ≥ vloadingt so that 0 ≤ t ≤ L1

vloading
, and ds2−1 (t) ≥ 1 m. Similarly, if the

UAV flies at a fixed speed of vcharging around the UGV within a distance of L2 meters during charging,

the instantaneous transmission distance at time instant t from the UAV to the UGV can be expressed as

ds2−2 (t) =

√
(Hcharging −Hr)

2 + (L2 − vchargingt)2, (9)

where Hcharging > Hr and L2 ≥ vchargingt so that 0 ≤ t ≤ L2

vcharging
, and ds2−2 (t) ≥ 1 m. Accordingly,

the instantaneous transmission loss from the BS to the UAV can be expressed as

Ls2−1
FS(dB) (t) = 20 lg (fc) + 20 lg (ds2−1 (t))− 147.55 dB, (10)

and the instantaneous transmission loss from the UAV to the UGV can be expressed as

Ls2−2
FS(dB) (t) = 20 lg (fc) + 20 lg (ds2−2 (t))− 147.55 dB. (11)

B. UAV Internal Loss

In [40], the authors reported some computational models for the energy consumed by a UAV for its

various maneuvers (i.e. hovering, acceleration, deceleration and flying) based on experimental results. We

will use these models here. Assume that the energy consumption during UAV acceleration is Eacc, and
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during UAV deceleration is Edec. Also, Ehover and Ev denote energy consumption during hovering and

during normal flight at an average speed of v, respectively. According to the results in [40], the internal

energy consumption at the UAV during different maneuvers can be calculated as

Ehover = Phovert1, (12)

Eacc = Pacc (t2 − t1) , (13)

Ev = Pv (t3 − t2) , (14)

Edec = Pdec (t4 − t3) , (15)

where Phover (watt) is the hovering power, Pacc (watt) is the average acceleration power, Pv (watt) is

the average flying power at a speed of v and Pdec (watt) is the average deceleration power. Also, t1 is

the hovering time at a speed of 0, t2 − t1 is the acceleration time, t3 − t2 is the flying time at a speed

of v, and t4 − t3 is the deceleration time. In this case, the UAV hovers for t1 seconds, followed by an

acceleration for t2 − t1 seconds to a fixed speed of v, a flying time of t3 − t2 and finally a deceleration

for t4 − t3 seconds to become static again.

For the proposed Scheme 1 in Fig. 2, the UAV hovers above the BS for charging, then accelerates to

a constant speed of v to deliver the energy. When it is close to the UGV, the UAV decelerates and then

hovers above the UGV to deliver the energy before flying back to the BS. Thus, hovering, acceleration,

deceleration and flying are the only four operations that need to be considered for this scheme.

For the proposed Scheme 2 In Fig. 3, the UAV flies at a fixed speed of vloading around the BS within

a distance of L1 meters for charging, then accelerates to a constant speed of v to carry the energy.

When it flies close to the UGV, it decelerates to a fixed speed of vcharging and within a distance of L2

meters for energy delivery before flying back to the BS. Hence, flying (i.e. at a fixed speed of vloading,

v and vcharging, respectively), acceleration and deceleration are the only three operations that need to be

considered for this scheme. No hovering is performed in this case.

C. RF-to-DC Conversion Loss

In [41] and [42], the authors derived new models for the RF-to-DC conversion efficiency. Because

the linear model has been adopted in most existing works and it can simplify the calculation without

affecting the simulation results, we will use it here. Assume that the input power is denoted as Pin, and

that the constant RF-to-DC conversion efficiency is η. Therefore, the RF-to-DC conversion model can

be expressed as

Pout = η ∗ Pin. (16)
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III. THE PROPOSED NEW SCHEMES

In this section, two wireless charging schemes using RF energy harvesting are proposed, where a UAV

used as a carrier is studied. Specifically, four different cases, a conventional scheme with a single UGV,

the new schemes with a single UAV, the conventional scheme with multiple UGVs and the new schemes

with multiple UGVs, will be compared and discussed.

A. Conventional scheme with a single UGV

In this case, the RF energy from the BS is harvested by a single UGV located L meters away directly,

as shown in Fig. 1. Accordingly, the received RF power at the UGV can be expressed as

Pugv = Pt +Gt +Gugv − 20lg {fc} − 20lg {d0}+ 147.55−X dB, (17)

where Pugv (dB) is the received RF power at the UGV, Pt (dB) is the transmit power, Gt and Gugv are

the transmitting antenna gain and receiving antenna gain (dBi), respectively, X is the extra power loss,

d0 =
√
L2 + (Ht −Hr)

2 is the transmission distance between the BS and the UGV, and the transmission

loss LcFS(dB) in (1) has been used here. If the charging time is denoted as Tloading, the converted DC

energy at the UGV is

Eugv DC = ηEugv RF = η10
Pugv

10 Tloading, (18)

where η is the constant RF-to-DC conversion efficiency defined in (16) and Tloading is the loading time

which equals to the charging time in this case. Note that, when Pt and Tloading are fixed, the received

DC energy is affected by the path loss, which is mainly determined by the transmission distance.

B. New Schemes with a Single UGV

For the new schemes. a UAV is used to charge the remote wireless sensors after it is charged by the

BS. This method reduces the transmission distance and therefore may be more energy-efficient due to

the reduced path loss. In this case, the UAV has to hover above the BS to be charged by the BS. After

it has been charged, it flies towards the UGV and then hovers above the UGV to charge the UGV. Fig.

2 and Fig. 3 illustrate the process of the proposed new schemes.

From Fig. 2 and Fig. 3, the process of the new schemes can be divided into three stages: load, carry

and charge, which is similar to the paradigm in [33] for data ferry. In the first stage, the UAV is charged

with certain amount of energy by the BS. This is the load stage. The second stage is the carry stage in

which the UAV carries the stored energy and flies towards the UGV. Then, the UGV will be powered

by the UAV. This is the charge stage. We consider the two different schemes in the following.

1) The Proposed Scheme 1 in Fig. 2:
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a) Load: During the first stage, the UAV stays static above the BS at a height of Hloading. In this

case, the received RF power at the UAV can be expressed as

P s1uav−r = Pt +Gt +Guav − Ls1−1
FS(dB), (19)

where Guav is either transmitting or receiving antenna gain of the UAV and P s1uav−r (dB) is the received

RF power at the UAV. Ls1−1
FS(dB) is the transmission loss from the BS to the UAV in (6). Then, the received

DC energy is

Es1uav−DC = η10
Ps1uav−r

10 T s1loading. (20)

Note that, during the load stage, the UAV hovering operation consumes energy as well, because it has

to stay above the BS with a power of Phover (dB). This energy consumption can be calculated as

Es1hover = PhoverT
s1
loading. (21)

Besides, in order to ensure that the UAV does not fall and is in the state of charge, the received DC

power should be greater than the hovering power Phover. i.e., η10
Ps1uav−r

10 > Phover.

b) Carry: During the second stage, an acceleration-fly-deceleration operation of the UAV will be

performed to carry energy to the destination. The energy consumption of the carry stage can be calculated

as

Es1fly−to =


Es1acc + Es1v + Es1dec = P s1acc

(v
a

)
+ P s1v

(
L− v2

a

)
v

+ P s1
dec

(v
a

)
, L >

v2

a
,

Es1acc + Es1v + Es1dec = P s1acc

(v
a

)
+ P s1

dec

(v
a

)
, L ≤ v2

a

(22)

where v is the final constant flight speed, a is the acceleration and L is the total distance from the BS to

the UGV. Note that, there is no carry stage when L ≤ v2

a from (22). Since the UAV needs to fly back to

its initial position after each delivery, to ensure that the UAV has enough energy to fly back, the energy

consumption for flying back should at least be the same as that for flying to the destination. Thus, this

energy consumption of flying back can be given by Es1fly−back = Es1fly−to, assuming that the flying back

operation is symmetric to the flying to operation.

c) Charge: In the third stage, the UAV is hovering above the UGV at a height of Hcharge , which is

chosen to be the same as the height of loading Hloading in the first stage to reduce flight distance and

simplify the flight process because we are not aiming at trajectory optimization [10] – [16]. Then, the

UAV charges the UGV with a transmitted RF power of P s1uav−t (dB). In this way, the received RF power

at the UGV can be derived as

P s1ugv = P s1uav−t +Guav +Gugv − Ls1−2
FS(dB), (23)
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where Ls1−2
FS(dB) is the path loss between the UAV and the UGV given by (7) before. The final amount

of energy that is available for charging can be derived as

Es1available = Es1uav−DC − Es1hover − Es1fly−to − Es1fly−back. (24)

Note that, during the charge stage the UAV also consumes energy with a power of P s1hover for hovering,

similar to the load stage (i.e. hovering consumption). Thus, the charging time in this stage can be

calculated as:

T s1charging =
Es1available

10
Ps1
uav−t

10 + Phover

. (25)

As a result, the energy that the UGV can receive is derived as

Es1ugv−DC = ηEs1ugv RF = η10
Ps1ugv

10 T s1charging. (26)

Comparing (18) and (26), it can be seen that the conventional scheme is mainly affected by the transmis-

sion distance, while the proposed Scheme 1 is mainly affected by the UAV’s own energy consumption

and the RF-to-DC conversion (i.e. from the BS to the UAV and from the UAV to the UGV) efficiency.

The proposed Scheme 1 saves energy by significantly reducing the transmission distance but has extra

energy consumption due to hovering and flight operations. Thus, there might exist a trade-off between

the transmission loss and the extra UAV operations. We will investigate this trade-off by finding the

transmission distance beyond which the proposed Scheme 1 will have advantages over the conventional

direct transfer.

To do this, we need to study the critical distance beyond which the cost of UAV-enabled WPT is

lower than the transmission loss caused by path loss in the conventional direct transfer. Using (18) for

the conventional direct transfer scheme, one has

Eugv−DC =
ηTloading10

Pt+Gt+Gugv−20lg{fc}+147.55−X
10

10
20lg{√L2+(Ht−Hr)2}

10

=
ηTloading10

Pt+Gt+Gugv−20lg{fc}+147.55−X
10

L2 + (Ht −Hr)
2 . (27)

Since all parameters in (27) are constants except L, denote A = Tloading10
Pt+Gt+Gugv−20lg{fc}+147.55dB

10 and

let H = Ht −Hr, one has

Eugv−DC = η
A

L2 +H2
. (28)

Similarly, using (26) for the proposed Scheme 1, one has

Es1ugv−DC = η10
Ps1ugv

10
Es1available

10
Ps1
uav−t

10 + Phover

. (29)

Denote B = 10
Ps1ugv

10 , C = η10
P s1uav−r

10 T s1loading−Es1hover−2
(
P s1acc(

v
a) + P s1

dec
( va)
)

, D = 10
Ps1uav−t

10 + Phover,

E = 2Pv
v and F = v2

a . Then from (29), one has

Es1ugv−DC = η
B

D
(C − E (L− F )) . (30)
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Using (28) and (30), the critical distance can be found by letting Eugv−DC = Es1ugv−DC and Tloading =

T s1loading (i.e. assuming that the energy released from the BS to UAV is fixed.) to give

A

L2 +H2
=
B

D
(C − E (L− F )) . (31)

It can be seen that (31) is an equation of the distance L only, and it can be solved by transforming it

using the Cardano formula. The solution to (31) can be found in Appendix A. This gives the two critical

distances as

cd1 = 2
3

√√
−
(p

3

)3
cos

(
1

3
arccos

(
−q

2

)
+ 240◦

)
, (32)

and

cd2 = 2
3

√√
−
(p

3

)3
cos

(
1

3
arccos

(
−q

2

))
− b

3a
. (33)

where cd1 < cd2, a = BE, b = − (BC +BEF ), c = BEH2, d = −BCH2 − BEFH2 + AD,

p = c
a −

b
3a2 , q = 2b3

27a3 − bc
3a2 + d

a , and A, B, C, D, E, F , H are defined as before. Accordingly, the

critical range is derived as

cd1 ≤ critical range ≤ cd2. (34)

2) The Proposed Scheme 2 in Fig. 3:

Now consider the proposed Scheme 2 in Fig. 3. In this scheme, instead of hovering above the BS in

a static position for charging or discharging, the UAV starts at L1 meters to the right of the BS and flies

along both sides of the BS within a distance L1 meters to be charged, and similarly within a distance of

L2 meters to be discharged. The main reason for this is that it is found that the hovering power Phover

is higher than the flying power Pv when the flying speed of v is relatively low [31] so that it may save

more energy if the UAV stays mobile than staying static. The process of Scheme 2 in Fig. 3 can also be

divided into three stages, load, carry and charge.

a) Load: During this stage, within a horizontal distance of L1 meters on both sides of the BS, the

UAV is being charged. In order to ensure that the received power at the UAV is not too small or the

amount is reasonable when the UAV is located at a horizontal distance of L1 meters from the BS, we

set a threshold of Pε, so that the maximum value of L1 when P s2uav−r = Pε can be calculated according

to

P s2uav−r (t) = Pt +Gt +Guav − L
s2−1

FS(dB) (t) = Pε dB, (35)

where L
s2−1

FS(dB) (t) is the transmission loss from the BS to the UAV given in (10). The threshold of Pε

can be changed to any other value, depending on the application. Thus, the maximum L1 can be derived

as

L1 =

√
10

Pt+Gt+Guav−20lg{fc}+147.55−Pε
10 −H1

2, (36)
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Fig. 4. Different loading cases (Scheme 2).

where H1 = Hloading − Ht. Also, we assume that the UAV flies at a fixed speed of vloading during

loading. The instantaneous distance between the UAV and the BS within a horizontal distance of L1

meter is

ds2−1 (t) =

√
H1

2 + (L1 − vloadingt)2, (37)

where L1 ≥ vloadingt so that 0 ≤ t ≤ L1

vloading
. Accordingly, the received instantaneous power at the UAV

can be expressed as

P s2uav−r (t) = Ω− 20 lg (ds2−1 (t)) dB. (38)

Where Ω = Pt+Gt+Guav−20 lg (fc) + 147.55. Denote tmax = L1

vloading
as the maximum flight time on

both sides of the BS. Since the received power at the UAV is changing with the time due to the flight,

the total energy loaded during this time is

Etmax = η10
Ω
10

∫ tmax

0

1
H1

2+(L1−vloadingt)2dt = η10
Ω
10

[
ξtan−1 vloadingtmax−L1

H1
− ξtan−1−L1

H1

]
, (39)

where ξ = 1
vloadingH1

, and we have used the integral in [43, eq. (2.103.4)]. It can be seen that the flight

of the UAV is symmetric about the centre point right above the BS. In other words, the time that is taken

to fly to the right or the left is the same and the total energy loaded is also the same. It takes four flights

for the UAV to complete a cycle and go back to the starting position. Thus, the total energy loaded for a

complete cycle is 4Etmax . Also, denote the total loading time as T s2loading, Thus, it takes
⌈
T s2loading
tmax

⌉
flights

to finish the energy loading. Several cases can be discussed as shown in Fig. 4.

In the first case, in addition to the full cycles, there is some time t′ (t′ < tmax) left due to an incomplete

flight when the UAV flies towards the BS. We calculate the energy loaded within t′ that is less than tmax

as

Es2−1
t′ = η10

Ω
10

∫ t′

0

1
H1

2+(L1−vloadingt)2dt = η10
Ω
10

[
ξtan−1 vloadingt′−L1

H1
− ξtan−1−L1

H1

]
, (40)



14

where 0 ≤ t′ < tmax. In this case, denote the total number of full cycles as n4tmax . Then , we can

calculate the total energy loaded within T s2loading as

Es2uav−DC = n4tmax ∗ 4Etmax + Es2−1
t′ . (41)

In the second case, there is tmax + t′ left due to one complete flight and one incomplete flight. For

time t′, since the UAV flies away from the BS, we calculate the energy loaded for this time as

Es2−2
t′ = η10

Ω
10

∫ t′

0

1
H1

2+(vloadingt)
2dt = η10

Ω
10

[
1

vloadingH1
tan−1

(
t′ vloadingH1

)]
, (42)

where we have also used the integral [43, eq. (2.103.4)] in (42) Thus, the total energy loaded in this case

can be calculated as

Es2uav−DC = n4tmax ∗ 4Etmax + Etmax + Es2−2
t′ . (43)

In the third case, there is 2tmax+t′ left due to two complete flights and one incomplete flight. According

to the Fig. 4, the total energy loaded in this case can be calculated as

Es2uav−DC = n4tmax ∗ 4Etmax + 2Etmax + Es2−1
t′ . (44)

In the last case, there is 3tmax + t′ left due to three complete flights and one incomplete flight. Thus,

the total energy loaded in this case can be calculated as

Es2uav−DC = n4tmax ∗ 4Etmax + 3Etmax + Es2−2
t′ . (45)

The following Algorithm 1 can be used to calculate the total energy loaded by the UAV during the first

stage with a loading time of T s2loading in different cases. Denote N as the total number of flights within

T s2loading, n4tmax as the total number of full cycles and ntmax as the number of complete flights beyond

the number of full cycles. Note that, during the load stage the UAV also consumes energy for loading at

a fixed speed of vloading with a power of Pvloading (watt). Thus, the consumption during load stage can

be derived as

Es2vloading = PvloadingT
s2
loading. (46)

2) Carry: In this stage, after being charged by the BS in the above four different cases, an acceleration-

fly-deceleration operation of the UAV will be performed to carry energy. Here is a summary of operations

—the UAV starts to accelerate from vloading to a higher flight speed of v to deliver the energy. Then, it

starts to decelerate from v to vcharging. As a result, the energy consumption of the carry stage can be

expressed as

Es2fly−to =


Φ + Pvloadingt

′,

Φ + Pvloading
(
tmax − t′

)
.

(47)
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Algorithm 1 Calculate the total energy loaded within T s2loading

1: Calculate the total number of flights for a loading N =
⌊
T s2loading
tmax

⌋
(floor function)

2: Calculate the number of full cycles during the loading process n4tmax =
⌊
N
4

⌋
(floor function). Each

full cycle has four flights.

3: Exclude the number of flights during loading that does not make a full flight t′ = T s2loading−N ∗tmax.

4: The total energy loaded during T s2loading can be calculated as:

5: if ntmax = 0 or ntmax = 2 then

6: Es2uav−DC = n4tmax ∗ E4tmax + ntmax ∗ Etmax + Es2−1
t′

7: else if ntmax = 1 or ntmax = 3 then

8: Es2uav−DC = n4tmax ∗ E4tmax + ntmax ∗ Etmax + Es2−2
t′

9: end if

Where Φ = P s2acc

(
v−vloading

a

)
+P s2

dec

(
v−vcharging

a

)
+P s2v

(
L−(L1+L2)−v

2−vloading2

a

)
v and L− (L1 + L2)−

v2−vloading2

a > 0. Otherwise, there is no carry stage, similar to what discussed in (22), Pvloadingt′ and

Pvloading (tmax − t′) in (47) are the consumption during the rest of the load stage caused by incomplete

flights when ntmax = 0, 2 and ntmax = 1, 3 respectively.

3) Charge: In the third stage, we firstly derived the received RF power at the UGV as

P s2ugv = P s2uav−t +Guav +Gugv − Ls2−2
FS(dB) (t) , (48)

where Ls2−2
FS(dB) (t) is the transmission loss from the UAV to the UGV given in (11). And the instantaneous

distance in this case is given as

ds2−2 (t) =

√
H2

2 + (L2 − vchargingt)2, (49)

where H2 = Hcharging−Hr, Hcharging > Hr, L2 ≥ vloadingt so that 0 ≤ t ≤ L2

vloading
, L2 is the maximum

distance when t = 0 by letting P s2ugv = −33 dBm to give

L2 =

√
10

Ω′−16

10 −H2
2. (50)

Where Ω′ = P s2uav−t + Guav + Gugv − 20 lg (fc) + 147.55. Hence, the received instantaneous power at

the UGV can be expressed as

P s2ugv (t) = Ω′ − 20 lg (ds2−2 (t)) . (51)
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Fig. 5. Different charging cases (Scheme 2).

Similar to the load stage, denote the t′max = L2

vcharging
as the maximum flight time on both sides of the

UGV. Since the received power at the UGV is changing with the time because of the flight. the total

energy received at the UGV during this time is

Et′max = η10
Ω′

10

∫ t′max

0

1
H2

2 +(L2−vchargingt)2dt = η10
Ω′

10

[
ξ′tan−1 vchargingt′max−L2

H2
− ξ′tan−1−L2

H2

]
(52)

where ξ′ = 1
vchargingH2

and [43, eq. (2.103.4)] is used here again. Note that, in order to make sure that

the UAV can fly back to its initial position, the energy consumption for flying back, which is denoted as

Es2fly−back, need to be considered. Then, Es2fly−back can be calculated as

Es2fly−to =


Φ′ + Pvchargingt

′′,

Φ′ + Pvcharging
(
t′max − t′′

)
,

(53)

where Φ′ = P s2acc

(
v−vcharging

a

)
+ P s2

dec

(
v−vloading

a

)
+ P s2v

(
L−(L1+L2)−v

2−vcharging2

a

)
v , L − (L1 + L2) −

v2−vcharging2

a > 0, Pvchargingt′′ and Pvcharging(t′max− t′′) in (53) are the power consumption during the rest

of the charge stage due to incomplete flights when nt′max = 0, 2 and nt′max = 1, 3, respectively. However,

it is difficult to calculate Es2fly−back without knowing t′′, because t′′ is derived from Es2available which is

derived assuming knowledge of Es2fly−back. Thus, for convenience and in order to make sure the UAV

has enough energy for flying back, the upper bound time t′max is used, i.e. Pvchargingt′max, to calculate

the power consumption in the rest of the charge stage in Section IV. Consequently, the available energy

for charging can be derived as

Es2available = Es2uav−DC − Es2vloading − Es2fly−to − Es2fly−back. (54)

Fig. 5 shows different charging cases. It can be also seen that the flight of the UAV is symmetric about

the centre point right above the UGV. Thus, the time taken to fly to the right or the left is the same and

the total energy to be charged is the same as well. It takes four flights for the UAV to complete a cycle
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and go back to the initial position. Therefore, the total energy received at the UGV for a complete cycle

is 4Et′max . Denote the total charging time as T s2charging and in this case it can be calculated as

T s2charing =
Es2available

10
Ps2uav−t

10 + Pvcharging

. (55)

Thus, it takes
⌈
T s2charging
t′max

⌉
flights to finish the energy discharging. Several cases in Fig. 5 can be discussed.

In the first case, there is only t′′ (t′′ < t′max) seconds left for an incomplete flight when the UAV flies

towards the UGV. The energy received at the UGV during t′′ is

Es2−3
t′′ = η10

Ω′

10

∫ t′′

0

1
H2

2 +(L2−vchargingt)2dt = η10
Ω′

10

[
ξ′tan−1 vchargingt′′−L2

H2
− ξ′tan−1−L2

H2

]
, (56)

where H2 = Hcharging−Hr and 0 ≤ t′′ < t′max. Denote the total number of full cycles as n4t′max . Then,

we can calculate the total energy discharged during T 2
charging as

Es2ugv−DC = n4t′max ∗ 4Et′max + Es2−3
t′′ . (57)

In the second case, there is t′max + t′′ left due to one complete flight and one incomplete flight. For

time t′′, since the UAV flies away from the UGV, we calculate the energy discharged during t′′ as

Es2−4
t′′ = η10

Ω′

10

∫ t′′

0

1
H2

2+(vchargingt)
2dt = η10

Ω′

10

[
ξ′tan−1

(
t′′ vchargingH2

)]
, (58)

where 0 ≤ t′′ < t′max. In this case, the total energy discharged can be calculated as

Es2ugv−DC = n4t′max ∗ 4Et′max + Et′max + Es2−4
t′′ . (59)

In the third case, there is 2t′max + t′′ left due to two complete flights and one incomplete flight.

According to Fig. 5, the total energy discharged in this case can be calculated as

Es2ugv−DC = n4t′max ∗ 4Et′max + 2Et′max + Es2−3
t′′ . (60)

In the last case, if there is 3t′max + t′′ left due to three complete flights and one incomplete flight,

Thus, the total energy discharged in this case can be calculated as

Es2ugv−DC = n4t′max ∗ 4Et′max + 3Et′max + Es2−4
t′′ . (61)

Algorithm 2 can be used to calculate the total energy received by the UGV during the charge stage

within time T s2charging. Denote N ′ as the total number of flights within T s2charging, n4t′max as the total

number of full cycles and nt′max as the number of complete flights beyond the number of full cycles.
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Algorithm 2 Calculate the total energy charged within T s2charging

1: Calculate the total number of flights for charging process N ′ =
⌊
T s2charging
t′max

⌋
(floor function)

2: Calculate the number of full cycles during charging process n4t′max =
⌊
N ′

4

⌋
(floor function). Each

full cycle has four flights.

3: Exclude the number of flights during charging that does not make a full cycle t′′ = T s2charging −N ′ ∗

t′max

4: The total energy charged within T s2charging can be calculated as

5: if nt′max = 0 or nt′max = 2 then

6: Es2ugv−DC = n4t′max ∗ E4t′max + nt′max ∗ Et′max + Es2−3
t′′

7: else if nt′max = 1 or nt′max = 3 then

8: Es2ugv−DC = n4t′max ∗ E4t′max + nt′max ∗ Et′max + Es2−4
t′′

9: end if

Next, We will investigate the trade-off by finding the transmission critical distance beyond which the

proposed Scheme 2 has advantages over the conventional direct transfer. According to Algorithm 2, the

total energy harvested by the UGV with T s2charging can be expressed as

Es2ugv−DC =

⌊
bΨc

4

⌋
∗ E4t′max + (bΨc mod 4) ∗ Et′max + (((bΨc mod 4) + 1) mod 2) ∗ Es2−3

t′′

+ ((bΨc mod 4) mod 2) ∗ Es2−4
t′′ ,

(62)

where Ψ =
T s2charging
t′max

. Using (28) and (62) (i.e.Eugv−DC = Es2ugv−DC), we have

η
A

L2 +H2
=

⌊
bΨc

4

⌋
∗ E4t′max + (bΨc mod 4) ∗ Et′max + (((bΨc mod 4) + 1) mod 2) ∗ Es2−3

t′′

+ ((bΨc mod 4) mod 2) ∗ Es2−4
t′′ .

(63)

It is not easy to solve the above equation. The critical distance in Scheme 2 can be obtained numerically.

We next consider the more general case when multiple UGVs are charged.

C. Conventional Scheme with Multiple UGVs

In this case, n UGVs need to be powered. Assume that these UGVs are very close to each other so

that their distances to the BS are approximately the same. Then, the total energy harvested by n UGVs

in this case can be calculated as

Eugvs−DC =

n∑
i=1

Eugvi−DC =

n∑
i=1

η10
Pugvi

10 Tloading, (64)
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where i = 1, 2, ..., n index different UGVs, Pugvi is the received power of the i-th UGV, Eugvi RF is the

received RF energy of the i-th UGV and Eugvi−DC is the converted DC energy of the i-th UGV. One

has

Pugvi = Pt +Gt +Gugvi − 20lg {fc} − 20lg {d0}+ 147.55−X dB, (65)

Eugvi RF = 10
Pugvi

10 Tloading, (66)

Eugvi DC = ηEugvi RF . (67)

D. The Proposed Schemes with Multiple UGVs

Similar to the above case, there are n UGVs in this case. They are approximately of the same distance

to the UAV. For the proposed Scheme 1, the total energy harvested by n UGVs can be derived from (26)

as:

Es1ugvs−DC =

n∑
i=1

Es1ugvi−DC =

n∑
i=1

η10
Ps1ugvi

10 T s1charging, (68)

where i = 1, 2, ..., n index different UGVs. For the proposed Scheme 2, the total energy harvested by n

UGVs can be derived based on Algorithm 2 as

Es2ugvs−DC =

n∑
i=1

⌊
bΨc

4

⌋
∗ E4t′max + (bΨc mod 4) ∗ Et′max + (((bΨc mod 4) + 1) mod 2) ∗ Es2−3

t′′

+ ((bΨc mod 4) mod 2) ∗ Es2−4
t′′ .

(69)

It is noted that the case when multiple UGVs are not close to each other is an interesting issue for future

works. Since this issue will lead to many optimization problems, such as optimal hovering position,

trajectory design and power optimization, etc., it is beyond the scope of this work.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical examples are presented to show the energy performances of the proposed

schemes. First, we compare the conventional scheme and the proposed schemes for a single UGV. Then,

we expand the discussion to the case of multiple UGVs. In the comparison, we set Pt = 35.68 dBw,

Gt = 15 dBi [44], Guav = 2 dBi, Gugv = 5 dBi, P s1uav−t = P s2uav−t = 40 dBm, Hloading = 6 m

Ht = 5 m, Hr = 0.5 m, fc = 915 MHZ, Tloading = T s1loading = T s2loading = 1200 s, Phover = 32.65 W ,

Pv = P s1v = P s2v = 20 W , P s1acc = P s1dec = P s2acc = P s2dec = 28 W , V = 10 m/s, a = 1 m/s2, X = 18 dB

and the RF-to-DC conversion efficiency η = 0.6, if not stated otherwise. Our expressions are general

enough for arbitrary parameters and hence, these values are only used for illustration purpose. The value

of the distance L is set from 100 m to 1600 m with a step size of 25 m.
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Fig. 6. The comparison of the proposed Scheme 1 and Scheme 2.

Fig. 6 shows the amount of the received energy at the UGV versus distance L. Firstly, we consider the

proposed Scheme1. One can see that, when the total energy transmitted by the BS is fixed, the energy

received by the UGV decreases with the distance in both the conventional scheme and the proposed

Scheme 1 because of the path loss and UAV internal loss. However, as seen in Fig. 6, the total energy

obtained in the conventional scheme decreases exponentially with the transmission distance. This is due

to the fact that the path loss is a logarithmic function of transmission distance. Beyond a transmission

distance of about 1500 m, the received energy is very close to 0. On the other hand, the straight line

with asterisks representing the proposed Scheme 1 shows that its received energy decreases linearly with

a fixed slope and hence is a linear function of the transmission distance. Thus, UAV-enabled WPT can

improve the energy transfer efficiency greatly. As shown in Fig. 6, there are two intersection points

between the conventional scheme and the proposed Scheme 1. The corresponding X coordinate is the

critical distance, which is [192.99 m 1569.62 m] in this case derived from (32) and (33). Thus, when the

transmission distance is within this range, the proposed Scheme 1 shows superiority over the conventional

direct transfer scheme.

Next, we investigate the proposed Scheme 2. In this case, we set Pvloading = 25.5 W, and the minimum

value of P s2uav−r is set to 21 dBW (i.e. Pε = 21 dBW ). Fig. 6 also compares the conventional scheme

and the proposed Scheme 2 represented by the straight line with plus signs. Similar observations can be

made. Again, the received energy in the conventional scheme decreases exponentially with the distance,

while it decreases linearly in the proposed Scheme 2. Also, compared with the Scheme 1, we can see

that the energy loaded from the BS of Scheme 2 is higher than that of Scheme 1. For Scheme 1, the UAV

hovers over the BS during loading. Although the path loss between the UAV and the BS is minimum and
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1, 4 and 8 respectively.)

remains unchanged, it consumes larger energy to keep hovering with a power of Phover. For Scheme 2,

the UAV no longer hovers over the BS with a power of Phover, but flies around the BS during loading

with at a fixed speed of Vloading, which means it suffers from larger path loss with longer distance. The

path loss becomes larger when the UAV flies farther away from the BS. Although the distance between

the UAV and the BS changes with time and in general is larger than that in Scheme 1, the propulsion

power of Pvloading is smaller than Phover. From Fig. 6, we can see that the critical range of Scheme 2 is

between 188 m and 1490 m. This critical distance is smaller than that in Scheme 1.

From Fig.6, one can see that the critical range in Scheme 1 is between 192.99 m and 1569.62 m, and

that in Scheme 2 is between 188 m and 1490 m. The range in Scheme 2 is smaller than that in Scheme

1, which means the Scheme 2 has advantages than Scheme 1 by having shorter distances. As shown

in this figure, there is one intersection point between Scheme 1 and Scheme 2. The corresponding X

coordinate value is about 942 m, beyond which Scheme 1 has better efficiency than Scheme 2. This is

due to the fact that, although the energy loaded by the UAV in Scheme 2 from the BS during load stage

is larger than that of Scheme 1 since the Pvloading is small than Phover, it suffers from an even larger path

loss during the charge stage. Although the UAV in Scheme 1 suffers from an even larger consumption

of hovering in these two stages. the path loss between the UAV and the UGV is minimum and remains

unchanged. Next, we will examine the effects of different system parameters on the critical range.

Fig. 7 uses the proposed Scheme 1 as an example to compare the conventional scheme and the proposed

Scheme 1 for multiple UGVs. We set the number of the UGVs to 1, 4 and 8 using (64) and (68). As
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Fig. 8. The effects of RF-to-DC conversion efficiency η on the proposed scheme 1 performance for different flight

heights.

shown in this figure, the curves in Fig. 7 have exactly the same trend as those in Fig. 6, except that the

rate of decrease is proportional to the number of UGVs. There are six intersection points in the figure.

Note that the critical range observed in Fig. 6 remains the same in this figure, as all the parameters are

the same except for the number of UGVs but this number does not change the intersection points.

Fig. 8 examines the effect of the RF-to-DC conversion efficiency η on the critical distance. First, one

can see that the critical distance decreases with η. This is because a higher conversion efficiency leads to

more loaded or charged energy and hence, gives the proposed Scheme 1 more advantages with a shorter

critical distance. It can also be seen that the higher the flight altitude is, the greater the critical distance

will be. In these curves, we consider the starting point of the critical range. When the transmission

distance exceeds this critical distance without exceeding the critical range, the Scheme 1 shows better

energy transfer efficiency performance. The same performance can also be seen for Scheme 2.

Fig. 9 examines the effect of the flight height on the critical distance. The height of the BS is assumed

to be 5 m, and the height of the UGV is set as 0.5 m. First, one can see that the critical distance

increases with the flight height of loading. This is because a lower height of loading leads to more

loaded or charged energy and thus, gives the proposed Scheme 1 and Scheme 2 more advantages with

a shorter critical distance. When the loading height increases, the path loss increases. As a result, the

energy obtained by the UAV is reduced, which is unfavourable to the proposed schemes. Note that, the

conventional direct transfer scheme is the existing algorithm. There is no other energy ferry work in the

literature.
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Fig. 9. The effects of the loading height of the UAV on the proposed Scheme 1 performance for different RF-to-DC

conversion efficiency η.

V. CONCLUSION

In this paper, we have studied the WPT efficiency in UAV-enabled wireless networks. We have proposed

two schemes for UAV-enabled WPT. By solving the energy equations, critical ranges have been derived.

Numerical results have shown that the energy received by the UGV decreases with the transmission

distance because of the path loss and UAV internal loss in both schemes. Within the critical range, the

proposed two schemes have been shown to have better performances than the conventional scheme. The

lower the loading height or the larger the RF-to-DC conversion efficiency is, the smaller the critical

distance will be. To improve the performance of the proposed schemes further, one needs to carefully

adjust parameters, such as task time, antenna gain, transmit power, energy conversion efficiency, battery

capacity on the UAV, and the UAV velocity, which could require optimization with extra costs.

APPENDIX A SOLUTION TO (31)

In this appendix, we solve the equation to derive the exact critical range in which it shows the superiority

for the proposed Scheme 1. Rewriting equation (31), we can transform it into a standard form of a cubic

equation as below:

BEL3 − (BC +BEF )L2 +BEH2L−BCH2 −BEFH2 +AD = 0 (70)

Because A, B, C, D, E and B are constants, (70) can be derived in an easier form via the constant

transformation a = BE, b = − (BC +BEF ), c = BEH2 and d = −BCH2 −BEFH2 +AD.

aL3 + bL2 + cL+ d = 0 (71)
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For (71), we divide both sides of the equation by a simultaneously, and then it can be transformed into

the form of Cardano formula using the variable transformation L = y − b
3a as

y3 +

(
c

a
− b2

3a2

)
y +

(
2b3

27a3
− bc

3a2
+
d

a

)
= 0. (72)

Accordingly, the discriminant of the equation root can be expressed via variable transformation p = c
a−

b
3a2

and q = 2b3

27a3 − bc
3a2 + d

a as

∆ =
(q

2

)2
+
(p

3

)3
(73)

It is not difficult to find that ∆ < 0 and p < 0 in this case. Therefore, three unequal real roots of the

equation (72) can be obtained according to the Cardano formula as

y1 = 2 3
√
r cos θ;

y2 = 2 3
√
r cos (θ + 120◦) ;

y3 = 2 3
√
r cos (θ + 240◦) .

(74)

where,

r =

√
−
(p

3

)3
, θ =

1

3
arccos

(
−q

2

)
(75)

Consequently, the three real roots of the equation (71) are

L1 = y1 −
b

3a
;

L2 = y2 −
b

3a
;

L3 = y3 −
b

3a
.

(76)

And the final solutions of the equation (71) after reorganizing are

L1 = 2
3

√√
−
(p

3

)3
cos
(

1
3 arccos

(
−q

2

))
− b

3a
;

L2 = 2
3

√√
−
(p

3

)3
cos
(

1
3 arccos

(
−q

2

)
+ 120◦

)
− b

3a
;

L3 = 2
3

√√
−
(p

3

)3
cos
(

1
3 arccos

(
−q

2

)
+ 240◦

)
− b

3a
.

(77)

By substituting the values of the parameters for simulation, we can find that L2 is a negative value

among the above three roots, which is obviously meaningless in our model because L is a positive

number. While L3 and L1 are the two values on both the left and right sides of the critical rang [L3 L1]

we expect, and L3 is seen as the critical distance.
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