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Abstract

Proactive interference (PI) is the tendency for information learned earlier to interfere with more recently learned
information. In the present study, we induced PI by presenting items from the same category over several trials. This
results in a build-up of PI and reduces the discriminability of the items in each subsequent trial. We introduced emotional
(e.g. disgust) and neutral (e.g. furniture) categories and examined how increasing levels of PI affected performance for both
stimulus types. Participants were scanned using functional magnetic resonance imaging (fMRI) performing a 5-item probe
recognition task. We modeled responses and corresponding response times with a hierarchical diffusion model. Results
showed that PI effects on latent processes (i.e. reduced drift rate) were similar for both stimulus types, but the effect of PI on
drift rate was less pronounced PI for emotional compared to neutral stimuli. The decline in the drift rate was accompanied
by an increase in neural activation in parahippocampal regions and this relationship was more strongly observed for neu-
tral stimuli compared to emotional stimuli.
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Introduction

One common scenario that makes forgetting cumbersome in
our daily lives is when we change our password and use the old
version the next time we sign into our account. Only after fail-
ing once or twice, we remember that we updated our password
and retrieve the new version. We often suffer from retrieval fail-
ures as such due to interference of previously learned yet irrele-
vant information (i.e. the old password), known as proactive
interference (PI). PI is a huge cost on our cognitive system, such
that forgetting from working memory (WM) could be minimum
if there was no interference (Jonides and Nee, 2006).

Considerable amount of research evaluated how we effi-
ciently retrieve relevant information from WM in the presence
of PI (Badre and Wagner, 2005; D’Esposito et al., 1999; Jonides
et al., 1998; Öztekin and Badre, 2011; Öztekin et al., 2012; Öztekin
and McElree, 2007). While these studies provided rich findings

suggesting that we adapt retrieval strategies and gear up with
controlled retrieval processes to resist PI, these effects were
mostly tested and demonstrated with neutral stimuli. However,
in many everyday situations we deal with emotionally loaded
stimuli. In a recent study, Mizrak and Öztekin (2016) showed
that PI affected WM retrieval dynamics for two different stimu-
lus types, emotionally arousing stimuli and neutral stimuli,
differently. They used the Recent-Probes task in which partici-
pants are asked to hold a small set of target items in memory
over a brief retention interval and then make a yes (i.e. member
of the study list) or no (i.e. not a member of the study list) deci-
sion to a recognition probe. The recognition probe can be an
item from the study list (target), an item that participants did
not encounter before (new lure), or an item that was presented
in the study list of the previous trial but not the current
one (recent lure). Typically, participants are more prone to
falsely recognize the recent lure as a target item compared to
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non-recent lures. The difference in false alarms between recent
lures and non-recent lures is therefore one behavioral measure
of PI. If the temporal information of the recent lure (the previous
study list) is recovered, PI can be overcome. Mizrak and Öztekin
(2016) used a response deadline procedure to investigate the full
time course of retrieval. The general pattern (Öztekin et al., 2012;
Öztekin and McElree, 2007, 2010) is that PI quickly builds up due
to item and/or familiarity information (i.e. the difference in false
alarm is largest early in the trial), but can be resolved later on
after retrieving source information (i.e. that a recent lure was
only shown in the previous trial). Their findings revealed an
interaction of PI time course and stimulus type: The buildup of
PI was slower for emotional compared to neutral trials, leading
to lower amounts of interference early in the retrieval process,
extending a growing body of evidence indicating that emotion
slows down forgetting from long term memory to WM
(Yonelinas and Ritchey, 2015). However, detrimental effects of
PI were stronger for emotional material later on which sug-
gested that temporal context retrieval in order to resolve PI was
weaker for emotional stimuli also extending the findings from
the literature showing emotion improves item memory while it
might impair context memory (Chiu et al., 2013). Overall, their
findings showed that PI effects for emotional and neutral stim-
uli are qualitatively similar (i.e. early build-up of PI followed by
a later phase of resolution) but differ only quantitatively.

The current study extends these results and investigates
whether the neural responses to PI and the latent cognitive
processes underlying PI are different for emotional and neutral
stimuli. Firstly, we aimed to replicate our previous results
(Mizrak and Öztekin, 2016) showing that the buildup effect of PI
on emotional stimuli was less pronounced compared to neutral
stimuli. This would suggest that the detrimental effects of PI on
memory performance would be weaker for emotional stimuli in
the presence of PI compared to neutral stimuli. Secondly, we
were interested whether the differences between stimulus
types are qualitative or merely quantitative. By qualitative dif-
ferences we mean different underlying processes, neural or cog-
nitive, that contribute to the memory decision for emotional
versus neutral stimuli. In contrast, quantitative differences
entail the same underlying processes and only differences in
the degree to which certain process react to increasing levels of
PI. Because previous studies consistently show greater amyg-
dala activity during encoding and retrieval of emotional stimuli
compared to neutral stimuli (reviewed in Kensinger and
Schacter, 2008), one could also expect such qualitative differen-
ces for our task.

Another way of inducing PI is by presenting categorically
similar items. In the release-from-PI (rfPI) paradigm Wickens
(1970) manipulated PI by presenting items from the same
semantic category within a block (or mini-block) of several trials
and by switching categories between the blocks of trials (note
that there was no break between blocks). Within one block, the
items share the same features and are highly similar to each
other which reduces the discriminability of the items (Nairne,
2002). More specifically, a particular cue that can be used in
retrieval will now be related to multiple items. Thus, the to-be-
retrieved items in the later trials of one block are subject to
more competition, which leads to a decline in performance
(i.e. slower responses and lower memory accuracy). It is
assumed that PI increases across trials within one block and the
decline of performance associated with increasing levels of PI
constitutes the PI effect. Studies that used the rfPI paradigm
consistently showed that performance recovers when the cate-
gory is changed and the items presented are dissimilar to the

items presented in previous trials (i.e. when the next block
begins; Öztekin and Badre, 2011; Öztekin et al., 2009; Öztekin
and McElree, 2007; Watkins and Watkins, 1975; Wickens, 1970).
To resolve PI participants need to selectively retrieve unique
details about the items beyond category membership.

In order to study the effects of PI on emotion, we used the
rfPI task and manipulated the content of the categories. We
introduced emotional (i.e. disgust and fear) and neutral
(i.e. furniture and kitchen utensils) categories and examined
how consecutively presenting items from either of these (sub-)
categories in one block affected memory performance and the
underlying neural mechanisms. For the two neutral categories
we expected participants to use the specific semantic category
(furniture or kitchen utensil) as a retrieval cue, whereas for
emotional items we expected participants to use the specific
emotion an item elicits (disgust or fear) as a retrieval cue. Since
the items that are presented in the trials within a block come
from the same category, participants would not benefit from
relying on the category membership performance would
decrease unless participants retrieve more diagnostic features
unique to the item.

Previous research has shown that emotion enhances source
memory for those features that are perceptually bound to the
item while it impairs contextual/relational details that are not
inherent to the item (see Chiu et al., 2013, for the opposing
effects of emotion on contextual memory; and Kensinger, 2009).
While contextual details of the item that were not bounded to
the item itself might be impaired for emotional items, visual
details that were central to the item can be remembered better
compared to neutral memoranda (see Kensinger et al., 2006).
Recently, Yonelinas and Ritchey (2015) proposed an account
that provides a partial explanation to the findings in this litera-
ture. They suggested that emotion enhances recollection of
item-emotion bindings mediated by amygdala, which might be
more resistant to forgetting than hippocampus-dependent
item-context bindings. Collectively, these findings suggest that
emotion might increase the likelihood of remembering item
details rather than context details. In the present study, emo-
tional stimuli might therefore be retrieved with more item-
related details than neutral stimuli which would lead to higher
availability of more diagnostic item features. Thus, we could
expect a less strong effect of PI (i.e. performance decline within
one block) for emotional compared to neutral items.

Previous studies investigating PI effects in WM point to two
important regions showing activation during successful item
recognition in the presence of PI; parahippocampal cortex (PHc)
within the medial temporal lobe (MTL) and left ventrolateral
prefrontal cortex (VLPFC). MTL activation is generally associated
with successful retrieval from long term memory (Diana et al.,
2007; see Eichenbaum et al., 2007 for a review) and has also been
shown to contribute the retrieval of WM representations
(Öztekin et al., 2009, 2010). VLPFC on the other hand has been
suggested as the critical region for the cognitive control of PI in
working memory. For instance, Öztekin et al. (2009) combined
the rfPI and recent-probe paradigms to conjointly induce PI by
semantic similarity (i.e. rfPI paradigm) and episodic familiarity.
Their results indicated that resolving interference, regardless of
its nature, required engaging both the PHc and left VLPFC
regions. Finally, Öztekin and Badre (2011) used the rfPI paradigm
to test the effects of PI on the encoding and retrieval of semanti-
cally related words. They showed that during retrieval, activa-
tion in the anterior part of left VLPFC (aVLPFC) varied as a
function of PI. Crucially, aVLPFC activation mediated the rela-
tionship between increasing levels of PI within one block of
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semantically related items and the behavioral measurements.
Memory performance, reflected in response times, was less
affected with higher aVLPFC activation suggesting that this
region was particularly related to the cognitive control of PI.
They also observed a linear increase in PHc activity in response
to increasing levels of PI and that this activation was associated
with retrieval success. The performance of the individuals with
higher PHc declined less as a function of PI compared to individ-
uals with lower PHc activity. Accordingly, in our task we also
expected aVLPFC and parahippocampal regions to respond to
increasing levels of PI in a linear fashion. We were particularly
interested whether neural response to PI differed for emotion
and neutral stimuli. Our experimental design followed Öztekin
and Badre (2011) with the addition of two emotional categories.

To summarize, our main goal was to investigate how PI in
WM leads to forgetting of neutral and emotional information.
Particularly, we were interested whether latent processes and
neural markers underlying PI differed qualitatively or quantita-
tively between emotional and neutral stimuli. We expected at
least quantitative differences following mounting evidence sug-
gesting that emotional memories are more resistant to forgetting
compared to their non-emotional counterparts (reviewed in
Yonelinas and Ritchey, 2015). For example, in our previous work
(Mızrak and Öztekin, 2016), we modeled the full time course of
retrieval and were able to show that PI for emotional items dif-
fered quantitatively from the PI for neutral items. Here, we used a
sequential sampling model, the diffusion model, to decompose
the recognition decisions into latent cognitive processes (Ratcliff
and Starns, 2013; White and Poldrack, 2014, see Method section
for detailed description of the model). We expected increasing
levels of PI to decrease memory performance. In addition, we
examined neural activity during retrieval of emotion and neutral
trials and expected that increasing level of PI lead to a linear
increase in activation in two ROIs (aVLPFC and parahippocampal
gyrus). We also expected the amygdala to be more strongly acti-
vated by emotional compared to neutral stimuli with no specific
predictions regarding the effect of PI. Finally, we were interested
how neural activity in response to increasing levels of PI was
related to the diffusion model parameters.

Materials and methods
Participants

Twenty-one healthy adults (9 females) participated in this
study. Data from two participants (one male, one female) were
excluded due to excessive motion in the scanner. Participants
had normal or corrected to normal vision and were screened for
medical conditions that could contradict with MRI protocols.
Participants gave written consent and were compensated for
their participation.

Stimuli selection

The stimuli consisted of two neutral (Kitchen utensils and
Furniture) and two emotional (Fear and Disgust) categories of
images. Some of the emotional images were chosen from the
International Affective Picture System (IAPS) database (Lang
et al., 2005). The rest was selected from Google images and rated
by 18 different participants that did not participate in the actual
experiment (See Supplementary Material for the detailed
description of stimuli selection).

Experimental design

The experiment consisted of two sessions of six runs that took
place on two different days. Each run contained 36 experimen-
tal trials. In each trial, participants first studied five-items in the
encoding phase, solved three math problems, and then
responded to a recognition probe. For each probe, participants
were asked to indicate whether it appeared in the encoding
phase (See Figure 1 for the procedure).

The release from PI paradigm was employed in which
images from the same category were presented for three con-
secutive trials. The three consecutive trials from the same cate-
gory formed a block and the first trial within this triplet will be
referred to as (PI) Level 1, the second as Level 2, and the third as
Level 3, as we expected PI to increase monotonically across the
three trials. In total, there were 432 (216 � 2) trials (108 trials
from each category), 144 blocks (36 blocks from each category).
There were equal numbers of targets (i.e. probes that were
shown in the encoding phase) and lures (i.e. probes that were
not shown in the encoding phase) for each category. The probes
of the three trials within one block were randomly chosen to be
a target or a lure (e.g. it was possible that all three trials were
lures or targets). After the presentation of one block (i.e. three
trials) consisting of same category images, the next trial
employed stimuli from another category. Note that there was
no break between blocks (only between runs).

Lures were drawn from members of the same category as
the studied items. Both targets and lures were recycled through-
out the whole experimental session with the restriction that
neither had been presented within the last three runs before it
was repeated. That is, all images used in the first three runs
were novel, and in the following runs, images that were pre-
sented in the previous three runs were shown.

The order of lists from different categories was randomized
in such a way that the number of switches between different
categories was identical. This was done to make sure that there
were approximately equal numbers of switches between differ-
ent categories so that neutral to neutral or emotional to emo-
tional switches happened equally often.

fMRI protocol

Scanning was performed on a Siemens 3 T Magnetom TRIO MRI
system with a 32-channel head coil in the National Magnetic
Resonance Imaging Center at Bilkent University. Functional
images were acquired over six runs in each session using a gra-
dient echo planar imaging (EPI) sequence (TR¼ 2000 ms,
TE¼ 30 ms, flip angle¼ 90�, FOV¼ 192 mm, 34 interleaved axial
slices, voxel size¼ 3 mm� 3 mm� 3 mm with 0.3 mm interslice
gap). After each session, high-resolution T1-weighed (MP-RAGE)
anatomical images were acquired.

Pre-processing

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) was
used to process images which included slice timing correction,
realignment, normalization, and smoothing. Functional images
were first corrected for differences in slice acquisition timing by
resampling all slices in time to match the first slice, then real-
igned for motion correction and resliced. Resliced images were
then normalized to MNI stereotaxic space using a 12-parameter
affine transformation along with a non-linear transformation
using cosine basis functions. Functional images were then
smoothed with an 8-mm FWHM isotropic Gaussian kernel.
Image data quality was assured via visual inspection and runs
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in which there were excessive motion (>3 mm) were excluded
from the analysis.

fMRI data analysis

A general linear model was built in SPM8 by generating separate
regressors for each condition [separate encoding for each of the
three trials within a block for emotion and neutral stimuli, dis-
tractor period (collapsed across emotion and neutral trials), rec-
ognition probes for each of the three trials within a block for
emotion and neutral stimuli] and were modeled using a canoni-
cal hemodynamic response function and its temporal deriva-
tive. For each of the two scanning sessions, the data across the
six runs were concatenated and modeled as one session, with
mean signal and scanner drift entered as covariates to account
for the variability across runs.

Percent BOLD signal change was assessed by averaging the
time-series signal across the region of interests (ROIs) by using
the MarsBaR region of interest toolbox for SPM8 (http://marsbar.
sourceforge.net/). We calculated integrated percent signal
change (iPSC) by averaging the peak time point and the two
adjacent time points to the peak (61 TR) for each ROI. Bilateral
parahippocampal gyrus (PHg) and amygdala ROIs were defined
using anatomical masks from the Automated Anatomical
Labeling (AAL) database (Tzourio-Mazoyer et al., 2002). For left
anterior VLPFC ROIs we assessed pre-defined anatomical masks

which were used in Öztekin and Badre’s (2011) study.
Specifically, the anterior VLPFC ROI was restricted to the pars
orbitalis portion of the left inferior frontal gyrus, located ven-
trally to the horizontal Sylvian ramus.

Modeling recognition decision

The diffusion model was used to model responses and corre-
sponding response times (Ratcliff, 1978; Ratcliff and Rouder,
1998; Ratcliff et al., 2016).We employed the four-parameter
Wiener model (e.g. Wabersich and Vandekerckhove, 2014) aug-
mented by a drift criterion parameter (Ratcliff and McKoon,
2008). In our task, the lower decision bound corresponded to
‘new’ responses (i.e. when the participant decided that the
probe was novel); the upper bound corresponded to ‘old’
responses (i.e. when the participant decided that the probe was
shown during encoding). The diffusion model assumes that
across time within each trial evidence accumulates in a noisy
(diffusion) process. If the evidence hits one of the two decision
boundaries the corresponding response is given. The first
parameter, the drift rate, v, with which the accumulation proc-
ess approaches one of the boundaries given a specific stimulus
class (i.e. old or new probe), is a measure of the strength of evi-
dence resulting from the retrieval processes. In our model, the
same drift rate was used for old and new probes with the only
difference being their sign (positive for old probes and negative

Fig. 1. (A) Illustration of the proactive interference (PI) manipulation. Each block (in blue or green) consists of three trials in which the presented images come from the

same category. The category is switched for the next block of trials. PI is expected to increase from Level 1 at Trial 1 to Level 3 at Trial 3 within a block. PI will be released

when the category is switched and the PI Level will return to 1. (B) Illustration of the sequence of events within a single trial. Each trial began with the encoding phase

in which 5-images were presented sequentially for 1200 ms each. Following the fifth image, participants solved three math problems consisting of addition or subtrac-

tion of two randomly selected two-digit numbers which were presented for 4000 ms each. Participants indicated whether the solution presented next to the math prob-

lem was accurate by pressing either the middle or index finger on the button box. Following the third math problem, participants were presented with a test image for

2000 ms and asked to indicate whether the image was shown during the current encoding phase. The test image was either a study list item (e.g. Image 2) or an image

which was not presented within the experimental session (e.g. New Image). The inter-trial interval consisted of the presentation of a fixation cross in the center of the

screen for a fixed duration of 12 000 ms.

Note. Images that are used in the study are not presented due to copyright reasons. For detailed description of the stimuli and the stimuli selection process please see

Supplementary Material. The IAPS image numbers of the stimuli used here are also given there.
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for new probes). The larger the absolute value of the drift rate
the stronger the mnemonic evidence in that condition. The
position of the response boundaries is captured by the boundary
separation parameter a. The larger the a, the more evidence is
necessary until a decision is made (i.e. the decision maker is
more cautious).

Evidence starts to accumulate from a starting point which
might be closer or at equal distance to one of the boundaries.
This response bias parameter, z, measures the bias participants
have towards one of the boundaries, with z¼ 0.5 indicating no
bias. Participants might be biased towards an old response
(if z> 0.5) in which case giving an old response would require
less evidence. Note that response bias shifts do not have to
result in a change in the drift rate.

An additional possibility to account for response bias is via
the drift criterion parameter, dc. As mentioned above, we initially
assume that the absolute value of the drift rate is identical for old
and new probes. The drift criterion removes this assumption.
More specifically, the value of the drift criterion is added to both
drift rates, the positive drift for new items and the negative drift
rate for old items and thereby represents a symmetric shift in the
available evidence (while not affecting its absolute magnitude).
Values above zero indicate that in a given condition the evidence
is shifted towards old probes whereas values below zero indicate
a shift towards new probes (Ratcliff and McKoon, 2008). Finally,
our model also included a non-decision parameter, t0, to capture
all processes not related to the mnemonic decision such as
encoding and motor processes. Our model can be seen as an
extension of a signal-detection model (Macmillan and Creelman,
2005) that incorporates response times in addition to binary
responses. In this view, the drift rate corresponds to the signal-
detection sensitivity (e.g. d’) and the drift criterion to the signal-
detection response bias (e.g. c).

Studies examining the impact of emotion on recognition
memory suggest that emotion has an impact on the
response criterion, traditionally measured within signal detection
framework. By separating response bias and drift criterion, we
can a) evaluate the retrieval strategies participants adapt to
changing levels of PI and b) investigate whether emotion has an
impact on the response bias or drift criterion.

We employed a hierarchical Bayesian approach to model the
data (Gelman et al., 2013). For each of the five diffusion model
parameters (i.e. v, a, z, dc, t0) we estimated six hyperparameters
to describe the full design [(i.e. stimulus type (emotion & neu-
tral) and PI level (1, 2, & 3)] using treatment contrasts separately
for emotional and neutral stimuli (i.e. in each emotion condi-
tion Level 1 was the intercept and we estimated two parameters
quantifying the differences of Level 2 and Level 3 from the inter-
cept). In total, the model had 30 hyperparameters and we esti-
mated the full variance-covariance matrix for all individual
level parameters (Klauer, 2010). The model provided a good
account to the data. See Supplementary Material for more
details.

Results
Hierarchical-Bayesian diffusion model analysis

Diffusion models have often been used to model recognition
memory decisions (e.g. Ratcliff and Starns, 2013; Starns et al.,
2012; White and Poldrack, 2014). Consistent with prior work
showing that PI slowed down the retrieval speed (Öztekin and
McElree, 2007), we hypothesized that PI would reduce the

efficiency of evidence accumulation (i.e. decrease the drift rate)
due to reduced memory signal quality with increasing similarity
between memoranda.

Results confirmed this prediction. As can be seen in Figure 2
(panel ‘Drift Rate’) the drift rate decreased linearly for neutral
trials with increasing PI levels (Level 1 vs. Level 2: pB¼ 0.01;
Level 2 vs. Level 3: pB¼ 0.01).1 However, while descriptively such
a pattern was also obtained for emotion trials, the evidence for
it was comparatively weak. There was no credible decrease
from Level 1 to Level 2 (pB¼ 0.27) and neither from Level 2 to
Level 3 (pB¼ 0.11). Only when comparing Level 1 and Level 3 we
found a credible decrease in drift rate (pB¼ 0.03). When compar-
ing the decreases in drift rate due to PI across emotion and neu-
tral stimuli there was some evidence for a differential pattern
(smallest pB¼ 0.06). This suggests that PI affected both stimulus
types, although there was some evidence that this decrease was
less pronounced for emotional stimuli.

For the remaining diffusion model parameters, we did not
observe systematic differences between stimulus types and the
levels of PI (See the compact letter display in Figure 2). We found
that overall, participants showed a response bias towards old
responses (i.e. response bias above 0.5) whereas they were more
inclined towards evaluating the evidence as more new than old
(i.e. drift criterion below 0).

Neuroimaging data

Effects of PI on the recognition of emotion and neutral stimuli. We
expected a linear increase in the neural activation as a response
to increasing levels of PI for two ROIs, the aVLPFC, and the para-
hippocampal gyrus of MTL. To test this, we performed two sepa-
rate linear mixed model (LMM; e.g. Singmann and Kellen, in
press) analyses on the integrated percent signal change (iPSC)
in the aVLPFC, and parahippocampal gyrus to hit responses
only (see method for the definition of regions). Each LMM had
fixed effects for stimulus type (Emotion vs. Neutral), a linear
and quadratic polynomial for level of PI, and the interaction
between stimulus type and the polynomial terms as well as by-
participant random intercepts and random slopes for the two
main effects (the random slope of the interaction term was
non-identified and this model thereby represents the ‘maximal
model’; Barr et al., 2013). To evaluate the significance of the fixed
effects we employed the Satterthwaite approximation via the
methods implemented in afex (Singmann et al., 2017). To control
for multiple testing adjusted P-values are Bonferroni-Holm cor-
rected across ROIs for each family of tests (i.e. each effect).

Results of the LMMs are displayed in Table 1 and show that
none of the adjusted p-values reaches significance. However, the
interaction of the linear effect for PI with stimulus type for PHg
was marginally significant (as well as unadjusted P< 0.05). To
assess whether we could directly replicate the results from
Öztekin and Badre (2011) showing a linear increase in PHg activity
in response to increase in PI levels, we tested the linear effect of PI
separately for both stimulus types. For neutral stimuli we found a
linear effect, b¼ 0.05, 95%-CI [0.02, 0.10], but not for emotional
stimuli, b¼ 0.00, 95%-CI [�0.04, 0.04]. Thus, we could replicate

1 pB-values reported in this manuscript are calculated from the posterior
distributions of the hyperparameters and based on the probability that
specific parameter or difference of parameters is smaller or larger than
0 (i.e. values > 0.5 are subtracted from 1). In line with a Bayesian frame-
work we speak of credible differences if pB < 0.05.
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Öztekin and Badre (2011) for the type of stimuli they had also used
(i.e. neutral items), but not for the novel stimuli introduced here.

Linking latent processes with neural measures

Our ROI analysis replicated Öztekin and Badre’s (2011) results
and showed a linear increase in PHg activation for hits to neu-
tral items as a function of PI. As we also observed a linear
decrease in drift rate as a function of PI, we investigated the
relationship between PHg activation for hit responses and drift
rate. More specifically, we estimated a LMM with the individual
drift rate estimates (3 per participant and stimulus type, we
used the individual posterior means) as dependent variable
with fixed effects for PHg iPSC, stimulus type, and their interac-
tion, as well as a by-participant random intercept and by-
participant random slopes for all fixed effects.

In addition to a significant effect of stimulus type [F(1,
37.89)¼ 37.54, P< 0.001] (see Figure 3), the model showed a signifi-
cant effect of PHg [F(1, 50.45)¼ 7.92, P¼ 0.007]. This latter effect
indicated that within an individual participant a decrease in drift
rate was associated with an increase in PHg activation to hits –
successfully recognized items. Previous studies showed retrieval
of more detailed episodic information recruits regions within par-
ahippocampal gyrus (Diana et al., 2007). In our task, we observe
that there is higher PHg activation to correctly recognize items
even though the performance lowers due to PI. The negative rela-
tionship we observe here between the PHg activation and the
drift rate can be interpreted as a response to retrieval demands.
The harder the retrieval gets, drift rate decreases and more PHg
activation is recruited for successfully retrieving more detailed
information which leads to a correct response. The model also
revealed a marginally significant interaction between PHg and

Table 1. LMM results for ROIs which were expected to be affected by PI

ROI Effect df F P Padj

Anterior VLPFC Stim Type 1, 18.12 3.99† 0.06 0.07
PI (linear) 1, 18.49 0.65 0.43 0.43
PI (quadratic) 1, 29.78 0.22 0.64 0.85
Stim Type � PI (linear) 1, 54.00 0.26 0.61 0.61
Stim Type � PI (quadratic) 1, 54.00 1.31 0.26 0.52

PHg Stim Type 1, 18.13 5.21† 0.03 0.07
PI (linear) 1, 27.49 3.90 0.06 0.12
PI (quadratic) 1, 18.98 0.66 0.43 0.85
Stim Type � PI (linear) 1, 54.00 4.15† 0.05 0.09
Stim Type � PI (quadratic) 1, 54.00 1.13 0.29 0.52

Notes. The dependent variable was iPSC. Padj: Adjusted P-values are Bonferroni-Holm corrected across ROIs for each effect. †: adjusted-P < 0.1.

We were also interested in the effect of stimulus class and PI on amygdala activation. However, we had no reasons to expect a linear effect of PI on amygdala.

Therefore, we estimated an LMM with amygdala iPSC as dependent variable, fixed effects for stimulus type, PI (with three levels and no linear or quadratic effect), and

their interaction, and by-participants random intercepts and random slopes for the two main effects. For this analysis we restricted the overall probability of a Type I

error to 0.05 using the Bonferroni-Holm correction. This analysis revealed a significant effect of stimulus type [F(1, 18.03)¼12.37, Padj¼0.007] in the expected direction.

Emotional stimuli lead to larger iPSC values than neutral stimuli. None of the other effects reached significance, smallest Padj¼0.16.

Fig. 2. Parameter estimates from the diffusion model. E¼Emotion, n¼Neutral, L1¼Level 1, L2¼Level 2, L3¼Level 3. The points show the posterior modes, the error

bars the 90% highest-posterior density regions, and the gray dashed lines the (mirrored) density estimates of the full posterior. The letters in each plot represent a com-

pact letter display (CLD; Piepho, 2004) presentation of the difference between conditions. Conditions that do not share a letter within one plot differ significantly from

each other with pB<0.05. For ‘Response Bias’ and ‘Drift Criterion’ the vertical gray line indicates no bias.
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stimulus type [F(1, 45.95)¼ 3.77, P¼ 0.06] which is displayed in
Figure 3. From this interaction, we can see that PHg activation is a
predictor for the drift rate for neutral stimuli (b¼�0.70, 95%-CI
[�1.14, �0.27]), but this relationship is essentially absent for emo-
tional stimuli (b¼�0.18, 95%-CI [�0.57, 0.22]). This finding mimics
our ROI finding that the effect of PI has essentially no PHg
involvement for emotional stimuli.

Discussion

The present study aimed to provide new insights into the rela-
tionship between emotion and forgetting due to PI from WM.
We were specifically interested in differences in how PI affected
emotional and neutral stimuli for (i) the buildup of PI reflected
in latent processes, and (ii) neural responses to PI. To this end,
we used a task that progressively induced PI by presenting cate-
gorically similar items over three trials. After one block of three
trials, the category was changed which led to a release from PI.
We employed a formal measurement model, the diffusion
model, that allowed us to estimate and compare how the built
up of PI affected latent cognitive processes of recognition mem-
ory decisions for emotional and neutral material. We found that
PI decreased the rate of evidence accumulation (i.e. the drift
rate). Whereas we observed this for both neutral and emotional
stimuli, the decrease appeared to be somewhat smaller for emo-
tional stimuli. We also tracked the neural responses to PI during
retrieval of emotional and neutral memoranda in regions that
have been previously related to overcoming PI. We found that
the buildup of PI was associated with a linear increase in PHg
activation for neutral stimuli but not for emotional stimuli
(although the interaction was only marginally significant after
adjusting for multiple testing). Finally, we found that for neutral
stimuli an increase in PHg activity was associated with a
decrease in drift rate, whereas this association was absent for
emotional stimuli (again the interaction was only marginally
significant).

Effects of PI on latent processes

In memory studies the drift rate generally represents the quality
of the match between probe and memoranda (Ratcliff and
McKoon, 2008), it is a measure of the strength of evidence. Items
with higher memory strength are expected to have a higher drift
rate. Our findings showed that PI decreased the drift rate

(i.e. lowered the mnemonic quality/degree of match) in a linear
fashion. It has been suggested that one of the factors that
affects the strength of evidence in memory retrieval might be
the degree of difficulty of recovering the evidence (Badre et al.,
2014). In our task, the shared feature (category) elicits a level of
match between the probe and memoranda, contaminating the
quality of the match and adding noise to the evidence making
the recovery of evidence harder.

Our results indicate that the PI-related decrease in the qual-
ity of the probe-memoranda match is similar for emotion and
neutral stimuli. This is an important finding showing that PI in
WM affects memory performance for emotion and neutral stim-
uli in a similar way. It is noteworthy to state that the decline in
drift rate tended to be less pronounced for emotion stimuli such
that medium levels of PI did not lead to an effective decline
in drift rate. This is consistent with our previous findings in
Mizrak and Öztekin (2016) study showing that PI build up was
slower and smaller in magnitude for emotion trials compared to
neutral trials. We discuss potential explanations for this finding
below.

Neural mechanisms that overcome PI for emotion and
neutral stimuli

Neutral stimuli. For neutral stimuli, increasing levels of PI led to
a gradual decline in the rate of evidence accumulation. This
decrease was however accompanied by an increase in activa-
tion in parahippocampal regions (PHg) for hits (i.e. ‘old’
responses to targets). This suggests that participants tried to
counteract the effect of PI by increasing memory retrieval. This
is in line with previous work showing that MTL regions are
involved in successful episodic retrieval (e.g. Dobbins et al.,
2003). Additionally, it has been shown that MTL activation dur-
ing encoding predicted memory success (e.g. Davachi et al.,
2003; Paller and Wagner, 2002; Staresina and Davachi, 2006).
More recently, MTL activation has been observed during
retrieval from WM (Oztekin et al., 2010; Öztekin et al., 2008), also
suggesting a relationship between memory accuracy in a WM
task and MTL activation. With increasing PI levels, participants
need to retrieve more information in order to correctly identify
items. This incease in retrieval demands was reflected in PHg
activation as well.

We did not detect systematic changes in left aVLPFC activa-
tion in response to PI. This finding is surprising as this region

Fig. 3. The interaction between parahippocampal gyrus activation (PHg) and the drift rate for neutral and emotional stimuli. Shaded areas show 95%-confidence bands

from the LMM. Note that PI level (L1, L2, or L3) was not part of the LMM and is only added for illustrative purposes.
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had often been suggested to mediate the detrimental effects of
PI on memory performance (Badre and Wagner, 2005; Jonides
and Nee, 2006; Oztekin et al., 2009). One reason for this might be
the use of visual material in our study. Previous studies which
showed left anterior VLPFC activation in response to PI used
verbal material and there is considerable evidence showing that
left VLPFC can be domain sensitive (see Badre and Wagner, 2007
for a review). For instance, Dobbins and Wagner (2005) found
that when participants were asked to recollect conceptual
details about the studied objects, higher left aVLPFC activation
was observed compared to recollection of perceptual details. On
the other hand, during the recollection of perceptual details
higher right VLPFC activation was observed compared to recol-
lection of conceptual details. Although we expected left VLPFC
activation due to previous findings showing that left VLPFC is
an important region that mediates the control of PI in working
memory, it is possible that left VLPFC effects are specific to ver-
bal material.

Emotional stimuli. For emotional stimuli we only observed a
comparatively small linear decline in drift rate as a function of
PI. In addition, this decrease was not as strongly accompanied
by a corresponding PHg activation increase to hits, if at all. In
addition, we did not observe aVLPFC activation in response to
PI. Overall, our data suggest no specific neural response as a
function of PI for emotional stimuli in our ROIs. However, the
evidence for this qualitative difference as a function of PI
between emotional and neutral stimuli was not as strong as we
expected. Given the clear replication of the PI effect for neutral
items on PHg and the complete absence of this effect for emo-
tional items we are nevertheless confident that this differential
pattern is noteworthy. One possible explanation for this differ-
ential pattern is given in the following section.

Effect of emotion on PI. It has been suggested that the release
from PI task specifically necessitates controlled retrieval at the
item level. If item-level details are not immediately or automati-
cally available at retrieval, participants need to access more
diagnostic information about the item on top of the category
membership. One common finding from the emotion-
recognition memory literature (Kensinger and Corkin, 2003;
Ochsner, 2000; Pierce and Kensinger, 2011; Ritchey et al., 2008;
Sharot and Yonelinas, 2008) is that emotion impacts retrieval of
detailed information about the event from memory, often called
recollection, rather than assessments of the overall memory
strength of the items in memory, often called familiarity.
However, emotion specifically enhances recollection of within-
item features such as identifying details about the item rather
than context (Chiu et al., 2013; Yonelinas and Ritchey, 2015). For
instance, font color or spatial location information of emotional
items was remembered better than for neutral items
(D’Argembeau and Van der Linden, 2005; Doerksen and
Shimamura, 2001; Mather and Nesmith, 2008). In contrast,
when participants were asked about the scene in which an item
was presented, memory performance was worse for emotional
items compared to neutral items (see Kensinger et al., 2006). In
our task, participants might have benefited from a focus on the
central details (item features) in exchange for remembering
peripheral details (context) for emotional stimuli. If emotional
stimuli are activated in WM with more diagnostic item features,
these features can be used as additional cues while making the
recognition judgment and the category membership as a cue
will have less weight on the recognition judgment. This can
explain the less pronounced PI-related decline in drift rate for

emotion stimuli compared to neutral stimuli. In this case, the
category cue will contaminate the quality of the match between
probe and memoranda, but for emotional stimuli not as much
as it does for neutral stimuli. Additionally, if item-specific
details are enhanced for emotion items, these details will be
readily available at retrieval and the need for accessing more
detailed information would be less for emotional information.
Accordingly, this can explain the absence of the relationship
between the drift rate decrease and increase in parahippocam-
pal gyrus activation for emotional stimuli since this region is
specifically associated with retrieval demands.

Conclusion

We provided an in-depth investigation of the relationship

between emotion and forgetting in WM by modeling the latent
processes that are involved in the recognition memory perform-
ance of emotioal and neutral items in the presence of PI. We
complemented our investigation by analyzing neural responses
to changing levels of PI and related our findings from brain and
behavioral measurements. Our results replicated quantitative
differences in the cognitive processes in response to PI which
were extended by our neural measures suggesting a possible
qualitative difference between emotional and neutral stimuli.
For neutral stimuli individuals increased PHg activation as a
response to PI and such an increase was associated with a
decrease in drift rate. However, the data did not indicate evi-
dence for such a mechanism for emotional stimuli.
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Öztekin, I., McElree, B., Staresina, B.P., Davachi, L. (2008).
Working Memory Retrieval: Contributions of the Left
Prefrontal Cortex, the Left Posterior Parietal Cortex, and the
Hippocampus. Journal of Cognitive Neuroscience, 21(3), 581–93.

Paller, K.A., Wagner, A.D. (2002). Observing the transformation
of experience into memory. Trends in Cognitive Sciences, 6(2),
93–102.

Piepho, H.-P. (2004). An Algorithm for a Letter-Based
Representation of All-Pairwise Comparisons. Journal of
Computational and Graphical Statistics, 13(2), 456–66.

Pierce, B.H., Kensinger, E.A. (2011). Effects of emotion on associa-
tive recognition: valence and retention interval matter.
Emotion, 11(1), 139–44.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85(2), 59–108.

Ratcliff, R., McKoon, G. (2008). The diffusion decision model:
theory and data for two-choice decision tasks. Neural
Computation, 20(4), 873–922.

Ratcliff, R., Rouder, J.N. (1998). Modeling response times for
two-choice decisions. Psychological Science, 9(5), 347–56.

Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G. (2016). Diffusion
decision model: current issues and history. Trends in Cognitive
Sciences, 20(4), 260.

Ratcliff, R., Starns, J.J. (2013). Modeling confidence judgments,
response times, and multiple choices in decision making: rec-
ognition memory and motion discrimination. Psychological
Review, 120(3), 697–719.

Ritchey, M., Dolcos, F., Cabeza, R. (2008). Role of amygdala con-
nectivity in the persistence of emotional memories over time:
an event-related FMRI investigation. Cerebral Cortex, 18(11),
2494–504.

Sharot, T., Yonelinas, A.P. (2008). Differential time-dependent
effects of emotion on recollective experience and memory for
contextual information. Cognition, 106(1), 538–47.

Singmann, H., Bolker, B., Westfall, J. (2017). afex: Analysis of
Factorial Experiments.

Singmann, H., Kellen, D. (in press). An introduction to linear
mixed modeling in experimental psychology. In: D.H. Spieler,
E. Schumacher, New Methods in Neuroscience and Cognitive
Psychology. Psychology Press.

E. Mızrak et al. | 339

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article-abstract/13/3/331/4767720 by U

niversity of W
arw

ick user on 12 Septem
ber 2019

http://dx.doi.org/10.1177/0956797610376651


Staresina, B.P., Davachi, L. (2006). Differential encoding mecha-
nisms for subsequent associative recognition and free recall.
The Journal of Neuroscience, 26(36), 9162–72.

Starns, J.J., Ratcliff, R., McKoon, G. (2012). Evaluating the
unequal-variance and dual-process explanations of zROC
slopes with response time data and the diffusion model.
Cognitive Psychology, 64(1–2), 1–34.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al.
(2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. NeuroImage, 15(1), 273–89.

Wabersich, D., Vandekerckhove, J. (2014). Extending JAGS:
a tutorial on adding custom distributions to JAGS (with a

diffusion model example). Behavior Research Methods, 46(1),
15–28.

Watkins, O.C., Watkins, M.J. (1975). Build-up of proactive inhibi-
tion as a cue overload effect. Journal of Experimental Psychology:
Human Learning and Memory, 1(4), 442–52.

White, C.N., Poldrack, R.A. (2014). Decomposing bias in different
types of simple decisions. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 40(2), 385–98.

Wickens, D.D. (1970). Encoding categories of words: an empirical
approach to meaning. Psychological Review, 77(1), 1–15.

Yonelinas, A.P., Ritchey, M. (2015). The slow forgetting of emo-
tional episodic memories: an emotional binding account.
Trends in Cognitive Sciences, 19(5), 259–67.

340 | Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article-abstract/13/3/331/4767720 by U

niversity of W
arw

ick user on 12 Septem
ber 2019

http://dx.doi.org/10.1016/j.tics.2015.02.009

	nsx145-FN1
	nsx145-T1
	nsx145-TF1

