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Resilient Consensus for Expressed and Private
Opinions

Yilun Shang

Abstract—This paper proposes an opinion formation model
featuring both a private and an expressed opinion for a given
topic over dynamical networks. Each individual in the network
has a private opinion, which is not known by others but evolves
under local influence from the expressed opinions of its neighbors,
and an expressed opinion, which varies under a peer pressure
to conform to the local environment. We design opinion sifting
strategies which are purely distributed and provide resilience
to a range of adversarial environment involving locally and
globally bounded threats as well as malicious and Byzantine
individuals. We establish sufficient and necessary graph-theoretic
criteria for normal individuals to attain opinion consensus in
both directed fixed and time-varying networks. Two classes of
opinion clustering problems are introduced as an extension. By
designing resilient opinion separation algorithms, we develop
necessary and sufficient criteria, which characterize resilient
opinion clustering in terms of the ratio of opinions as well as the
difference of opinions. Numerical examples including real-world
jury deliberations are presented to illustrate the effectiveness
of the proposed approaches and test the correctness of our
theoretical results.

Index Terms—Social dynamics, resilience, consensus, cluster-
ing, social network, multi-agent system.

I. INTRODUCTION

IN recent years, the study of opinion formation among
individuals and the resulting dynamics it induces in a social

network has become a canonical problem in social network
analysis, where the phrase “opinion dynamics” encapsulates
a wide range of models differentiating in the phenomena
of interest including minority opinion spreading, collective
decision making, polarization, and emergence of fads etc. In
this setting, a common goal is to study the way individuals in
a social network exchange their attitudes or opinions to agree
on some topic or reach a consensus of opinions [1], [2].

As the classical consensus problems in multi-agent systems,
the individuals can only communicate based upon local avail-
able information obtained from their neighboring individuals
delineated by a social network. Although it is notoriously
challenging to characterize and assess the collective behaviors
in which human psychological and emotional factors are
implicated, various agent-based models of opinion dynamics
have been investigated. According to the opinion value held
by an individual, opinion dynamics models are categorized
as discrete and continuous models. For discrete models, we
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are inclined to indicate yes or no by using binary values.
Well-known examples include the Sznajd model [3], the voter
model [4], and Galam’s majority-rule model [5]. There are also
circumstances where the opinion of an individual is prefer-
ably expressed using real numbers and they can smoothly
change between the two extremal values. Attitudes in a formal
disputation, prices of a commodity, and predictions about
certain macroeconomic variables are some of the examples.
In the continuous case, two models involving bounded con-
fidence mechanism presented by Deffuant and Weisbuch [6]
and Hegselmann and Krause [7], respectively, have attracted
considerable research interest. In these models, each individual
only discuss with those who have an opinion close to its own
within a given threshold, capturing the tendency of homophily
in sociology. Pertinent models with hybrid opinion values, e.g.
[8], have also been investigated.

The predominant assumption in most existing opinion dy-
namics including those above is that each individual has a
single opinion for a given topic of discussion. However, an
individual in reality may hold a private opinion, for the same
topic, different to the opinion it expresses due to various
reasons such as political correctness or peer pressure [9].
Such discrepancy has been well documented in empirical
data and sociopsychological literatures, even linking to major
political events including the disintegration of the Soviet
Union [10] and the Arab Spring movement [11]. A common
reason the discrepancy between private and expressed opinions
arises is normative pressures on an individual to conform in
a group situation. This often leads to pluralistic ignorance
[12], where individuals privately disapprove of a view but
publicly go along with it because they believe (sometimes
even erroneously) the majority of others accept it. Examples
include young Belgian men concerning their attitudes toward
communal men’s self-description and behavioral intentions
[13], and college students concerning their opinions of the
average exam study time of their peers [14]. One of the goals
of this paper is hence to build a tractable agent-based model
to accommodate both an expressed and a private opinion of
an individual and study the evolution of opinions based on
individuals’ available local information in the network.

Beyond the implicit discrepancy between expressed and
private opinions, a more tangible and ever-increasing threat
to the decision making in social networks comes from the
existence of misbehaving individuals [15], partly due to the
pervasive applications of social network service. For example,
there can be stubborn individuals in a company boardroom or
in a discussion group, who influence others but would not vary
their own opinions [16], and malicious users in a public forum
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or an e-commerce site, who intentionally present their opinions
giving wrong information in anticipation of manipulating the
behavior of the entire group [17]. While most of existing
works on opinion evolution are built on the assumption that
the network is situated in a benign environment possibly with
a handful of stubborn individuals, the system and control
community has been seeking intensively for resilient solutions
to consensus problems in multi-agent systems against more
realistic cyber-physical attacks in the past decade. One of
such attacks initiated by Byzantine agents [18], [19], meaning
that these agents may arbitrarily collude with others and send
different values to different neighbors, is extremely harmful
yet common in the setting of social networks. Based upon
non-local information of the network, resilient coordination
protocols have been designed in [20], [21] to relieve Byzantine
attacks, where the misbehaving agents can be determined
provided the communication network is sufficiently connected.
A set of local filtering algorithms is put forward in [22], [23]
to alleviate the influence of misbehaving agents, where each
normal agent in the network discards the extremal values as
compared to its own value. Resilient learning-based protocols
are introduced in [24] to find optimal solutions to consensus
problems in the presence of malicious attackers and uncertain-
ties in system. By utilizing mobile detectors, it is shown in [25]
that consensus can be maintained against Byzantine agents
whose number is not restrained by the network connectedness.
However, to our knowledge, only single state value is assumed
in the prior works, which are thus unable to capture individuals
in social networks who have private opinions deviating from
the opinions they express.

A. Contributions
In this paper we aim to unfold the influence of private

and expressed opinions as well as that of normal and mis-
behaving individuals on opinion evolution building on social
dynamics and agent based modeling literature. This is achieved
by model construction, convergence analysis, and clustering
study, which we will detail below.

Firstly, this paper presents an agent based model where
each agent, i.e. individual, in the network possesses both an
expressed and a private opinion regarding a given topic. An
agent’s private opinion evolves under social influence from
the expressed opinions of the agent’s neighbors, while the
agent determines its own expressed opinion under a pressure
to conform to the group opinion in its neighborhood. The
psychological rationale behind has been firstly revealed by the
celebrated experiments on conformity by Asch [26] and is an-
alytically validated by Ye et al. [9] in studying the evolution of
discrepancy between expressed and private opinions. However,
the model in [9] required the global network knowledge and
did not offer resilience against misbehavior. The consensus
was achieved by unpacking ergodicity and the row-stochastic
matrix of the entire influence network. Our model, on the
other hand, is purely distributed in the sense that only local
information is needed, and the approach adopted is totally
different.

Secondly, inspired by the Weighted-Mean Subsequence
Reduced algorithm [22], [23], we propose distributed sifting

algorithms, in which normal agents remove the most extreme
expressed opinions in their neighborhood compared to their
private opinions at each iteration. We analyze the resilience
capabilities of these algorithms under a range of threats
including malicious and Byzantine behaviors, and under the
assumption of either the total number of misbehaving agents
in the network or the number of them in the neighborhood
of each normal agent being bounded by a fixed number
R. Sufficient and necessary graph-theoretic conditions are
provided to guarantee resilient consensus of expressed and
private opinions when the underlying network is modeled as
either a directed fixed network or a time-varying network.
Moreover, our model allows that both the number and the
identity of misbehaving agents are not made available to the
normal agents, which is highly desirable in the real-world
scenarios as such information is typically unavailable.

Finally, we design local strategies that provide resilience
to malicious and Byzantine agents and meanwhile give rise
to clustering and coexistence of expressed and private opin-
ions instead of reaching a common value. Drawing on the
methods of scaled consensus and formation generation, we
characterize the sufficient and necessary conditions for opinion
separation in terms of quotient, meaning that the agents’
opinions approach dictated ratios in the asymptote, and in
terms of difference, meaning that the agents’ opinions reach
assigned differences as time goes to infinity. Opinion clus-
tering phenomenon has been observed extensively in many
social networks and described by other opinion dynamics
models [27]–[30] including the Deffuant-Weisbuch model,
where multiple opinion clusters emerge with probability one
if the confidence bound is below a critical value. The unique
feature of expressed and private opinions, nevertheless, has
been overlooked in these works.

We mention that the idea of accommodating additional
source of opinion has been embodied in [31], where by adding
some random edges an informal network is introduced to
complement the formal network based on observations in
social organization structure. The efficacy of informal network
is numerically demonstrated to facilitate the consensus process
over the formal network. Nevertheless, each individual essen-
tially has a single opinion value.

B. Organization

Section 2 introduces mathematical preliminaries and for-
mulates the problem. We provide convergence analysis for re-
silient consensus when malicious agents and Byzantine agents
exist in the network in Section 3. Resilient opinion clustering
and separation are investigated in Section 4. Simulations
examples are presented in Section 5 and concluding remarks
are drawn in Section 6.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory

Denote by N the set of non-negative integers. The inter-
action between n agents in a social network is described by
a digraph or directed graph, denoted by G(t) = (V,E(t)),
where V = {v1, · · · , vn} represents the vertex set describing
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the agents of the network, and E(t) ⊆ V × V consists
of the arcs or directed edges present at time t ∈ N. We
consider a partition of the vertex set, V = N ∪M , where the
subset N contains the set of normal agents while the subset
M contains the group of misbehaving ones, whose identities
are not available a priori to any normal agent. The directed
edge (vi, vj) ∈ E(t) means that agent vj has access to the
information of agent vi. The (in-)neighbors of agent vi are
defined by the set Ni(t) = {vj : (vj , vi) ∈ E(t)}. We set
the extended neighborhood N i(t) = {vi} ∪ Ni(t) to include
the agent vi itself. We will suppress the dependence on t for
time-invariant networks in the aforementioned notations. In
time-dependent networks, we also omit t for simplicity when
the meaning is clear from the context.

The following notions of reachable sets and network ro-
bustness have been investigated intensively in [22], [23], [32].
Reachable sets and network robustness play a vital part in
resilience control and they have an intimate tie with classic
connectivity concept in graph theory.
Definition 1. (reachable sets) Let R,Q ∈ N. A set S ⊆ V is
said to be R-reachable if there is an agent vi ∈ S satisfying
the condition |Ni\S| ≥ R, in which | · | represents the size of
a set. Furthermore, S is said to be (R,Q)-reachable if |{vi ∈
S : |Ni\S| ≥ R}| ≥ Q.
Definition 2. (network robustness) Let R,Q ∈ N. If for any
pair of nonempty disjoint subsets of V , at least one set of
them is R-reachable, then the directed graph G is called R-
robust. Moreover, G is said to be (R,Q)-robust if for any pair
of nonempty, disjoint subsets S1, S2 ⊆ V , it follows that (a)
|{vi ∈ S1 : |Ni\S1| ≥ R}| = |S1|, or that (b) |{vi ∈ S2 :
|Ni\S2| ≥ R}| = |S2|, or that (c) |{vi ∈ S1 : |Ni\S1| ≥
R}| + |{vj ∈ S2 : |Nj\S2| ≥ R}| ≥ Q.

From the definition, it is clear that R-reachability and
(R, 1)-reachability are equivalent essentially. We will see that
these robustness concepts are essential in characterizing the
performance of local sifting algorithms.

Fig. 1. Schematic illustration of opinion evolution for a normal agent vi.

B. Opinion model

Suppose that a group of n agents, {v1, · · · , vn}, form a
directed social network G = (V,E) admitting V = N ∪ M ,

where as defined above N encapsulates all the normal agents
while M is composed of misbehaving ones. Let R be the set
of real numbers. On a given topic, the private and expressed
opinions of agent vi ∈ V at time t is represented by
xi(t) ∈ R and x̃i(t) ∈ R, respectively. We aim to address the
following resilient opinion consensus problem in the presence
of misbehaving agents.
Definition 3. (resilient consensus) In the network G, the
normal agents in N are said to achieve resilient opinion
consensus in the presence of misbehaving agents in M if
limt→∞ xi(t) − xj(t) = 0 and limt→∞ x̃i(t) − x̃j(t) = 0
for all vi, vj ∈ N and all initial conditions {xi(0)}n

i=1 and
{x̃i(0)}n

i=1.
We regard the private opinion xi(t) as the agent’s true

opinion, while the expressed opinion x̃i(t) can be different
from its true opinion due to varied reasons such as political
correctness and peer pressure. Opinion consensus here requires
both expressed and private opinions to reach a consensus over
the entire network (ideally without gap between private and
expressed opinions; c.f. Remark 3). The dynamical model of
each normal agent vi ∈ N is described as

xi(t + 1) = fi

(
xi(t), {x̃i

j(t) : vj ∈ Ni(t)}
)

(1)

and

x̃i(t) =λixi(t)

+ (1 − λi)gi

(
{x̃i

j(t − 1) : vj ∈ N i(t − 1)}
)
, (2)

where x̃i
j(t) ∈ R is the opinion value communicated to

agent vi from agent vj at time step t, and x̃i
j(t) = x̃j(t)

for all vj ∈ N , meaning normal agents always send their
real expressed opinions to their neighbors. We also assume
x̃j

j(t) = x̃j(t) for vj ∈ N . Misbehaving agents, on the
other hand, may send arbitrary values to their neighbors. The
function fi to be designed later describes the influence on
the private opinion of vi at time t + 1 from its own private
opinion and its neighbors’ expressed opinions at time t. The
parameter λi ∈ [0, 1] characterizes the resilience to pressure
to conform to its local environment encoded by gi. Agent vi

is maximally resilient if λi = 1, and minimally resilient if
λi = 0. As is common in agent based consensus problems [1],
both functions fi and gi will be designed as some weighted
average functions (see (3) and (4) below). It is natural (but
not necessary for our theorems below) that we assume that
xi(0) = x̃i(0) for all 1 ≤ i ≤ n, meaning that the initial
expressed opinions are equivalent to initial private opinions
for all agents in the network. Obviously, the expressed and
private opinions coincide for each agent when λi = 1 for all
i = 1, · · · , n. The influences that act to change agent vi’s
private and expressed opinions are illustrated in Fig. 1.

In (1) and (2), fi and gi delineate the update functions for
normal agent vi. These functions will be instantiated later so
that the normal agents can reach the group’s goal resisting
the compromise of misbehaving agents, whose number and
identity are not available to the normal agents. Misbehaving
agents, on the other hand, can exert arbitrary strategies and
different rules which are beyond the reach of the normal
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agents. Specifically, we will examine two kinds of misbehav-
ing agents, namely, malicious and Byzantine agents in this
paper.
Definition 4. (malicious agent) We call an agent vi ∈ M
malicious if it exerts some distinct communication rule ĝi in
(2) at some time t ∈ N.
Definition 5. (Byzantine agent) We call an agent vi ∈ M
Byzantine if it exerts some distinct communication rule ĝi in
(2) at some time t ∈ N, or it does not communicate the same
opinion x̃j

i to all of its out-neighbors vj , i.e., vi ∈ Nj , at some
time t ∈ N.

A malicious agent is misbehaving due to, for example,
stubborn traits, and it sends information in a broadcast manner
[8], [16]. Byzantine agents on the other hand are often thought
of as one of the most dangerous attackers [18], [23], [25], who
typically possess a thorough intelligence of the entire network
and hence can potentially collude with other Byzantine agents
to manipulate the network by sending wrong information
in a point-to-point manner. By the above definitions, both
malicious and Byzantine agents can renew their opinions in
an arbitrary way at every time step, and hence all malicious
agents turn out to be Byzantine, but not vice versa. It is worth
noting that we do not care private opinions of misbehaving
agents, i.e., not implicate fi in (1), in the Definitions 4 and 5
because misbehaving agents influence neighbors only via their
expressed opinions.

We will investigate two types of opinion consensus models
according to the number and location of the misbehaving
agents. The first one is called R-globally bounded model. In
this model, the total number of misbehaving agents in the set
M is upper bounded by a constant R ∈ N. Another model is
R-locally bounded model, where |Ni ∩ M | ≤ R for every
vi ∈ N . Every normal agent has at most R misbehaving
neighbors in the R-locally bounded model. In both models,
misbehaving agents, be they malicious or Byzantine, pose
a treat to the group decision making through preventing
other agents from reaching common opinions or driving their
opinions into a biased or even detrimental situation. Therefore,
it is desirable to exercise caution and adopt resilient consensus
strategies.

C. Resilient consensus strategy

Base upon nearest-neighbor interaction, we here adopt the
distributed local sifting algorithms for the expressed and pri-
vate opinions of each normal agent vi ∈ N . As a misbehaving
agent may affect both xi and x̃i through fi and gi, respectively,
at every time step, our strategy essentially goes beyond the
Weighted-Mean Subsequence Reduced algorithms detailed in,
e.g., [18], [22], [23].

Our sifting algorithm can be performed in three steps,
executed synchronously for all agents at each time step t ∈ N.
Fix R ∈ N. First, each normal agent vi ∈ N collects the
expressed opinions {x̃i

j(t)} from its neighbors, and creates an
ordered list array for {x̃i

j(t)}vj∈Ni arranging from largest to
smallest. Second, the largest R opinions that are strictly greater
than xi(t) in the above array are deleted (if there are fewer
than R greater opinions than xi(t), all of those opinions are

discarded). The similar sifting process is exerted to the smaller
opinions. The set of agents that are removed by agent vi at
time t is signified by a set Ri(t). Third, each vi ∈ N updates
its opinion using the following fi(·) and gi(·), respectively, in
(1) and (2):

xi(t + 1) =aii(t)xi(t)

+
∑

vj∈Ni(t)\Ri(t)

aij(t)x̃i
j(t), t ∈ N (3)

and

x̃i(t) =λixi(t) + (1 − λi)

·
∑

vj∈N i(t−1)\Ri(t−1)

bij(t − 1)x̃i
j(t − 1),

t ∈ N\{0}, (4)

where {aij(t)} are the weights instantiating fi satisfying the
following three conditions for every t ∈ N: (Af) aij(t) =
0 if vj 6∈ N i(t)\Ri(t), (Bf) there is a constant number
α ∈ (0, 1) independent of t, such that aij(t) ≥ α for any
vj ∈ N i(t)\Ri(t), and (Cf)

∑
vj∈N i(t)\Ri(t)

aij(t) = 1;
and similarly {bij(t)} are the weights instantiating gi satis-
fying the following three conditions for every t ∈ N: (Ag)
bij(t) = 0 if vj 6∈ N i(t)\Ri(t), (Bg) there is a constant
number β ∈ (0, 1) independent of t, such that bij(t) ≥ β for
any vj ∈ N i(t)\Ri(t), and (Cg)

∑
vj∈N i(t)\Ri(t)

bij(t) = 1.
Moreover, we assume λi ∈ (0, 1], meaning naturally that the
private opinion of agent i has an influence on its expressed
opinion. Since there are finite agents within the network G,
we obtain a constant λ > 0 satisfying λi ≥ λ > 0 for every
vi ∈ N .
Remark 1. The time-shift t − 1 in the summation term of
(4) is necessary since otherwise both sides of the equation
rely on x̃i(t), leading to an inconsistent equation. Given xi(0)
and x̃i(0) for all vi ∈ V , at each time step t = 0, (3) comes
into effect; at subsequent time step t ≥ 1, (4) comes into effect
followed by (3). The strategy is consistent with the description
in Fig. 1.
Remark 2. Note that the weights aij and bij in (3) and (4) can
be arbitrarily chosen provided the corresponding conditions
hold. A typical choice could be aij(t) = (|Ni(t)| + 1 −
|Ri(t)|)−1 and bij(t − 1) = (|N i(t − 1)| − |Ri(t − 1)|)−1

so that the weights for all neighbors are equal. In this case,
the expressed opinion x̃i takes a similar form as in [9], but
the global average of all agents in the network is used in
[9] (which is essential for the validity of the analysis therein)
rather than the adaptive local average adopted here.

The above algorithm has low complexity while relatively
accurate to capture relevant social phenomena with minimum
parameters. It is purely distributed and only local information
available to each agent is used. No prior awareness of the
identity of misbehaving agents or the architecture of network is
assumed available to normal agents. Moreover, our algorithm
will handle the situation where the roles of normal agents and
misbehaving agents change. When a normal agent misbehaves
at some point, it may apply a strategy freely deviated from the
sifting strategy; if a misbehaving agent becomes normal, it will
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then pick up the sifting strategy. See Example 2 in Section V
for an illustration.

In the rest of the paper, we will refer to the above algorithm
as the opinion sifting strategy with parameter R or simply R-
sifting strategy. A flowchart and the complexity analysis is
provided in Supplementary Material.

III. RESILIENCE AGAINST MISBEHAVING AGENTS

In this section we study resilient opinion consensus problem
ad present the convergence analysis for the opinion dynamics
model in the presence of both malicious and Byzantine agents.
In each case, we provide resilience results for both globally
bounded threats and locally bounded threats. To begin with,
define Φ(t) := maxvi∈N xi(t) and φ(t) := minvi∈N xi(t)
respectively as the maximum and minimum private opinions
for normal agents. Similarly, let Φ̃(t) := maxvi∈N x̃i(t)
and φ̃(t) := minvi∈N x̃i(t) be the maximum and mini-
mum expressed opinions, respectively, for normal agents.
Moreover, we set Φ∗(t) = max{Φ(t), Φ̃(t)} and φ∗(t) =
min{φ(t), φ̃(t)}. It is not difficult to see that for all vi ∈ N and
t ∈ N, xi(t+1) ∈ [φ∗(t),Φ∗(t)] and x̃i(t+1) ∈ [φ∗(t),Φ∗(t)]
hold in both R-globally and R-locally bounded models with
malicious/Byzantine agents because opinions in the update
rules (3) and (4) are convex combinations of values within
the interval [φ∗(t),Φ∗(t)]. This indicates that the domain
[φ∗(0),Φ∗(0)] is an invariant set meaning that the expressed
and private opinions of normal agents will stay in this interval
for all time t.

A. Convergence analysis with malicious agents

In the sequel, we establish some necessary and sufficient
criteria for opinion consensus in the globally and locally
bounded models with malicious agents. We first deal with
time-invariant networks G = (V,E). The results for time-
varying networks G(t) = (V,E(t)) are addressed as a corol-
lary.
Theorem 1. (opinion consensus in R-globally bounded
model with malicious agents) Suppose that we have a time-
invariant network characterized by a directed graph G =
(V,E), where each normal agent updates its private and
expressed opinions according to the opinion R-sifting strategy.
Then, in the R-globally bounded model having malicious
agents, resilient opinion consensus can be reached if and only
if G is (R + 1, R + 1)-robust.
Proof. (Necessity) Suppose on the contrary that G is not an
(R + 1, R + 1)-robust network. Therefore, there exist disjoint
nonempty sets S1, S2 ⊆ V such that none of the criteria (a)-
(c) in Definition 2 hold. Define XR+1

Sl
= {vi ∈ Sl : |Ni\Sl| ≥

R + 1} for l = 1, 2. Fix c1 < c2. Let xi(0) = x̃i(0) = c1

for any agent vi ∈ S1, and xi(0) = x̃i(0) = c2 for any
agent vi ∈ S2. For all the other agents vi in the network, set
xi(0) = x̃i(0) ∈ (c1, c2).

Since |XR+1
S1

|+ |XR+1
S2

| ≤ R, we assume that all agents in
the sets XR+1

S1
and XR+1

S2
are malicious and that they tend to

preserve their expressed opinions unchanged. There is at least
one normal agent in both S1 and S2 respectively (because
|XR+1

S1
| < |S1| and |XR+1

S2
| < |S2|), say, v1 ∈ S1 ∩ N and

v2 ∈ S2 ∩N . Since v1 has at most R neighbors not in S1, we
have x1(t+1) = x1(t) = c1 for t ∈ N invoking the opinion R-
sifting strategy. Furthermore, x̃1(t) = λ1x1(t)+ (1−λ1)c1 =
c1 for all t. Likewise, we obtain x2(t) = x̃2(t) = c2 for all t.
Thus, consensus cannot be achieved among normal agents in
G. The necessity is proved.

(Sufficiency) In light of the comments at the outset of this
section, we may assume that ρΦ∗ := limt→∞ Φ∗(t) ≥ ρφ∗ :=
limt→∞ φ∗(t), since both Φ∗(t) and φ∗(t) are monotone and
bounded with respect to t. If ρΦ∗ = ρφ∗ , then both expressed
and private opinions will reach consensus eventually. In what
follows, we assume that ρΦ∗ > ρφ∗ and show that this
inequality does not hold by the method of contradiction.

Take ε0 > 0 satisfying ρΦ∗ − ε0 > ρφ∗ + ε0. For t ∈
N and any εi > 0, we will need the following definitions
of four sets XΦ(t, εi) := {vi ∈ V : xi(t) > ρΦ∗ − εi},
XΦ̃(t, εi) := {vi ∈ V : x̃i(t) > ρΦ∗ − εi}, Xφ(t, εi) := {vi ∈
V : xi(t) < ρφ∗ + εi}, and Xφ̃(t, εi) := {vi ∈ V : x̃i(t) <
ρφ∗ + εi}. These sets may contain both normal and malicious
agents. By the definition of ε0, XΦ(t, ε0)∩Xφ(t, ε0) = ∅ and
XΦ̃(t, ε0) ∩ Xφ̃(t, ε0) = ∅.

Choose ε ∈ (0, ε0) such that

ε < min
{

λ|N |α|N |ε0

1 − λ|N |α|N | ,

(1 + λ)|N |β|N |(1 − β(1 + λ))ε0

1 − β|N |(1 + λ)|N |

}
. (5)

Recall in (Bg) the lower bound β can be made arbitrarily
small. Let tε be the time step satisfying Φ∗(t) < ρΦ∗ + ε
and φ∗(t) > ρφ∗ − ε for all t ≥ tε. Next, we examine the
the pairs of nonempty disjoint sets XΦ(tε, ε0) and Xφ(tε, ε0),
and XΦ̃(tε, ε0) and Xφ̃(tε, ε0) separately.

(I) XΦ(tε, ε0) and Xφ(tε, ε0). Notice that the network G is
(R+1, R+1)-robust with at most R malicious agents. There
must be a normal agent in the union XΦ(tε, ε0)∪Xφ(tε, ε0),
which has at least R + 1 neighbors not in its set. Without
loss of generality (W.l.o.g.), assume that vi ∈ XΦ(tε, ε0)∩N
has at least R + 1 neighbors not in XΦ(tε, ε0). Since these
neighbors’ private opinions are less than or equal to ρΦ∗ − ε0

and at least one of these opinions (say, that of vj) will be used
by vi, we obtain by using (4),

x̃i(tε + 1) ≤ λj(ρΦ∗ − ε0) + (1 − λj)Φ̃(tε)
≤ λj(ρΦ∗ − ε0) + (1 − λj)(ρΦ∗ + ε)
≤ ρΦ∗ − λjε0 + ε(1 − λj). (6)

Using (3), (6), and noting that xi(tε) and the expressed
opinions of vi’s neighbors that can be used at time step tε
are up bounded by Φ∗(tε), we have

xi(tε + 1) ≤ (1 − α)Φ∗(tε) + α(ρΦ∗ − λjε0 + ε(1 − λj))
≤ (1 − α)(ρΦ∗ + ε) + α(ρΦ∗ − λjε0 + ε(1 − λj))
≤ ρΦ∗ − αλjε0 + ε(1 − αλj)
≤ ρΦ∗ − αλε0 + ε(1 − αλ). (7)
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The expression (7) is also valid for the private opinion of any
normal agent not in XΦ(tε, ε0) since such agent will adopt its
own private opinion xi(tε), and xi(tε) ≤ ρΦ∗ − ε0. Hence,

xi(tε + 1) ≤ (1 − α)Φ∗(tε) + α(ρΦ∗ − ε0)
≤ (1 − α)(ρΦ∗ + ε) + α(ρΦ∗ − ε0)
≤ ρΦ∗ − αε0 + ε(1 − α)
≤ ρΦ∗ − αλε0 + ε(1 − αλ), (8)

where in the last inequality we used λ < 1. Analogously, if
vi ∈ Xφ(tε, ε0) ∩ N which has at least R + 1 neighbors not
in Xφ(tε, ε0), we derive a parallel inequality

xi(tε + 1) ≥ ρφ∗ + αλε0 − ε(1 − αλ), (9)

which is also valid for the normal agents outside the set
Xφ(tε, ε0) similarly.

Define ε1 = αλε0 − ε(1 − αλ) such that 0 < ε < ε1 < ε0.
Recall that XΦ(tε + 1, ε1) and Xφ(tε + 1, ε1) are disjoint
sets. Since at least one of the normal agents in XΦ(tε, ε0)
decrements its private opinion to ρΦ∗ −ε1 or lower, or at least
one of the normal agents in Xφ(tε, ε0) increments its private
opinion to ρφ∗+ε1 or higher, the above comments indicate that
|XΦ(tε + 1, ε1)∩N | < |XΦ(tε, ε0)∩N | or |Xφ(tε + 1, ε1)∩
N | < |Xφ(tε, ε0)∩N | holds. We now recursively define εj =
αλεj−1−(1−αλ)ε for each j ≥ 1 and notice that εj < εj−1.
The above derivations are applicable to every time step tε + j
as long as there still exist normal agents in XΦ(tε + j, εj)
and Xφ(tε + j, εj). Since there are |N | normal agents in the
whole network G, there exists some T ≤ |N | such that either
XΦ(tε +T, εT )∩N or Xφ(tε +T, εT )∩N is an empty set. If
the former case is true, the private opinions of normal agents
at step tε +T are no greater than ρΦ∗ −εT ; if the latter case is
true, the private opinions of normal agents at step tε + T are
no less than ρφ∗ +εT . Therefore, εT = αλεT−1−ε(1−αλ) =
αT λT ε0 − ε(1−αT λT ) ≥ α|N |λ|N |ε0 − ε(1−α|N |λ|N |) > 0
according to the choice of ε in (5).

(II) XΦ̃(tε, ε0) and Xφ̃(tε, ε0). Since the network G is (R+
1, R + 1)-robust with no more than R malicious agents, there
is a normal agent in the union XΦ̃(tε, ε0)∪Xφ̃(tε, ε0), which
has at least R+1 neighbors not in its set. W.l.o.g., we assume
that vi ∈ XΦ̃(tε, ε0) ∩ N has at least R + 1 neighbors not in
XΦ̃(tε, ε0). Since these neighbors’ expressed opinions do not
exceed ρΦ∗ − ε0 and at least one of these opinions will be
used by vi, we obtain by using (4),

x̃i(tε + 1) ≤λi(ρΦ∗ + ε)
+ (1 − λi)((1 − β)(ρΦ∗ + ε) + β(ρΦ∗ − ε0))

≤ρΦ∗ − ε0β(1 + λi) + ε(1 − β + λiβ)
≤ρΦ∗ − ε0β(1 + λ) + ε, (10)

where we have used the condition λ ≤ λi ≤ 1 and noted
that each normal agent’s expressed opinion is characterized
as a convex combination of the expressed opinions of its
neighbors having coefficients no less than β. The expression
(10) is also applicable to the expressed opinion of any normal
agent not in XΦ̃(tε, ε0) as such agent will adopt its own
expressed opinion x̃i(tε), and x̃i(tε) ≤ ρΦ∗−ε0. Analogously,

if vi ∈ Xφ̃(tε, ε0)∩N which has at least R+1 neighbors not
in Xφ̃(tε, ε0), we arrive at a parallel inequality

x̃i(tε + 1) ≥ ρφ∗ + ε0β(1 + λ) − ε, (11)

which is also applicable to the normal agents not in the set
Xφ̃(tε, ε0) similarly.

Define ε̃1 = ε0β(1+λ)−ε such that 0 < ε < ε̃1 < ε0 := ε̃0.
Recall that XΦ̃(tε + 1, ε̃1) and Xφ̃(tε + 1, ε̃1) are disjoint
sets. Since at least one of the normal agents in XΦ̃(tε, ε̃0)
decrements its private opinion to ρΦ∗ − ε̃1 or lower, or at least
one of the normal agents in Xφ̃(tε, ε̃0) increments its private
opinion to ρφ∗ + ε̃1 or higher, the above comments indicate
that |XΦ̃(tε + 1, ε̃1) ∩ N | < |XΦ̃(tε, ε̃0) ∩ N | or |Xφ̃(tε +
1, ε̃1) ∩ N | < |Xφ̃(tε, ε̃0) ∩ N | holds. We recursively define
ε̃j = β(1 + λ)ε̃j−1 − ε for each j ≥ 1 and notice that ε̃j <
ε̃j−1. This derivation is also applicable to every time step tε +
j provided there still exist normal agents in XΦ̃(tε + j, ε̃j)
and Xφ̃(tε + j, ε̃j). Since there are |N | normal agents in the
whole network G, there exists some T̃ ≤ |N | such that either
XΦ̃(tε + T̃ , ε̃T̃ ) ∩N or Xφ̃(tε + T̃ , ε̃T̃ ) ∩N becomes empty.
If the former case is true, the expressed opinions of normal
agents at step tε + T̃ are no greater than ρΦ∗ − ε̃T̃ ; if the latter
case is true, the expressed opinions of normal agents at step
tε + T̃ are no less than ρφ∗ + ε̃T̃ . Therefore, we have

ε̃T̃ = β(1 + λ)ε̃T̃−1 − ε

= βT̃ (1 + λ)T̃ ε̃0 − ε
1 − βT̃ (1 + λ)T̃

1 − β(1 + λ)

≥ β|N |(1 + λ)|N |ε̃0 − ε
1 − β|N |(1 + λ)|N |

1 − β(1 + λ)
> 0 (12)

by the choice of ε in (5) and taking β(1 + λ) < 1 (since β
can be made arbitrarily small).

Combining the above comments, any normal agent vi

in the network at time step tε + max{T, T̃} has opinion
max{xi(t), x̃i(t)} either at most ρΦ∗ − min{εT , ε̃T̃ } or no
less than ρφ∗ + min{εT , ε̃T̃ }, leading to contradiction with
the definitions of the limits ρΦ∗ and ρφ∗ . 2

Remark 3. We have shown in the sufficiency of Theorem
1 that, if G is (R + 1, R + 1)-robust, both the private
and expressed opinions of normal agents in the network G
converge to the same limit, which is stronger than what is
required in Definition 3. This means the discrepancy between
expressed and private will ultimately vanish, avoiding the
harmful “spiral of silence” phenomenon observed in some
social networks [33]. Persistence to the individuals’ initial
opinions is found to be a possible cause of non-vanishing
discrepancy between expressed and private opinions in [9]
and even contributes to shaping the final opinion configuration
[34]. In our framework, such “stubbornness” to the initial
opinions has been considered as a malicious behavior and
is aimed to be overcome. Therefore, we are able to show
the strong result of vanishing discrepancy, which interestingly
agrees with recent report on Twitter [35].

Note that the set Ri(t) in (3) and (4) is time-varying.
Hence, the network structure G in Theorem 1 is no longer
fixed essentially. Moreover, for time-dependent communica-
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tion topologies, we have the corollary stated as follows. The
proof is given in Supplementary Material.
Corollary 1. Suppose that we have a time-varying network
characterized by a directed graph G(t) = (V,E(t)), where
each normal agent updates its private and expressed opinions
according to the opinion sifting strategy with parameter R.
Signified by {tk} the time steps in which G(t) is (R+1, R+1)-
robust. Then, in the R-globally bounded model having ma-
licious agents, resilient opinion consensus can be reached
if |{tk}| = ∞ and there is a constant τ ∈ N such that
|tk+1 − tk| ≤ τ for all k.

In the case of locally bounded models, in which misbehav-
ing agents are much more prevalent but the number of them
are still bounded in each normal agent’s neighborhood, an
amenable way to deal with malicious agents is to characterize
the network structure by the notion of R-robustness.
Theorem 2. (opinion consensus in R-locally bounded model
with malicious agents) Suppose that we have a time-invariant
network characterized by a directed graph G = (V,E), where
each normal agent updates its private and expressed opinions
according to the opinion R-sifting strategy. Then, in the
R-locally bounded model having malicious agents, resilient
opinion consensus can be reached when G is 2R + 1-robust.
Moreover, G is R+1-robust when resilient opinion consensus
in the R-locally bounded model with malicious agents can be
reached.
Proof. (Necessity) Assume to the contrary that G is not R+1-
robust. There exist disjoint nonempty sets S1, S2 ⊆ V such
that each agent in these two sets has at most R neighbors not
in the set. Suppose that there exist normal agents in both S1

and S2. Fix c1 < c2. Let xi(0) = x̃i(0) = c1 for any agent
vi ∈ S1, and xi(0) = x̃i(0) = c2 for any agent vi ∈ S2.
For all the other agents, set xi(0) = x̃i(0) ∈ (c1, c2). It is
obvious that the expressed or private opinions of agents in S1

and S2 will not achieve consensus under the resilient opinion
R-sifting strategy as they never refer to any opinions not in
their own sets. Thus, resilient consensus among normal agents
in G cannot be reached.

(Sufficiency) We proceed in a similar line as in Theo-
rem 1. Suppose that ρΦ∗ := limt→∞ Φ∗(t) and ρφ∗ :=
limt→∞ φ∗(t). In the sequel, we will prove ρΦ∗ = ρφ∗ by
contradiction. For this purpose, suppose that ρΦ∗ > ρφ∗ .
Choose ε0 > 0 so that ρΦ∗ − ε0 > ρφ∗ + ε0. For t ∈ N
and εi > 0, we consider four sets defined by XΦ(t, εi) :=
{vi ∈ V : xi(t) > ρΦ∗ − εi}, XΦ̃(t, εi) := {vi ∈ V : x̃i(t) >
ρΦ∗ − εi}, Xφ(t, εi) := {vi ∈ V : xi(t) < ρφ∗ + εi}, and
Xφ̃(t, εi) := {vi ∈ V : x̃i(t) < ρφ∗ +εi}. By the definition of
ε0, XΦ(t, ε0)∩Xφ(t, ε0) = ∅ and XΦ̃(t, ε0)∩Xφ̃(t, ε0) = ∅.
Set ε ∈ (0, ε0) such that

ε <

{
λ|N |α|N |ε0

1 − λ|N |α|N | ,

(1 + λ)|N |β|N |(1 − β(1 + λ))ε0

1 − β|N |(1 + λ)|N |

}
. (13)

Let tε be the time step satisfying Φ∗(t) < ρΦ∗ +ε and φ∗(t) >
ρφ∗ − ε for any t ≥ tε.

Recall that the pair of sets XΦ(tε, ε0)∩N and Xφ(tε, ε0)∩
N is nonempty and disjoint. Since G is 2R+1-robust, at least

one of this couple of sets is 2R + 1-reachable. We suppose,
w.l.o.g., that XΦ(tε, ε0) ∩ N is 2R + 1-reachable, and hence
there is an agent vi ∈ XΦ(tε, ε0) ∩ N having no less than
2R + 1 neighboring agents not in its set. As there are no
more than R malicious agents within Ni, vi will refer to
no less than one of its normal neighbors’ private opinions
not in XΦ(tε, ε0) ∩ N under the resilient opinion R-sifting
strategy. Accordingly, proceeding as in the proof of Theorem
1, we arrive at xi(tε + 1) ≤ ρΦ∗ − αλε0 + ε(1 − αλ).
This remains valid for the renewed private opinion of each
normal agent not in XΦ(tε, ε0) ∩ N as such an agent adopts
its own private opinion in the renewal procedure. Analo-
gously, if vi ∈ Xφ(tε, ε0) ∩ N has more than or equal to
2R + 1 neighbors not in its set, we have a similar inequality
xi(tε +1) ≥ ρφ∗ +αλε0−ε(1−αλ), which is also applicable
to the normal agents not in Xφ(tε, ε0) ∩N . Now by defining
ε1 = αλε0 − (1 − αλ)ε which satisfies 0 < ε < ε1 < ε0, we
can utilize the same proof in Theorem 1 (by setting recursively
εj for j ≥ 1 and (13)) to conclude that there exists T ≤ |N |
such that either XΦ(tε + T, εT ) ∩ N or Xφ(tε + T, εT ) ∩ N
is empty and εT is positive.

Similar arguments can be applied for the two nonempty
and disjoint sets XΦ̃(tε, ε̃0) ∩ N and Xφ̃(tε, ε̃0) ∩ N as
far as expressed opinions are concerned. We then are able
to conclude that there exists T̃ ≤ |N | such that either
XΦ̃(tε + T̃ , ε̃T̃ ) ∩ N or Xφ̃(tε + T̃ , ε̃T̃ ) ∩ N is empty and
ε̃T̃ is positive. Combining the above aspects for private and
expressed opinions, we similarly derive the contradiction and
hence conclude the sufficiency. 2

Note that there is a gap between the necessary criterion and
the sufficient criterion in Theorem 2. It would be interesting
to explore whether the above graph theoretical conditions are
tight. The following result for time-dependent networks can
be shown in the same manner as Corollary 1.
Corollary 2. Suppose that we have a time-varying network
characterized by a directed graph G(t) = (V,E(t)), where
each normal agent updates its private and expressed opinions
according to the opinion sifting strategy with parameter R.
Signified by {tk} the time steps in which G(t) is 2R+1-robust.
Therefore, in the R-locally bounded model having malicious
agents, resilient opinion consensus can be reached if |{tk}| =
∞ and there is a constant τ ∈ N such that |tk+1 − tk| ≤ τ
for all k.

B. Convergence analysis with Byzantine agents
In this subsection, we investigate necessary and sufficient

criteria for opinion consensus in the globally and locally
bounded models when there are Byzantine agents in the
network. Recall that Byzantine agents have the ability to
communicate disparate opinions to different neighbors at any
time step, and they are much more difficult to cope with.
Define GN (t) = (N,EN (t)) to be the subnetwork of G(t) =
(V,E(t)) that is induced by the set of normal agents N , where
EN (t) consists of all directed edges among the normal agents
at time step t. The following result deals with fixed network
structure in the globally bounded model.
Theorem 3. (opinion consensus in R-globally bounded
model with Byzantine agents) Suppose that we have a
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time-invariant network characterized by a directed graph
G = (V,E), where each normal agent updates its private and
expressed opinions according to the opinion R-sifting strategy.
Then, in the R-globally bounded model having Byzantine
agents, resilient opinion consensus can be reached if and only
if GN is R + 1-robust.
Proof. (Necessity) Suppose that GN is not R+1-robust. There
must exist a pair of nonempty and disjoint sets S1, S2 ⊆ N
which is not R + 1 reachable. Each agent in this couple of
sets has no more than R normal neighbors not in the set.
Fix c1 < c2. Let xi(0) = x̃i(0) = c1 for any vi ∈ S1,
and xi(0) = x̃i(0) = c2 for any vi ∈ S2. For all the other
agents vi in the network, set xi(0) = x̃i(0) ∈ (c1, c2). Suppose
that all Byzantine agents always communicate the expressed
opinion c1 to each agent vi in S1, and the expressed opinion
c2 to each agent vi in S2 at each time step t. By using the
resilient opinion R-sifting strategy, agents in S1 and S2 will
never adopt opinions not in their own sets. Thus, consensus
is not reached among normal agents (in N ). The necessity if
proved.

(Sufficiency) Similarly, we define that ρΦ∗ :=
limt→∞ Φ∗(t) and ρφ∗ := limt→∞ φ∗(t). Assume that
ρΦ∗ > ρφ∗ . Choose ε0 > 0 satisfying ρΦ∗ − ε0 > ρφ∗ + ε0.
For t ∈ N and εi > 0, we define four sets
YΦ(t, εi) := {vi ∈ N : xi(t) > ρΦ∗ − εi},
YΦ̃(t, εi) := {vi ∈ N : x̃i(t) > ρΦ∗ − εi},
Yφ(t, εi) := {vi ∈ N : xi(t) < ρφ∗ + εi}, and
Yφ̃(t, εi) := {vi ∈ N : x̃i(t) < ρφ∗ + εi}. According
to the definition of ε0, YΦ(t, ε0) ∩ Yφ(t, ε0) = ∅ and
YΦ̃(t, ε0) ∩ Yφ̃(t, ε0) = ∅. Fix ε ∈ (0, ε0) such that (5) is
satisfied. Define tε as the time step such that Φ∗(t) < ρΦ∗ +ε
and φ∗(t) > ρφ∗ − ε for all time step t ≥ tε.

Since GN is R + 1-robust with no more than R Byzantine
agents, there exits an agent in YΦ(tε, ε0) or Yφ(tε, ε0) that has
more than or equal to R + 1 normal neighboring agents not
in its set. W.l.o.g, we assume that vi ∈ YΦ(tε, ε0) has at least
R + 1 normal neighboring agents not in YΦ(tε, ε0). With the
same argument as in Theorem 1, we establish the inequality
xi(tε + 1) ≤ ρΦ∗ − αλε0 + (1 − αλ)ε. This expression also
holds for the renewed private opinion of every normal agent
node not in YΦ(tε, ε0). Likewise, if vi ∈ Yφ(tε, ε0) which has
at least R + 1 normal neighbors not in Yφ(tε, ε0), we obtain
similarly xi(tε + 1) ≥ ρφ∗ + αλε0 − (1−αλ)ε, which is also
applicable to the normal agents not in Yφ(tε, ε0).

Define ε1 = αλε0 − (1 − αλ)ε such that 0 < ε < ε1 < ε0.
Notice that the sets YΦ(tε + 1, ε1) and Yφ(tε + 1, ε1) are
disjoint. The comments in the above paragraph imply that
|YΦ(tε+1, ε1)| < |YΦ(tε, ε0)| or |Yφ(tε+1, ε1)| < |Yφ(tε, ε0)|
holds. We can recursively define εj = αλεj−1−(1−αλ)ε for
every j ≥ 1 and recall that εj < εj−1. The above discussion is
applicable to each time step tε +j provided YΦ(tε +j, εj) and
Yφ(tε + j, εj) are non-empty. Since GN contains |N | normal
agents, there is some T ≤ |N | such that either YΦ(tε +T, εT )
or Yφ(tε + T, εT ) is an empty set. On the other hand,
εT = αλεT−1−(1−αλ)ε ≥ α|N |λ|N |ε0−(1−α|N |λ|N|

)ε > 0
according to the choice of ε.

Similar arguments can be applied for the two nonempty
and disjoint sets YΦ̃(tε, ε̃0) and Yφ̃(tε, ε̃0) as far as expressed

opinions are concerned (by Theorem 1). We then are able
to conclude that there exists T̃ ≤ |N | such that either
YΦ̃(tε + T̃ , ε̃T̃ ) or Yφ̃(tε + T̃ , ε̃T̃ ) is empty and ε̃T̃ is positive.
Combining the above aspects for private and expressed opin-
ions, we similarly derive the contradiction. The sufficiency is
then proved. 2

The above Remark 3 can also be applied here as the
sufficiency gives a stronger result which indicates that the dis-
crepancy between private and expressed opinions is ultimately
vanishing. When moving to time-varying networks, we have
the following result.
Corollary 3. Suppose that we have a time-varying network
characterized by a directed graph G(t) = (V,E(t)), where
each normal agent updates its private and expressed opinions
according to the opinion sifting strategy with parameter R.
Signified by {tk} the time steps in which G(t) is 2R+1-robust.
Then, in the R-globally bounded model having Byzantine
agents, resilient opinion consensus can be reached if |{tk}| =
∞ and there is a constant τ ∈ N such that |tk+1 − tk| ≤ τ
for all k.
Proof. Suppose that G(t) is 2R + 1-robust, then GN (t) is
R + 1 robust. This is can be seen since there exist at most R
Byzantine agents in the whole network G. Thanks to Theorem
3, we prove the corollary by invoking a similar argument as
that in Corollary 1. 2

We next turn to the locally bounded models when there are
Byzantine agents deploying across a fixed network topology.
Theorem 4. (opinion consensus in R-locally bounded model
with Byzantine agents) Suppose that we have a time-invariant
network characterized by a directed graph G = (V,E),
where each normal agent updates its private and expressed
opinions according to the opinion R-sifting strategy. Then,
in the R-locally bounded model having Byzantine agents,
resilient opinion consensus can be reached if and only if GN

is R + 1-robust.
Proof. (Necessity) The exact proof of necessity of Theorem 3
is applied here.

(Sufficiency) Reasoning similarly as in Theorem 3, we
assume that ρΦ∗ := limt→∞ Φ∗(t) and ρφ∗ := limt→∞ φ∗(t).
Suppose that ρΦ∗ > ρφ∗ . Select ε0 > 0 satisfying ρΦ∗ − ε0 >
ρφ∗ + ε0. For t ∈ N and εi > 0, we define four sets as in
Theorem 3. By the definition of ε0, YΦ(t, ε0) and Yφ(t, ε0)
are disjoint; and YΦ̃(t, ε0) and Yφ̃(t, ε0) are also disjoint. Fix
ε0 > ε > 0 following (5). Denote by tε be the time step such
that Φ∗(t) < ρΦ∗ + ε and φ∗(t) > ρφ∗ − ε for all time step
t ≥ tε.

Since GN is R+1-robust, there exists an agent in YΦ(tε, ε0)
or Yφ(tε, ε0) that has at least R+1 normal neighboring agents
not in its set. We assume, w.l.o.g., that vi ∈ YΦ(tε, ε0) has at
least R + 1 normal neighbors not in YΦ(tε, ε0). Noting that
there are at most R Byzantine agents in Ni, vi will adopt at
least one of its normal neighbors’ expressed opinions not in
YΦ(tε, ε0) under the opinion R-sifting strategy. Based upon the
same reasoning as in Theorem 1, we obtain xi(tε+1) ≤ ρΦ∗−
αλε0 + (1 − αλ)ε. This is also valid for the renewed private
opinion of each normal agent not in YΦ(tε, ε0). Likewise, if
vi ∈ Yφ(tε, ε0) which has at least R+1 normal neighbors not
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in Yφ(tε, ε0), we arrive at xi(tε+1) ≥ ρφ+αλε0−(1−αλ)ε,
which is also applicable to the normal agents not in Yφ(tε, ε0).

Define ε1 = αλε0 − (1−αλ)ε, such that 0 < ε < ε1 < ε0.
The same reasoning in the proof of Theorem 3 (by recursively
defining εj = αλεj−1 − (1 − αλ)ε for each j ≥ 1) leads
to εT > 0 for some T ≤ |N |. Similarly, we get ε̃T̃ > 0
for some T̃ ≤ |N | when expressed opinion update is taken
into consideration. Combining the above aspects for private
and expressed opinions, we similarly derive the contradiction
which concludes the sufficiency. 2

Using similar arguments as in Corollary 3, we can establish
the following result for time-varying networks in the locally
bounded model.
Corollary 4. Suppose that we have a time-varying network
characterized by a directed graph G(t) = (V,E(t)), where
each normal agent updates its private and expressed opinions
according to the opinion sifting strategy with parameter R.
Signified by {tk} the time steps in which G(t) is 2R + 1-
robust. Then, in the R-locally bounded model having Byzan-
tine agents, resilient opinion consensus can be reached if
|{tk}| = ∞ and there is a constant τ ∈ N such that
|tk+1 − tk| ≤ τ for all k.

IV. RESILIENT OPINION CLUSTERING

In this section, we design opinion sifting strategies to allow
opinion clustering and co-existence of different opinions in the
long term in the presence of both malicious and Byzantine
agents. We will differentiate two situations, where opinions
may approach assigned ratios or differences. In each case,
necessary and sufficient criteria are discussed under globally
and locally bounded misbehaving conditions.

A. Opinion separation in terms of quotient

Recall that the opinion network G = (V,E) with V =
N∪M consisting of n interacting agents. Given scalar number
γi 6= 0 for every agent vi ∈ V , we define the opinion
separation in terms of quotient as follows.
Definition 6. (opinion separation in terms of quotient)
The normal agents in N are said to achieve resilient opinion
separation in terms of quotient with respect to (γ1, · · · , γn) in
the presence of misbehaving agents in M if limt→∞ γixi(t)−
γjxj(t) = 0 and limt→∞ γix̃i(t)−γj x̃j(t) = 0 for all vi, vj ∈
N and all initial conditions {xi(0)}n

i=1 and {x̃i(0)}n
i=1.

If we set γ1 = γ2 = · · · = γn = 1 above, then we reproduce
the resilient opinion consensus in Definition 3. In general, we
have xi/xj → γj/γi and x̃i/x̃j → γj/γi as t tends to infinity.
Here, by introducing different non-zero scales (can be positive
or negative) we are able to allow different expressed and
private opinions when t tends to infinity. Opinion separation in
terms of quotient is very useful in social opinion networks. In
the antagonistic or competitive scenario, an agent may simply
reject whatever its competitors support and advocate whatever
its competitors object. This can be appropriately modeled by
setting γi = 1 while γj = −1 for a pair of rivals vi and vj .
In the literature of control theory, asymptotic approaching to
prescribed ratios has been extensively under the name of scaled
consensus; see e.g. [36]–[38]. However, only single state value

for each agent is considered in the existing literature. To
realized resilient opinion separation, we need to modify the
proposed strategy in Section 2 to accommodate {γi}n

i=1. For
R ∈ N, we refer to the following algorithm as the opinion
separation strategy with parameters {γi}n

i=1 and R.
Our separation algorithm can be performed in three steps,

executed synchronously for all agents at each time step t ∈ N.
First, each normal agent vi ∈ N collects the expressed
opinions {x̃i

j(t)} from its neighbors, and creates an ordered
array for {γj x̃

i
j(t)}vj∈Ni arranging from largest to smallest.

Second, the largest R opinions that are strictly greater than
γixi(t) in the above array are deleted (if there are fewer than
R greater opinions than γixi(t), all of those opinions are
discarded). The similar sifting process is exerted to the smaller
opinions. The set of nodes that are discarded by agent vi at
time t is signified by a set Ri(t). Third, each vi ∈ N updates
its opinion applying the functions fi(·) and gi(·), respectively,
in (1) and (2):

xi(t + 1) = sgn(γi)
[
aii(t)γixi(t)

+
∑

vj∈Ni(t)\Ri(t)

aij(t)γj x̃
i
j(t)

]
, t ∈ N (14)

and

x̃i(t) =λixi(t) + (1 − λi)

·
∑

vj∈N i(t−1)\Ri(t−1)

bij(t − 1)
γj

γi
x̃i

j(t − 1),

t ∈ N\{0}, (15)

where sgn(·) is the standard signum function, {aij(t)} are
the weights instantiating fi satisfying the following three
conditions for every t ∈ N: (Af’) aij(t) = 0 if vj 6∈
N i(t)\Ri(t), (Bf’) there exists a constant number α ∈ (0, 1)
independent of t, such that |γi|aij(t) ≥ α for any vj ∈
N i(t)\Ri(t), and (Cf’)

∑
vj∈N i(t)\Ri(t)

|γi|aij(t) = 1; and
similarly {bij(t)} are the weights instantiating gi satisfying the
following three conditions for every t ∈ N: (Ag) bij(t) = 0
if vj 6∈ N i(t)\Ri(t), (Bg) there exists a constant number
β ∈ (0, 1) independent of t, such that bij(t) ≥ β for any vj ∈
N i(t)\Ri(t), and (Cg)

∑
vj∈N i(t)\Ri(t)

bij(t) = 1. Moreover,
as in the opinion sifting strategy we assume λi ∈ (0, 1], and
hence there exists a constant λ > 0 satisfying λi ≥ λ > 0 for
every vi ∈ N .
Theorem 5. (resilient opinion separation in terms of
quotient) Suppose that we have a time-invariant network char-
acterized by a directed graph G = (V,E), where each normal
agent updates its private and expressed opinions according to
the opinion separation strategy with parameters {γi}n

i=1 and
R. Then, (i) in the R-globally bounded model having malicious
agents, resilient opinion separation in terms of quotient can be
achieved if and only if G is (R + 1, R + 1)-robust; (ii) in the
R-locally bounded model having malicious agents, resilient
opinion separation in terms of quotient can be achieved if G
is 2R + 1-robust; and G is R + 1-robust if resilient opinion
separation in terms of quotient in the R-locally bounded model
with malicious agents can be achieved; (iii) in the R-globally
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bounded model having Byzantine agents, resilient opinion
separation in terms of quotient can be achieved if and only
if GN is R + 1-robust; (iv) in the R-locally bounded model
having Byzantine agents, resilient opinion separation in terms
of quotient can be achieved if and only if GN is R+1-robust.
Proof. Define Φ(t) := maxvi∈N γixi(t) and φ(t) :=
minvi∈N γixi(t) respectively as the maximum and minimum
private opinions for normal agents. Further, let Φ̃(t) :=
maxvi∈N γix̃i(t) and φ̃(t) := minvi∈N γix̃i(t) be the max-
imum and minimum expressed opinions, respectively, for
normal agents. By setting Φ∗(t) = max{Φ(t), Φ̃(t)} and
φ∗(t) = min{φ(t), φ̃(t)}, we can follow the similar arguments
in Theorems 1-4 to show the statements (i)-(iv), respectively.
We omit the detailed proof due to the limitation of space. 2

Remark 4. It might be tempting to introduce another set
of parameters, say, {γ̃i}n

i=1, to adjust the expressed opinions
in Definition 6 in hope of showing different limit ratios for
expressed opinions. However, this would be technically infea-
sible in the analysis of Eqs. (14) and (15), and theoretically
enigmatic since γi can be regarded as a social psychological
trait associated with each individual, which should remain the
same for both private and expressed opinions for a particular
individual [39]. As a result, the sufficiency parts of Theorem
5 is stronger than what is required in Definition 6 (c.f.
Remark 3). Moreover, results for time-dependent network
G(t) = (V,E(t)) can also be derived similarly.

B. Opinion separation in terms of difference

In addition to the parameters {γi}n
i=1, let h =

(h1, · · · , hn) ∈ Rn. We give the following definition for
resilient opinion separation in terms of difference.
Definition 7. (opinion separation in terms of difference)
The normal agents in N are said to achieve resilient opinion
separation in terms of difference with respect to (γ1, · · · , γn)
and h in the presence of misbehaving agents in M if
limt→∞ γixi(t) − γjxj(t) = hi − hj and limt→∞ γix̃i(t) −
γj x̃j(t) = hi − hj for all vi, vj ∈ N and all initial conditions
{xi(0)}n

i=1 and {x̃i(0)}n
i=1.

From Definition 7, we see that the opinion separation in
terms of difference is achieved if there exists vectors ξ, ξ̃ ∈
Rn such that for each vi ∈ N , γixi(t) tends to hi + ξ and
γix̃i(t) tends to hi + ξ̃ as time goes to infinity. This ideally
reflects many moderation processes in group decision making
where individuals may have different drifts based upon the
default opinion in question. We design the following opinion
separation strategy with parameters {γi}n

i=1, h and R.
The separation algorithm again can be performed in three

steps, executed synchronously for all agents at each time step
t ∈ N. First, each normal agent vi ∈ N collects the expressed
opinions {x̃i

j(t)} from its neighbors, and creates an ordered
array for {γj x̃

i
j(t)−hj}vj∈Ni from largest to smallest. Second,

the largest R opinions that are strictly greater than γixi(t)−hi

in the above array are deleted (if there are fewer than R grater
opinions than γixi(t)−hi, all of those opinions are discarded).
The similar sifting process is exerted to the smaller opinions.
The set of agents that are discarded by agent vi at time t

is signified by Ri(t). Third, each vi ∈ N updates its opinion
using the functions fi(·) and gi(·), respectively, in (1) and (2):

xi(t + 1) =hi/γi + sgn(γi)
[
aii(t)(γixi(t) − hi)

+
∑

vj∈Ni(t)\Ri(t)

aij(t)(γj x̃
i
j(t) − hj)

]
,

t ∈ N (16)

and

x̃i(t) =hi/γi + λi(xi(t) − hi/γi) + (1 − λi)

·
∑

vj∈N i(t−1)\Ri(t−1)

bij(t − 1)(x̃i
j(t − 1) − hj/γj),

t ∈ N\{0}, (17)

where {aij(t)} are the weights instantiating fi satisfying the
same three conditions (Af’), (Bf’), and (Cf’) for every t ∈
N; and {bij(t)} are the weights instantiating gi satisfying the
same three conditions (Ag), (Bg), and (Cg) for every t ∈ N.
We again assume λi ∈ (0, 1], and hence there exists a constant
λ > 0 satisfying λi ≥ λ > 0 for every vi ∈ N .
Theorem 6. (resilient opinion separation in terms of
difference) Suppose that we have a time-invariant network
characterized by a directed graph G = (V,E), where each
normal agent updates its private and expressed opinions
according to the opinion separation strategy with parameters
{γi}n

i=1, h and R. Then, (i) in the R-globally bounded model
having malicious agents, resilient opinion separation in terms
of difference can be achieved if and only if G is (R+1, R+1)-
robust; (ii) in the R-locally bounded model having malicious
agents, resilient opinion separation in terms of difference can
be achieved if G is 2R + 1-robust; and G is R + 1-robust if
resilient opinion separation in terms of difference in the R-
locally bounded model with malicious agents can be achieved;
(iii) in the R-globally bounded model having Byzantine agents,
resilient opinion separation in terms of difference can be
achieved if and only if GN is R + 1-robust; (iv) in the
R-locally bounded model having Byzantine agents, resilient
opinion separation in terms of difference can be achieved if
and only if GN is R + 1-robust.
Proof. Denote by ỹi

j(t) = x̃i
j(t) − hj/γj , yj(t) = xj(t) −

hj/γj , and ỹj(t) = x̃j(t) − hj/γj for vi, vj ∈ V . The update
rules (16) and (17) can be recast as

yi(t + 1) = sgn(γi)
[
aii(t)γiyi(t)

+
∑

vj∈Ni(t)\Ri(t)

aij(t)γj ỹ
i
j(t)

]
, t ∈ N (18)

and

ỹi(t) =λiyi(t) + (1 − λi)

·
∑

vj∈N i(t−1)\Ri(t−1)

bij(t − 1)
γj

γi
ỹi

j(t − 1),

t ∈ N\{0}, (19)

respectively, for vi ∈ N .
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It follows from Theorem 5 that resilient opinion separation
in terms of difference is achieved for {yi(t), ỹi(t)}vi∈N ,
which is equivalent to having vectors ξ, ξ̃ ∈ Rn such that
limt→∞ γixi(t) = hi + ξ and limt→∞ γix̃i(t) = hi + ξ̃ for
every vi ∈ N . The proof is complete. 2

Theorem 6 deals with fixed network topology G = (V,E)
and the case for time-varying network G(t) = (V,E(t)) can
be derived analogously as in Sections 3 and 4.1.
Remark 5. As a final remark for the theoretical analysis, we
emphasize that in the above theoretical results (Theorems 1-6)
the upper bound R of the misbehaving nodes is not an extra
limitation. Given any number R, consensus behavior can be
expected if the communication network is appropriately robust.

Fig. 2. Communication network G with six agents for Example 1.

V. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the pro-
posed resilient consensus and separation strategies via several
numerical examples.
Example 1. Suppose we have a network G = (V,E) over
n = 6 agents with V = N ∪ M , where N = {v1, · · · , v5}
and M = {v6} as shown in Fig. 2. It is straightforward to
check that the digraph G is 3-robust and GN is 2-robust.
Throughout the example, we assume the normal agents have
initial private opinions x1(0) = −7, x2(0) = −6, x3(0) = 6,
x4(0) = 1, and x5(0) = −3. Agent v6 is a malicious agent
who has initial expressed opinion x̃6(0) = −5 and updates
its expressed opinion following x̃6(t + 1) = (x̃1(t) + x̃2(t) +
x̃3(t)+ x̃4(t)+ x̃5(t))/5−0.2t+sin(t). Agent v6 is aware of
the whole network and tries to misguide the group opinion.

The opinion evolution for the initial configuration where
x̃i(0) = xi(0) for 1 ≤ i ≤ 5 is shown in Fig. 3(a). Here, we
choose aii(t) = 2/3, aij(t) = (|Ni(t)| − |Ri(t)|)−1/3 in (3);
λi = 1/4 and bij(t − 1) = (|Ni(t − 1)| + 1 − |Ri(t − 1)|)−1

in (4). We observe from Fig. 3(a) that the malicious agent
is unable to prevent the collective consensus of the network
as the normal agents apply the opinion sifting strategy with
parameter R = 1, which agrees with our theoretic prediction,
i. e., Theorems 2, 3, and 4. To further illustrate the evolution
of discrepancy between private and expressed opinions, we
define the quantity

∆i(t) = |xi(t) − x̃i(t)|, t ∈ N, (20)

for vi ∈ N . It follows from Fig. 3(b) that all ∆i’s initially
equal zero followed by a growth and ultimately die out after
around t = 20, reaching global consensus over the whole
network. In the inset of Fig. 3(b) we illustrate the situation
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Fig. 3. Opinion consensus over network G with a misbehaving agent v6

for (a) identical initial conditions for expressed and private opinions and (b)
the evolution of discrepancy between expressed and private opinions. Inset
of (b): opinion divergence under ordinary protocol without sifting procedure
(Legends as in panel (a)).

when ordinary consensus protocol without sifting is applied.
In this case, the interaction between the misbehaving agent v6

and the other normal agents diverges the system.
In Fig. 4, we consider a situation where the discrepancy

between private and expressed opinions exists in the begin-
ning. We assume x̃1(0) = 3, x̃2(0) = 2, x̃3(0) = −2,
x̃4(0) = 4, x̃5(0) = −1. From Fig. 4(a) and (b), we see
that the normal agents mange to reach consensus despite the
large initial discrepancy between their respective private and
expressed opinions. Remarkably, the speed to consensus seems
to be only affected negligibly as compared to Fig. 3. Moreover,
we observe from the inset of Fig. 4(b) that consensus fails
when ordinary consensus protocol without sifting is in use.

Next, we study the opinion clustering in terms of quotient
by introducing the parameters γ1 = γ2 = 2, and γ3 =
γ4 = γ5 = γ6 = −1. We choose aii(t) = 2|γi|−1/3 and
aij(t) = (|Ni|−|Ri(t)|)−1|γi|−1/3 in (14). The trajectories of
opinions are shown in Fig. 5(a). We observe that the opinions
are separated into two clusters such that v1 and v2 converge
to about 0.5 while v3, v4 and v5 tend to reach about -1. This
verifies our theoretical result, i. e., Theorem 5, and shows that
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Fig. 4. Opinion consensus over network G with a misbehaving agent v6

for (a) disparate initial conditions for expressed and private opinions and (b)
the evolution of discrepancy between expressed and private opinions. Inset
of (b): opinion divergence under ordinary protocol without sifting procedure
(Legends as in panel (a)).

the opinions approach predetermined ratio using the opinion
separation strategy with given parameters {γi}6

i=1 and R = 1.
The discrepancy of private and expressed opinions is shown in
Fig. 5(b) in line with theoretical results. As a comparison, we
plot in the inset of Fig. 5(b) the opinion clustering in terms of
difference following our separation strategy with γi = 1 for
all 1 ≤ i ≤ 6, h1 = h2 = 1, and hi = 0 for 3 ≤ i ≤ 6.
The result shows that v1 and v2 reach the opinion around -2
while the other normal agents attain the opinion around -3 as
one would expect from Theorem 6. It is worth mentioning that
although the misbehaving agent v6 fails to thwart the group’s
consensus or clustering, it still influences the trajectories and
the final opinions of the normal agents since it is fully engaged
in the interaction among these agents.
Example 2. In this example, we study the Zachary’s karate
club, which characterizes the friendship between members
of a university karate club in 1977 [40]. A core subgraph
of Zachary’s karate club, referred to as rich-core GKarate,
is determined in [41]; see Fig. 6. It is direct to check that
GKarate is an undirected 3-robust graph. When 0 ≤ t ≤ 10,
we assume that B = {v9} is the only misbehaving agent
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Fig. 5. Opinion separation in terms of quotient over network G with a
misbehaving agent v6 for (a) identical initial conditions for expressed and
private opinions and (b) the evolution of discrepancy between expressed and
private opinions. Inset of (b): opinion separation in terms of difference over
the same network (Legends as in panel (a)).

Fig. 6. Rich-core of Zachary’s karate club, GKarate, with one misbehaving
agent being v9 when t ∈ [0, 10] and switched to v8 when t ≥ 11.

whose expressed opinion follows the dynamics x̃9(t + 1) =
(x̃2(t)+x̃7(t)+x̃8(t))/3+t cos(t). When t ≥ 11, v9 becomes
normal and B = {v8} with x̃8(t+1) = (x̃5(t)+x̃6(t)+x̃7(t)+
x̃9(t))/4− 0.1t− sin(t2). The initial opinion configuration is
taken as x1(0) = −x̃1(0) = −3, x2(0) = −x̃2(0) = −4,
x3(0) = −x̃3(0) = 2, x4(0) = −x̃4(0) = 1, x5(0) =
−x̃5(0) = −5, x6(0) = −x̃6(0) = 3.5, x7(0) = −x̃7(0) =
−1.5, x8(0) = −x̃8(0) = 5.5, and x̃9(0) = 0.

The parameters in protocols (3) and (4) are taken as aii(t) =
0.9, aij(t) = (|Ni(t)|− |Ri(t)|)−1/10, λi = 0.6, bij(t−1) =
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Fig. 7. Opinion consensus over GKarate with one misbehaving agent v9 when
t ∈ [0, 10] and v8 when t ≥ 11. Private opinions (circles) and corresponding
expressed opinions (squares) for each agent have the same color. Hollow
symbols are for normal agents, while solid symbols are for misbehaving
agents.

(|Ni(t−1)|+1−|Ri(t−1)|)−1 for all i and j. It is interesting
to see from Fig. 7 that when v9 finally “cleans up its act”,
consensus can still be achieved embracing v9 as one would
expect. This again is in line with our main theorems.

Real-world examples of opinion formation during jury de-
liberation in Los Angeles County Superior Court as well as
a mock jury simulation in Tennessee are provided in Supple-
mentary Material. Building upon real-world data, we illustrate
that the proposed sifting algorithms enable consensus for
both expressed and private opinions for general interpersonal
interaction networks confirming empirical observations.

VI. CONCLUSION

In this paper, the problem of resilient opinion consensus
involving both private and expressed opinions with misbehav-
ing agents has been considered. We have proposed a unique
opinion dynamics model accommodating both an individ-
ual’s private opinion, which is not disclosed to others but
evolves under local influence from the expressed opinions
of its neighbors, and it’s expressed opinion, which evolves
under a peer pressure to conform to the local environment.
Based on the introduced resilient opinion sifting strategies,
we have established sufficient and necessary graph-theoretical
conditions to guarantee opinion consensus in a variety of
adversarial environments involving local and global threats as
well as malicious and Byzantine agents. As a further extension,
two types of opinion clustering problems are discussed and
corresponding sufficient and necessary conditions are pre-
sented to characterize opinion separation in terms of quotient
and difference. Both directed fixed networks and time-varying
networks have been investigated. Future work includes the
design of asynchronous opinion sifting strategies for normal
agents and also the analysis of the possible influence of time
delays.
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