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Expanding the substrates for a bacterial hydrogenlyase
reaction

Ciaran M. Lamont,† Ciar�an L. Kelly,‡ Constanze Pinske,§ Grant Buchanan, Tracy Palmer and Frank Sargent*

Abstract

Escherichia coli produces enzymes dedicated to hydrogen metabolism under anaerobic conditions. In particular, a formate

hydrogenlyase (FHL) enzyme is responsible for the majority of hydrogen gas produced under fermentative conditions. FHL

comprises a formate dehydrogenase (encoded by fdhF) linked directly to [NiFe]-hydrogenase-3 (Hyd-3), and formate is the

only natural substrate known for proton reduction by this hydrogenase. In this work, the possibility of engineering an

alternative electron donor for hydrogen production has been explored. Rational design and genetic engineering led to the

construction of a fusion between Thermotoga maritima ferredoxin (Fd) and Hyd-3. The Fd-Hyd-3 fusion was found to evolve

hydrogen when co-produced with T. maritima pyruvate :: ferredoxin oxidoreductase (PFOR), which links pyruvate oxidation to

the reduction of ferredoxin. Analysis of the key organic acids produced during fermentation suggested that the PFOR/Fd-

Hyd-3 fusion system successfully diverted pyruvate onto a new pathway towards hydrogen production.

Under anaerobic fermentative conditions, Escherichia coli
performs formate-dependent hydrogen production [1]. This
is catalysed by the formate hydrogenlyase (FHL) complex
[2–4], which is a membrane-bound enzyme comprising
[NiFe]-hydrogenase-3 (Hyd-3) and a formate dehydrogenase
component encoded by fdhF [5]. FdhF is loosely attached to
Hyd-3 via the HycB protein, which itself contains four [4Fe-
4S] clusters [2]. The E. coli Hyd-3 isoenzyme is unusual for a
nickel-containing hydrogenase as it is apparently tuned
towards proton reduction rather than H2 oxidation [2]. How-
ever, this makes Hyd-3 an attractive candidate for engineer-
ing hydrogen production activity.

FHL subunits share sequence similarity with the mem-
brane-bound hydrogenases (MBH) from, for example, Pyro-
coccus furiosus [6]. The electron donor for P. furiosus MBH
is not a formate but a reduced ferredoxin [6, 7], probably
generated by pyruvate :: ferredoxin oxidoreductase (PFOR)
[8]. PFOR is a cytoplasmic enzyme that oxidizes pyruvate to
generate CO2, acetyl-CoA, and reduced ferredoxin with a
midpoint potential (Em) estimated at –500mV [9].

In this work, pyruvate was explored as an alternative non-
natural substrate for H2 production from E. coli Hyd-3. A
rational design approach was taken to covalently attach the

ferredoxin from Thermotoga maritima to Hyd-3 via the
HycB subunit. T. maritima Fd and PFOR plasmids were
readily available [10]. To begin, strains were constructed
where the natural electron donor enzyme for FHL, FdhF,
was genetically removed (Table 1) using an available DfdhF
allele [11]. In vivo hydrogen production assays involved
measuring the accumulation of H2 in the headspace (10ml)
of anaerobic cultures (5ml) in Hungate tubes containing
0.8% (w/v) glucose. Following incubation at 37

�

C, H2 was
quantified using gas chromatography (Shimadzu GC-2014)
with N2 as carrier (25ml min�1). The fdhF mutation
resulted in a reduction in H2-evolution activity of 1000
times compared to the original parent strain (Fig. 1a, b).
This fdhF mutant phenotype was repeated in a strain carry-
ing a chromosomal hycEHis allele (Table 1, Fig. 1b).

FHL subunits share similarity with the respiratory NADH

dehydrogenase encoded by nuoA-N [3, 12, 13]. A DnuoA-N

allele, marked with apramycin resistance from pIJ773 [14],

had no effect on the ability of E. coli FGB300 or FTD300

(Table 1) to grow under fermentative conditions or the

amount of H2 produced (Fig. 1a). Next, DfdhF and DnuoA-

N alleles were combined in a single strain (MG300dZ) and

the double deletion was found to reduce the residual H2
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Table 1. Strains and plasmids used or constructed in this study

Strain Relevant genotype/description Source

MC4100 E. coli K-12: F-, araD139, D(argF-lac)U169, ptsF25, deoC1, relA1, flbB5301, rspL150 [22]

FTD300 As MC4100, DnuoA-N :: ApraR This work

MG1655 E. coli K-12: F-, l-, ilvG, rfb-50, rph-1 [23]

FGB300 As MG1655, DnuoA-N :: ApraR This work

MG16dZ As MG1655, DfdhF This work

MG300dZ As MG1655, DfdhF, DnuoA-N :: ApraR This work

MG059e1 As MG1655, hycEHis [2]

MGE1dZ As MG1655, hycEHis, DfdhF [11]

FTF2013 As MGE1dZ, DnuoA-N :: ApraR, DhycAB::’fd-hycB This work

FTF2015 As MGE1dZ, DnuoA-N :: ApraR, DhycAB ::’fd-hycB, PT5 ’fd-hycB This work

Plasmids

pREP4 lacI+ (KanR) Roche

pUNI-PROM A pT7.5 derivative carrying 103 bp E. coli tatA promoter (AmpR) [24]

pUNI-Tm-POR As pUNI-PROM with T. maritima PFOR operon (AmpR) [10]

pUNI-Tm-Fd-POR As pUNI-PROM encoding T. maritima Fd and PFOR (AmpR) [10]
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Fig. 1. A fusion between ferredoxin and Hyd-3 produces hydrogen in vivo in the presence of pyruvate-ferredoxin oxidoreductase (PFOR).

(a) The parental strains, MG1655 and MC4100, together with derivatives lacking the nuo operon encoding NADH dehydrogenase (DnuoA-

N) MG16dZ and FTD300, and the strain MG059e1 (as MG1655, hycEHis), were grown anaerobically in M9 medium supplemented with

0.8% (w/v) glucose for 24 h after which the OD600 was measured and the H2 content in the headspace quantified by gas chromatography.

Error bars represent SEM (n=3). (b) Strains carrying DfdhF deletions were analysed in an identical manner to those described in panel (a);

however, the data are plotted separately as the values are 1000 times lower. (c) Strains FTF2013 (’fd-hycB) and FTF2015 (’fd-hycB

under control of the T5 promoter) were transformed with pUNI-PROM, pUNI-Tm-POR (encoding T. maritima PFOR) or pUNI-Tm-Fd-POR

(encoding T. maritima PFOR and ferredoxin). The FTF2015 strain also carries pREP4 encoding LacI. Anaerobic M9 medium with 0.8% (w/

v) glucose, 0.2% (w/v) casamino acids, plus 1mM IPTG (final concentration) where indicated, was used. Cultures were incubated for 24 h

at 37
�

C. (d) Depiction of the complete PFOR/’Fd-Hyd-3 system activated in E. coli.
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production further still (Fig. 1b). It is therefore possible that
the very low levels of residual H2 produced in the fdhF
mutants results from reversed electron transport through
Hyd-2 [15].

Next, a DhycA ::’fd-hycB allele was generated that encoded
a fusion of T. maritima Fd to HycB via an HA epitope tag.
Also, to upregulate expression of this fusion, the synthetic
T5 promoter, lac operator and ribosome binding site from
strain FZBup [11] was included to give a DhycAB :: PT5’fd-
hycB allele. Two strains, FTF2013 and FTF2015, were
constructed (Table 1) and in vivo H2 evolution activity
quantified (Fig. 1c). The FTF2013 and FTF2015[pREP4]
strains were transformed with pUNI-PROM (empty control
vector), pUNI-Tm-POR (encoding T. maritima PFOR) or
pUNI-Tm-Fd-POR (encoding T. maritima PFOR and Fd)
then grown at 37

�

C for 24 h in anaerobic Hungate tubes

containing 5ml M9 medium supplemented with 0.8% (w/v)
glucose and 0.2% (w/v) casamino acids. The FTF2013 strain
produced H2 at basal levels regardless of the presence of
plasmids (Fig. 1c). This basal level was mirrored in the
FTF2015[pREP4]/pUNI-PROM strain (Fig. 1c). However,
when the PFOR plasmid was introduced into FTF2015
[pREP4] hydrogen, evolution increased to >40 nmol H2

OD�1 ml�1 (Fig. 1c). Moreover, the vector encoding both
PFOR and extra Fd induced H2 production to a maximal
level of >60 nmol H2 OD

�1 ml�1 in the presence of IPTG
(Fig. 1c).

The levels of the most common organic acids produced dur-
ing mixed-acid fermentation were investigated for strains
producing active Fd-Hyd-3/PFOR (Fig. 2). Strains were
grown for 24 h in 16ml LB medium supplemented with
0.8% (w/v) glucose. Culture supernatants were then passed
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Fig. 2. The influence of the Fd-Hyd-3 fusion and PFOR on fermentation products. FTF2013 (’fd-hycB) and FTF2015 (’fd-hycB under

control of the T5 promoter) were each transformed with pUNI-PROM, pUNI-Tm-POR (encoding T. maritima PFOR) or pUNI-Tm-Fd-POR

(encoding T. maritima PFOR and ferredoxin). FTF2015 also carries pREP4. Cultures were grown anaerobically in 16ml LB plus 0.8%

(w/v) glucose and 1mM IPTG (final), when required, at 37
�

C for 24 h. The spent fermentation broth was analysed by HPLC by loading

5 µl on an Aminex HPX-87H organic acid column at 0.5ml min�1 and 55
�

C and monitoring absorbance at 210 nm. Organic acid

standard curves were used all with R2 values greater than 99.90%. Peaks corresponding to the retention times of (a) formate, (b) lac-

tate, (c) pyruvate, (d) acetate, and (e) succinate were quantified and data normalized to original OD600. Error bars represent SEM (n=3).

Note that succinate could not be confidently determined (ND) in samples containing IPTG. Lane 1, virgin LB medium only; lane 2, virgin

LB medium + IPTG; lane 3, MC4100 positive control; lane 4, FTF2013 + pUNI-PROM; lane 5, FTF2013 + PFOR; lane 6, FTF2013 + PFOR

+ Fd; lane 7, FTF2015 + pUNI-PROM; lane 8, FTF2015 + PFOR; lane 9, FTF2015 + PFOR + Fd; lane 10, FTF2015 + pUNI-PROM + IPTG;

lane 11, FTF2015 + PFOR + IPTG; and lane 12, FTF2015 + PFOR + Fd + IPTG.
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through a 0.2 µm filter and analysed with an Aminex HPX-
87H organic-acid column at 55

�

C and 0.5ml min�1.
Organic acids were detected by A210 nm and compared to
standard curves. Representative HPLC traces are shown in
Fig. S1 (available in the online Supplementary Material).
The starting concentration of glucose added to the rich
medium was 44mM D-glucose and, under the growth con-
ditions chosen, the MC4100 FHL-positive strain produced
1.5mM OD600

�1 of formate (Fig. 2a) compared with
30.6mM OD600

�1 for the FTF2013/pUNI-PROM strain
(inactive for FHL). Importantly, when the PFOR, Fd and
Fd-Hyd-3 system is produced at its maximum level, the
extracellular formate was observed to drop back to 5.7mM
OD600

�1, which is indicative of pyruvate being directed
away from the endogenous pyruvate formatelyase (PFL)
enzyme to the fusion protein.

Extracellular lactate levels were found to be high in
FTF2013 (Fig. 2b). This may mean that the higher formate
levels (Fig. 2a) are inhibiting PFL leading to an accumula-
tion of pyruvate and thus extra substrate for lactate dehy-
drogenase. Indeed, pyruvate can be detected in the growth
medium (Fig. 2c) and its level does follow that of formate
and lactate in the FTF2013 mutant strains (Fig. 2c).
Although pyruvate would not normally be located outside
the cell, E. coli is known to possess a pyruvate exporter to
balance metabolite levels [16], and so any extracellular
pyruvate levels may also correlate somewhat with that inside
the cell cytoplasm. Importantly, in all cases, when the
PFOR, Fd and Fd-Hyd-3 system is maximally produced
(FTF2015/pUNI-Tm-Fd-POR + IPTG), the balance of
pyruvate/lactate/formate returns to the low levels seen in
the FHL-positive strain (Fig. 2c).

Normally, acetate levels are linked to that of acetyl CoA via
phosphate acetyltransferase and acetate kinase. The
observed increase in extracellular acetate (Fig. 2d) may
mean a concomitant increase in cytoplasmic acetyl CoA,
which is normally competed for by the AdhE-dependent
ethanol production pathway. This is feasible and could be a
consequence of the increased activity of the NADH-depen-
dent lactate dehydrogenase already noted for these strains,
which would reduce the requirement for AdhE to recycle
NAD+ and allow acetyl CoA to be used for ATP and acetate
production instead.

Together, these data demonstrate the successful re-
purposing of E. coli Hyd-3 to accept electrons from a new
substrate: reduced ferredoxin linked to pyruvate :: ferredoxin
oxidoreductase. Examples of native [NiFe]-hydrogenase ::
ferredoxin interactions are not common; however, Synecho-
cystis sp. PCC 6803 does contain such a system [17].
Physical tethering of a ferredoxin to an [FeFe]-hydrogenase,
as opposed to a [NiFe]-hydrogenase, from Chlamydomonas
reinhardtii showed that photosystem I could be coupled
directly to H2 production [18, 19]. Similarly, photosynthe-
sis-linked ferredoxins have been fused to cytochromes
P450 [20]. Functional fusion of a ferredoxin to [NiFe]-
hydrogenases has resulted in some activity in vitro [21];

however, the ’Fd-Hyd-3 enzyme described in these experi-
ments is one new example of a functional fusion that is
active in the living cell.
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