
Northumbria Research Link

Citation:  Thai,  Son, Thai,  Huu-Tai,  Vo,  Thuc and Reddy,  J.N.  (2017) Post-buckling of  functionally 
graded microplates under mechanical and thermal loads using isogeometric analysis. Engineering 
Structures, 150. pp. 905-917. ISSN 0141-0296 

Published by: Elsevier

URL:  http://dx.doi.org/10.1016/j.engstruct.2017.07.073 
<http://dx.doi.org/10.1016/j.engstruct.2017.07.073>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/40740/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/228158773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html




Post-buckling of functionally graded microplates under mechanical
and thermal loads using isogeomertic analysis

Son Thaia, Huu-Tai Thaia,∗, Thuc P. Vob,c,∗, J. N. Reddyd

aSchool of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
bDepartment of Mechanical and Construction Engineering, Northumbria University, Ellison Place, Newcastle upon

Tyne NE1 8ST, UK
cInstitute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam

dAdvanced Computational Mechanics Laboratory, Department of Mechanical Engineering, Texas A & M University,
College Station, TX 77843-3123, USA

Abstract

The present study uses the isogeometric analysis (IGA) to investigate the post-buckling behavior of

functionally graded (FG) microplates subjected to mechanical and thermal loads. The modified a

strain gradient theory with three length scale parameters is used to capture the size effect. The Reddy

third-order shear deformation plate theory with the von Kámán nonlinearity (i.e., small strains and

moderate rotations) is employed to describe the kinematics of the microplates. Material variations

in the thickness direction of the plate are described using a rule of mixtures. In addition, material

properties are assumed to be either temperature-dependent or temperature-independent. The govern-

ing equations are derived using the principle of virtual work, which are then discretized using the

IGA approach, whereby a C2-continuity requirement is fulfilled naturally and efficiently. To trace

the post-buckling paths, Newton’s iterative technique is utilized. Various parametric studies are con-

ducted to examine the influences of material variations, size effects, thickness ratios, and boundary

conditions on the post-buckling behavior of microplates.

Keywords: Isogeometric analysis; Post-buckling; Thermal effect; Modified strain gradient theory;

Microplate; Functionally graded plate

1. Introduction

Functionally graded materials (FGMs) [1] are a new class of composite materials that have been

employed in various engineering applications. The adoption of FGMs can eliminate interface prob-

lems and alleviate thermal stress concentrations in structural components, which are the major con-
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cerns with conventional laminated composites. These desirable features of FGMs are naturally ob-

tained since their materials vary smoothly and continuously as functions of position along certain

spatial direction. In general, a FGM is made from two different material constituents, for example,

ceramic and metal phases. The ceramic constituent is considered as a high temperature barrier, thanks

to its low thermal conductivity, whereas the metal counterpart is more ductile to prevent fracture due

to thermal stresses. In addition to the linear analysis of FG plates [2], a large number of studies have

been devoted to investigate their post-buckling responses [3–18]. A comprehensive review of plate

theories and techniques used to analyse FG plates subjected to mechanical and thermal loads can be

found in [2, 19, 20].

In recent years, beams and plates whose dimensions are in microns and nanometers have been

widely employed in advanced devices, such as microelectromechanical systems (MEMS) and nano

electromechanical systems (NEMS). With the distinguishing features, the FGMs were also employed

in such applications [21, 22]. In fact, the behaviour of small scale structures is considerably influ-

enced by material size effects, which can only be captured using non-classical elasticity theories with

length scale parameters. In the literature, nonlocal elasticity proposed by Eringen [23], Modified

Couple stress Theory (MCT) of Yang et al. [24] and Modified Strain gradient Theory (MST) of Lam

et al. [25] are widely used to investigate the behaviour of micro/nano structures. Recent studies on

the developments and applications of nonlocal theory to nanobeams and nanopaltes could be found

in the works of Li et al. [26–29], Nguyen et al. [30], and Phung-Van et al. [31]. Based on the MCT,

numerous studies have been also carried out to investigate the behaviour of micro beams and plates

[32–35, 35–45]. For nonlinear analysis in accordance with the MCT, Reddy and Kim [41] developed

a model based on a general third-order shear deformation plate theory, which can be specialized to

classical, first-order shear deformation, the Reddy third-order plate theories and accounts for both von

Kármán nonlinearity and FGMs. Ke et al. [46, 47] also investigated the nonlinear free vibration of

FG annular microplates and microbeams by adopting MCT. Based on the classical and first-order the-

ory, Reddy et al. [48] presented finite element models of microstructure-dependent nonlinear theories

for axisymmetric bending of FG circular plates, which account for the through-thickness power-law

variation of a two-constituent materia, the von Kármán nonlinearity, and the couple stress effects.

Compared to the MCT, the MST is more extensive and general in dealing with micro structures. In

addition, the MST is less complicated in terms of mathematical formulations than the classical strain

gradient theory [49], which can have more length scales. Therefore, various studies has been pub-

lished in the literature to discuss the size effect in micro structures based on the MST. Wang et al.

[50] and Ashoori Movassagh and Mahmoodi [51] developed the Navier solutions for bending, vibra-
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tion, and buckling responses of isotropic microplates. Sahmani and Ansari [52] also employed the

analytical approach to examine the free vibration behavior of FG microplates using higher-order plate

theories. Kirchhoff’s plate theory was adopted by Li et al. [53] to predict the bending response of

bi-layer microplates. Ansari et al. [54] and Zhang et al. [55] derived the displacements, frequencies

and buckling loads of annular/circular FG microplates. Zhang et al. [56] also developed an analytical

model using the refined plate theory to investigate the response of FG microplates resting on an elas-

tic foundation. The buckling and free vibration responses of FG microplates were also addressed in

the the study of Mirsalehi et al. [57] by using the finite strip method. Hosseini et al. [58] employed

an analytical approach to study the buckling responses of an orthotropic multi-microplate system

embedded in an elastic medium. Thai et al. [59] also carried out a comprehensive investigation on

linear bending, free vibration and buckling responses of FG microplates by using IGA approach. In

addition, the behaviour of microplates under thermal loads was also examined based on the MST

in some studies recently. For example, Ansari et al. [60] presented an investigation on the linear

thermal buckling of FG microplates based on the first-order plate theory. Shenas and Malekzadeh

[61] discussed the influence of thermal environment on the free vibration behavior of quadrilateral

FG microplates by using the Chebyshev-Ritz method. Emami and Alibeigloo [62] also adopted the

first-order plate theory and analytical approach to study the thermoelastic damping behavior of FG

microplates, in which the coupled thermoelasticity was investigated together with the size effect.

A review of the literature [22] shows that there are very few studies on the post-buckling be-

havior of microplates based on the MST so far. From an analytical point of view, the post-buckling

behavior of plate structures could be investigated using different approaches, such as analytical, semi-

analytical, and numerical methods. The analytical approach is only suitable for the problems with

simple geometries and boundary conditions, whereas other numerical methods encounter the diffi-

culty in fulfilling the high-order continuity requirement of the interpolation functions, for example,

when the first- or high-order shear deformation theory is considered. The IGA approach [63] which

is known as advanced computational techniques have been extensively employed to deal with various

problems in many fields of computational mechanics. The core idea of IGA is to employ the pre-

dominant technology used in Computer-Aided Design (CAD) as geometry discretization technique

and discretization tool for analysis. Non-uniform rational B-splines functions inheriting the advanced

features in geometrical modelling allow the IGA approach not only to be able to generate highly con-

tinuous interpolations but also present exactly the geometries of arbitrary conical shapes, hence the

error in geometrical modelling could be alleviated. For shell and plate problems in particular, the

smoothness of basis functions obtained from IGA approach allows the construction of plate/shell el-
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ement less complicated compared to other techniques [64]. In addition, k-refinement which is unique

to IGA presents a robust and systematic technique to elevate the continuity of interpolation functions

efficiently and naturally.

In this study, the post-buckling behavior of FG microplates under mechanical or thermal loads

is investigated using IGA-based numerical model and the MST. The shear deformation effect is also

investigated using the Reddy third-order shear deformation theory [65]. The von Kámán nonlinear

strains and temperature dependent properties are accounted for. The principle of virtual work is

utilized to derive the weak form equation of the problem. Based on the IGA technique, the C2-

continuity of the interpolation functions is met naturally and efficiently. The post-buckling paths are

traced using Newton’s iterative procedure with small initial imperfection. Verification exercises are

performed to present the accuracy of the present approach. In addition, various parametric studies

are carried out to determine the influences of the power-law indices, size effects, thickness ratios, and

boundary conditions on the post-buckling response of FG microplates.

2. Material properties of FGMs

For a FG rectangular plate whose geometry and coordinates are depicted in Fig. 1, the material

properties such as Young’s modulus E(z), thermal conductivity κ(z), and thermal expansion α(z)

vary throughout the thickness h according to the rule of mixture as [3]

P (z) = (Pc − Pm)

(
z

h
+

1

2

)n
+ Pm (1)

where c and m indicate ceramic and metal and n is the material gradient index. A purely ceramic or

metal plate is obtained by setting n = 0 or n =∞, respectively.

For the temperature-dependent materials, their properties are calculated by [66]

P = P0

(
P−1T

−1 + 1 + P1T
1 + P2T

2 + P3T
3
)

(2)

where P0, P−1, P1, P2 and P3 are the temperature coefficients. In this study, the temperature is as-

sumed to vary only throughout the thickness. Uniform temperature rise and nonlinear temperature

rise are taken into consideration. In addition, it is assumed that there is no internal heat generation

within the plate’s volume.

In the case of uniform temperature rise, the temperature of whole plate is assumed to be uniform

and increase from the referenced temperature T0 = 3000K to prescribed values. In other words, the

temperature at any point in the plate is T (z) = T0+∆T with ∆T being the increment of temperature.

When the nonlinear temperature rise is considered, the temperature distribution along the thick-

ness direction is based on the one-dimensional steady-state heat conduction equation, with related
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boundary conditions, as follows:

d

dz

[
κ (z)

dT

dz

]
= 0; T |z=−h/2 = Tm = 3000K; T |z=h/2 = Tc = Tm + ∆T (3)

The solutions of the above equation are obtained using the polynomial series [67] as follows:

T (z) = Tm +
Tc − Tm

C

[
Vf −

κcm
(n+ 1)κm

V n+1
f +

κ2
cm

(2n+ 1)κ2
m

V 2n+1
f − κ3

cm

(3n+ 1)κ3
m

V 3n+1
f

+
κ4
cm

(4n+ 1)κ4
m

V 2n+1
f − κ5

cm

(5n+ 1)κ5
m

V 5n+1
f

]
(4)

where Vf = 1
2

+ z
h

, κcm = κc − κm, and

C = 1− κcm
(n+ 1)κm

+
κ2
cm

(2n+ 1)κ2
m

− κ3
cm

(3n+ 1)κ3
m

+
κ4
cm

(4n+ 1)κ4
m

− κ5
cm

(5n+ 1)κ5
m

(5)

3. Size-dependent plate formulation

3.1. Modified strain gradient theory (MST)

In the MST proposed by Lam et al. [25], the virtual strain energy stored in an elastic body depends

not only on the conventional strain but also on the other high-order strain gradients:

δU =

∫
V

(
σijδεij + piδςi + τ

(1)
ijkδη

(1)
ijk +ms

ijδχ
s
ij

)
dV (6)

where εij is the classical strain tensor, ζi is the dilatation gradient tensor, η(1)
ijk is the deviatoric stretch

gradient tensor, and χsij is the symmetric part of rotation gradient tensor. Their definitions are given

as follows:

εij =
1

2
(ui,j + uj,i + um,ium,j) (7a)

ςi = εmm,i (7b)

η
(1)
ijk =

1

3
(εjk,i + εki,j + εij,k)−

1

15
δij (εmm,k + 2εmk,m)− 1

15
δjk (εmm,i + 2εmi,m)− 1

15
δki (εmm,j + 2εmj,m) (7c)

χsij =
1

4
(eimnun,mj + ejmnun,mi) (7d)

where ui are the components of displacement vector; δij and eijk are the Kronocker delta and per-

mutation symbol, respectively. The constitutive relations for classical stresses (σij) and high-order

stresses (pi, τ
(1)
ijk , and ms

ij) are expressed as follows:

σij = 2µεij + λεkkδij − α (3λ+ 2µ) ∆Tδij (8a)
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pi = 2µl20ςi (8b)

τ
(1)
ijk = 2µl21η

(1)
ijk (8c)

ms
ij = 2µl22χ

s
ij (8d)

where l0, l1, and l2 are three material length scale parameters and λ and µ are the Lamé constants

λ =
ν(z)E(z)

[1 + ν(z)] [1− 2ν(z)]
; µ =

E(z)

2 [1 + ν(z)]
(9)

It should be noted in Eq. (8) that the thermal effect is assumed to be only accounted for in the

classical stress [60, 61]. When the coupled thermoelastic problems and thickness stretching effect

are considered, the high-order stresses corresponding to the dilatation gradient tensor pi should be

modified. More information about this aspect can be found in [62, 68].

3.2. Kinematic formulation

Based on the the Reddy third-order shear deformation theory [65], the displacement field of plates

is described by 
u1

u2

u3

 =


u

v

w

+ f (z)


θx

θy

0

− g (z)


w,x

w,y

0

 (10)

in which (u, v, w) and (θx, θy) denote the displacements and rotations of transverse normals at an

arbitrary point in the middle surface Ω; f (z) = z − 4z3/3h2 and g (z) = 4z3/3h2

By substituting Eq. (10) into Eq. (7), the strain-displacement relationships based on the von

Kármán nonlinearity are obtained as follows:

ε = ε0 +
1

2
εnl + f (z) ε1 + g (z) ε2; γ = f ′ (z)γ1 + (1− g′ (z))γ2 (11a)

ς = ς0 + ςnl + f (z) ς1 + g (z) ς2; ςz = f ′ (z) ς3 + g′ (z) ς4 (11b)

η = η0 + ηnl + f ′′ (z)η1 + f ′ (z)η2 + f (z)η3 + g′′ (z)η4 + g′ (z)η5 + g (z)η6 (11c)

χ = χ0 + f ′′ (z)χ1 + f ′ (z)χ2 + f (z)χ3 + g′′ (z)χ4 + g′ (z)χ5 (11d)

Here, the primes represent derivatives with respect to z. In addition, it is observed that the nonlin-

earity is contributed from the classical strain tensor, dilatation gradient tensor, and deviatoric stretch

gradient tensor, whereas the symmetric part of rotation gradient tensor has no nonlinear component.

The details of those quantities are given in Appendix A.

The constitutive equations of size-dependent third-order shear deformation plates can be ex-

pressed in terms of stress resultants by substituting Eq. (11) into Eq. (8) as follows:

σ̂ = D̂ε

(
ε̂+

1

2
εnl

)
− σ̂T (12a)
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p̂ = D̂ς (ς̂ + ςnl) (12b)

τ̂ = D̂η (η̂ + ηnl) (12c)

m̂ = D̂χχ̂ (12d)

where D̂ε, D̂ς , D̂η and D̂χ are the constituent matrices whose definitions are presented in Appendix

B,

ε̂ =



ε0

ε1

ε2

γ1

γ2


; εnl =



εnl

0

0

0

0


; ς̂ =



ς0

ς1

ς2

ς3

ς4


; ςnl =



ςnl

0

0

0

0


(13a)

η̂ =



η0

η1

η2

η3

η4

η5

η6



; ηnl =



ηnl

0

0

0

0

0

0



; χ̂ =



χ0

χ1

χ2

χ3

χ4

χ5


(13b)

and σ̂T is the thermal stress resultant, which is given by

σ̂T =

h/2∫
−h/2

∆T (z)



Q̃b

f (z) Q̃b

g (z) Q̃b

0

0


dz; Q̃b = Qb


α (z)

α (z)

0

 (14)

By adopting the small strain assumption, the governing equation of the postbucking problem

obtained from the principle of virtual work can be expressed with respect to the initial configuration

as ∫
Ω

δ

(
ε̂+

1

2
εnl

)T [
D̂ε

(
ε̂+

1

2
εnl

)
− σ̂T

]
dΩ +

∫
Ω

δ(ς̂ + ςnl)
T D̂ς (ς̂ + ςnl) dΩ

+

∫
Ω

δ(η̂ + ηnl)
T D̂ηΓη (η̂ + ηnl) dΩ +

∫
Ω

δχ̂T D̂χΓχχ̂dΩ =

∫
Γ

δuT t̂dΓ (15)

where t̂ is the traction force applied in the boundary Γ and u =
{
u v θx θy w

}T
is the

displacement vector. Γη and Γχ are the diagonal matrices of coefficients

diag (Γη) =
{

1 1 1 3 3 3 6 1 1 1
}

(16a)
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diag (Γχ) =
{

1 1 2 1 2 2
}

(16b)

4. Isogeometric Analysis

By using the IGA approach [69, 70], the displacement variables are interpolated as follows

u =
m×n∑
c

Rc (ξ, η) dc (17)

where vector dc =
{
uc vc θxc θyc wc

}T
consists the corresponding variables at control point

c,m×n denotes the numbers of control points associated in an element, andRc are the 2-dimensional

B-splines basis functions. Substituting Eq. (17) into Eq. (12), the relationships between strains ans

and displacements are given as follows

ε̂ =
m×n∑
c

Bεcdc; εnl =
m×n∑
c

Bεnldc =
m×n∑
c

ΛεcBgcdc (18a)

ς̂ =
m×n∑
c

Bςcdc; ςnl =
m×n∑
c

Bςnldc =
m×n∑
c

ΛςcBgcdc (18b)

η̂ =
m×n∑
c

Bηcdc; ηnl =
m×n∑
c

Bηnldc =
m×n∑
c

ΛηcBgcdc (18c)

χ̂ =
m×n∑
c

Bχcdc (18d)

Details of the strain-displacement matrices are presented explicitly in Appendix C.

The equations for the post-buckling problems of FG microplates subjected to mechanical and

thermal loadings are obtained by substituting Eqs. (18) into the weak form in Eq. (15) as follows

(Kεm + Kς + Kη + Kχ) d = fm (19a)

(Kεt + Kς + Kη + Kχ) d = ft (19b)

where Kεm and Kεt are stiffness matrices corresponding to the classical strain tensor εij when the

mechanical and thermal loadings are considered, respectively. Kς ,Kη and Kχ are the stiffness ma-

trices related to the dilatation gradient tensor ςi, deviatoric stretch gradient tensor η(1)
ijk and symmetric

part of rotation gradient tensor χsij , respectively.

Kεm =

∫
Ω

(
BT
εT D̂εBε +

1

2
BT
εT D̂εBεnl + BT

εnlD̂εBε +
1

2
BT
εnlD̂εBεnl

)
dΩ (20a)

Kεt =

∫
Ω

(
BT
εT D̂εBε +

1

2
BT
εT D̂εBεnl + BT

εnlD̂εBε +
1

2
BT
εnlD̂εBεnl −BT

g N̂thBg

)
dΩ (20b)
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Kς =

∫
Ω

(
BT
ςT D̂ςBς + BT

ςT D̂ςBςnl + BT
ςnlD̂ςBς + BT

ςnlD̂ςBςnl + BT
g N̂ςBgς

)
dΩ (20c)

Kη =

∫
Ω

(
BT
ηTΓηD̂ηBη + BT

ηTΓηD̂ηBηnl + BT
ηnlΓηD̂ηBη + BT

ηnlΓηD̂ηBηnl + BT
g N̂ηBgη

)
dΩ

(20d)

Kχ =

∫
Ω

BT
χT D̂χΓχBχddΩ (20e)

fm and fm are the force vectors due to mechanical and thermal loadings

fm =

∫
Γ

BT
Γ t̂dΓ; ft =

∫
Ω

BT
εT σ̂TdΩ (21)

where BΓ =
{
RΓ RΓ 0 0 0

}
withRΓ being the 1D basis function defined along the boundary

of the plate.

It can be seen from the IGA-based formulations (see Appendix C) that the third-order derivatives

of basis functions are required for constructing stiffness matrices. Consequently, the basis functions

with C2−continuity over the parametric space are needed. In general, this requirement is not easy

to handle when it is considered within the basis of traditional finite element approach. As men-

tioned earlier, the basis functions obtained from the IGA approach are able to provide highly contin-

uous interpolations naturally and efficiently thanks to an advanced k−refinement technique [70]. For

C2−continuous interpolations, the basis functions with order of p = 3 are employed in this study.

5. Solution procedures

In general, the post-buckling problems considered within the framework of numerical methods

could be classified into two types: nonlinear eigenvalue analysis and geometrically nonlinear anal-

ysis. The nonlinear eigenvalue analysis is applicable to solve the post-buckling problems when the

bifurcation buckling does happen. In other words, the plate still remains its initial configuration un-

der the effects of compressive or thermal loadings until the buckling phenomenon takes place with

sudden deformations. In general, the bifurcation buckling occurs when the plate is perfectly flat

and only membrane forces are generated under the effects of external loadings. In case the plate

is subjected to mechanical loadings, the latter condition is obtained when the plates are made from

homogeneous materials or symmetric angle-fly laminated composites. When the plates are imposed

to thermal effects, the bifurcation buckling only takes place with uniform temperature rise and the

aforementioned conditions of materials are satisfied. However, when those conditions are violated,

the bifurcation buckling still occurs when the clamped boundary conditions are considered. This is

9



due to the fact that this type of boundary condition is capable of preventing the plates from deform-

ing suddenly under the effects of coupling or thermal moments. The general procedure of nonlinear

eigenvalue analysis was presented in the papers of Liew et al. [71] and Tran et al. [16]. When the

conditions for bifurcation buckling to occur are not satisfied (e.g. the the plates is made from inhomo-

geneous plates such as FGMs, unsymmetrically laminated composites, the temperature dose not vary

throughout the thickness uniformly, or when the clamped boundary condition is not considered), the

plate would deform immediately as soon as the external loads are imposed due to extension-bending

coupling effects. As a result, the nonlinear eigenvalue analysis cannot represent the stability status

of the plates correctly in such cases and the geometrically nonlinear analysis is therefore needed

to be conducted to obtained accurate results. In addition, it is possible to capture the bifurcation

buckling with geometrically nonlinear analysis by imposing a relatively small imperfection on the

initial geometry of the plates. Therefore, the latter approach is employed in this study to investigate

the post-buckling behaviour of FG microplates. Herein, the post-buckling paths are traced using the

Newton’s iterative technique, in which the deformed geometry of the first mode in linear buckling

analysis is imposed as a small initial imperfection [72]. The tangent stiffness matrix of the present

model is given by

KT = KTε + KTς + KTη + Kχ (22)

where

KTε =

∫
Ω

(
BT
εT D̂εBε + BT

εT D̂εBεnl + BT
εnlD̂εBε + BT

εnlD̂εBεnl + BT
g N̂εBg

)
dΩ (23a)

KTς =

∫
Ω

(
BT
ςT D̂ςBς + 2BT

ςT D̂ςBςnl + BT
ςnlD̂ςBς + 2BT

ςnlD̂ςBςnl + 2BT
g N̂ςBgς

)
dΩ (23b)

KTη =

∫
Ω

(
BT
ηTΓηD̂ηBη + 2BT

ηTΓηD̂ηBηnl + BT
ηnlΓηD̂ηBη + 2BT

ηnlΓηD̂ηBηnl + 2BT
g N̂ηBgη

)
dΩ

(23c)

6. Numerical examples

In this section, verification studies and parametric investigations on the post-buckling behavior of

FG microplates under mechanical and thermal loads are conducted. For analysis of micro structures,

the length scale parameters should be defined based on experimental information. However, the

values of length scale parameters of FGMs are not available in the literature. For simplification

purpose, the length scale parameters in this study are assumed to be identical l0 = l1 = l2 = l =

15 × 10−6 m [25, 56]. Material properties of FGMs which can be either temperature-independent
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or temperature-dependent, and the data is presented in Tables 1 and 2, respectively. The boundary

conditions employed in this study are given as described next.

In the case of mechanical loads:

• SSSS1m

θx = w = 0 at y = 0 and y = b (24a)

θy = w = 0 at x = 0 and x = a (24b)

• SSSS2m

u = θx = w = 0 at y = 0 and y = b (25a)

v = θy = w = 0 at x = 0 and x = a (25b)

• SCSCm

θx = w = 0 at y = 0 and y = b (26a)

v = θx = θy = w =
∂w

∂x
= 0 at x = 0 and x = a (26b)

In the case of thermal loads:

• SSSS1t

u = θx = w = 0 at y = 0 and y = b (27a)

v = θy = w = 0 at x = 0 and x = a (27b)

• SSSS2t

u = v = θx = w = 0 at y = 0 and y = b (28a)

u = v = θy = w = 0 at x = 0 and x = a (28b)

• CCCCt

u = v = θx = θy = w =
∂w

∂y
= 0 at y = 0 and y = b (29a)

u = v = θx = θy = w =
∂w

∂x
= 0 at x = 0 and x = a (29b)

In the IGA technique, the conditions related to first derivative of w is treated by setting zero value

for the transverse displacement in all control points on the boundary and those adjacent to them.

Herein, the choice for boundary conditions in cases of mechanical and thermal loads are different

due to the distinctions between the actions of these effects. While the mechanical buckling loads

are applied on the edges of the plate and they tend to move all the points in the boundary in their

directions, the thermal buckling loads are generated in side the plate domain due to the elevated

temperature and the bending-stretching effect.
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6.1. Verification studies

Since the results for the post-buckling of FG microplates based on the MST are not available

in the literature, the present approach is verified by solving some problems of macro-plates in the

literature.

In the first verification, the post-buckling response of an isotropic plate subjected to uniaxial

compressive load is addressed. The non-dimensional geometry and material properties are listed as

follows: a = b = 10, h = 0.2, E = 3 × 106 and ν = 0.25, and the boundary condition used is

SSSS1m. In Fig. 2, the post-buckling paths obtained from Le-Manh and Lee [72] and the present

study with different mesh sizes are depicted. Herein, λ = Na2
/
π2D̄ with D̄ = Eh3/12 (1− ν2). By

adopting cubic basis functions, the solutions obtained from present approach converge quickly and

agree well with those given in [72] with 8×8 mesh. Therefore, this mesh size is used in the remaining

calculations.

The next verification example examines the post-buckling behavior of FG plates under thermal

loads. In Fig. 3, the thermal post-buckling paths of a square SSSS2t Al2O3/Al plate under nonlinear

temperature rise are compared with those given by Tran et al. [16]. The material properties used

in this example are assumed to be temperature-independent. As expected, the present results and

those obtained from [16] are in good agreement. Another example about the thermal post-buckling

response of FG plate is depicted in Fig. 4 for a SSSS2t Si3N4/SUS304 plate under uniform tempera-

ture rise with the material properties being temperature-dependent. The plate in this case has a planar

dimension of a = b = 0.3 m and a/h = 100. It can be seen that the present results are in excellent

agreement with those obtained by Park and Kim [7] for different values of gradient index n.

6.2. Parametric studies

In this subsection, parametric studies are conducted to investigate the influences of different pa-

rameters, such as material gradient indices, length scale parameters, thickness ratios and boundary

conditions, on the post buckling behavior of FG microplates. In case of micoplates subjected to me-

chanical loadings, the adopted materials are Al2O3/Al. For thermal problems, materials of the plates

are Si3N4/SUS304 and temperature-dependent. It should be noted that the temperature change is not

usually uniform in the FG plate since the temperature rises much faster at the ceramic part than the

metal one. Therefore, only nonlinear temperature rise is considered in the current investigation.

6.2.1. Post-buckling responses under compressive loads

Fig. 5 illustrates the influence of the gradient index n on the post-buckling behavior of FG mi-

croplates, in which Ñ = Na2/Emh
3. The bifurcation buckling is captured in case of isotropic plates
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(n = 0 or n = ∞) as expected. Whereas, sudden deformations are obtained when the compressive

force is applied in case of FG plates. This is due to the coupling moments induced by the difference

between the middle and physical neutral surfaces. In general, the buckling load is reduced with the

increase of gradient index n. It can be explained that this change gives rise to the metal phrase, which

makes the plate become softer.

The influence of size effect on the post-buckling response of FG microplates is depicted in Fig.

6. In general, the bifurcation buckling does not occur in case of FG plates with simply supported

(SSSS1m) boundary condition. In addition, it can be seen that the load-carrying capacity increases

with the decrease of the ratio of h/l. Herein, h/l = ∞ denotes the classical case where the size

effect is neglected. When the ratio of h/l decreases, the influence of the size effect becomes more

considerable as indicated in the Fig. 6 and become extraordinary when h/l approaches to unity and

smaller than unity. In other words, the size effect becomes dominant and the stiffness of the plate

increases remarkably when the sizes of the plate is at the microscale.

In Fig. 7, the influence of shear deformation effect on the post-buckling response is illustrated.

The behavior of thin plates (a/h = 100 and a/h = 50) are almost identical since the influence of

shear deformation effect is not significant. However, when the thicker plates are considered, the effect

becomes noticeable as seen in the Fig. 7.

In the last example, the influence of boundary conditions on the post-buckling response are stud-

ied and the results are presented in Fig. 8. In general, the SSSS1m boundary condition is the weakest

(i.e., less stiff) case in post-buckling analysis, followed by the SSSS2m and SCSCm boundary con-

ditions. This observation can be explained by the fact that the SSSS1m boundary condition imposes

less geometric constraints than other cases, whose in-plane displacements at the edges are fixed. Fur-

thermore, it is noticed that the clamped boundary condition is capable of preventing the plate from

sudden deformations, although the plate in this case is made from FGMs with coupling moments

being generated. It should be noted that the uniaxial compressive forces are imposed in the clamped

edges in this investigation.

6.2.2. Post-buckling responses under nonlinear temperature rise

The influence of gradient index n on the thermal response is presented in Fig. 9. As can be seen

from the figure, the plate deforms immediately when the temperature at the upper surface is raised

regardless of isotropic materials (n = 0 or n = ∞) or FGMs. This is due to the nonlinear tempera-

ture variation, which leads to the generation of thermal moments Mε
T and high-order thermal stress

resultants Lε
T as given in Eq. (14). In addition, it is worth noting that the variation of thermal post-

buckling path with respect to the gradient index n does not follow a monotonic manner. Compared
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to the purely ceramic case, higher temperature resistance is obtained when the gradient index n is

prescribed as n = 1 or 2. However, the thermal post-buckling paths of other cases with n ≥ 5 are

lower compared to that with n = 0. This is due to the fact that the temperature field nonlinearly varies

throughout the plate thickness, and the temperature distribution profile varies with different gradient

indices. Similar observation was also reported in the study of Ma and Wang [4]. In addition, it should

be noted that the plate in this example deforms to the upper side. Herein, the higher temperatures

are applied to the ceramic surface and the temperature at the bottom is keep constant at 3000K. This

condition makes the top of the plate expands more than the bottom side does. Consequently, upward

deflections are obtained. In the case of uniform temperature rise discussed in the verification studies,

the FG plate bends downward since the material at the bottom surface has a larger value of thermal

expansion coefficient.

In Fig. 10, the influence of size effect on the thermal post-buckling behaviour of FG microplates

is illustrated. The obtained results show that the thermal behaviour of FG microplates is remarkably

affected by the size effect. When the influence of size effect is relatively small (h/l = 10 to h/l

= 5), the thermal post-buckling path slightly increases compared to the classical case (h/l = ∞).

However, when the size effect becomes most considerable (h/l = 2 to h/l = 0.5), the shapes of post-

buckling paths change completely. In these case, the microplate becomes much stiffer and its thermal

resistance is extraordinarily raised.

The influence of thickness ratio on the thermal post-buckling behavior of FG microplates is de-

picted in Fig. 11. In general, when the plates are changed from thin to thick, their behavior at

different thickness ratios are completely different to each others. It is seen that the thinner the plate

is, the more unstably it behaves under the thermal loadings. When the plate becomes thicker, its

thermal resistance increases considerably. Unlike the case of microplates subjected to mechanical

loadings, the influence of thickness ratio on the thermal post-buckling responses is more significant.

Herein, the thickness ratio not only influences on the impact of shear deformation effect but also af-

fects the temperature variation throughout the plate thickness as defined in Eq. (3). Therefore, shear

deformation theory should be taken into consideration to accurately predict the behavior of FG plates

under thermal loadings.

The final example is contributed to the investigation of the influence of three types of boundary

conditions, namely SSSS1t, SSSS2t and CCCCt, on the thermal post-buckling behavior of FG mi-

croplates. As can be seen in Fig. 12, the bifurcation buckling is captured in the case of clamped

boundary condition (CCCCt), even though the problem considered herein is carried out with the

nonlinear temperature rise. In other cases, where the simply supported boundary conditions are ex-
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amined, the plate buckles as soon as the temperature rise is considered. In addition, the clamped

boundary condition is seen to have a considerable impact on the thermal resistance of the plate. The

buckling temperature in such case is much higher than other cases of simply supported boundary

conditions. Furthermore, it is seen that the plate with movable edges (SSSS1t) produces smaller

displacements than that with immovable edges (SSSS2t). This observation is inverse to that in the

previous study on the post-buckling of microplates under mechanical loads. Herein, the adoption of

movable boundary condition makes the plate free to expand, whereas the immovable one restrains

the expansion of the plate via its edges, and consequently lager deflections are obtained.

7. Conclusions

In this study, a numerical approach based on the IGA is developed to study the post-buckling

behavior of FG microplates under mechanical and thermal loads. The size effect inherited from the

micro-structure is accounted for using the MST, whilst the shear deformation effect and geometric

nonlinearity are captured using the Reddy third-order shear deformation theory along with the von

Kámán’s assumption. The material variations throughout the plate thickness are described using the

rule of mixtures, and temperature-dependent materials are also taken into consideration. The principle

of virtual work is used to derived the governing equations, which are then discretized using the IGA

approach. The interpolation functions with C2−continuity are obtained naturally and efficiently. The

Newton’s iterative technique with imperfection is employed to solve the nonlinear equations. Some

verification problems are solved to prove the accuracy of the present approach. Parametric studies

are also conducted to examine the influences of the value of the gradient index, size effect, thickness

ratios, and boundary conditions. The following specific conclusions are drawn from the present study:

• Larger post-buckling deformations under compressive loads are obtained when the gradient

index is increased (because larger values correspond to lower modulus). For thermal post-

buckling problems, the influence of the gradient index is noticeable as it is found that the

thermal resistance of the plate in some cases is greater than that of purely ceramic plate.

• The size effect (material length scale) has a remarkable influence on the post-buckling behavior

of microplates. When the plate thickness is comparable to the length scale parameter, the size

effect becomes most significant, consequently the post-buckling deformation is much smaller

than that obtained from the classical theory.

• The effect of thickness ratios on thermal post-buckling response is noticeable as it influences

not only the shear deformation effect but also the temperature distribution through the thick-

ness.
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• The FG plates with simply supported boundary conditions are unstable under the effect of both

compressive and thermal loads, whereas the clamped boundary condition is capable of prevent-

ing the plates from sudden deformations, and the bifurcation buckling is obtained consequently.
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Appendix A

The components of strain-displacement vectors are given as follows

ε =


εxx

εyy

γxy

 ; ε0 =


u,x

v,y

u,y + v,x

 ; εnl =


(w,x)

2

(w,y)
2

2w,xw,y

 ; ε1 =


θx,x

θy,y

θx,y + θy,x

 ; ε2 =


−w,xx
−w,yy
−2w,xy


(A-1a)

γ =

 γxz

γyz

 ; γ1 =

 θx

θy

 ;γ2 =

 w,x

w,y

 (A-1b)

ς =

 ςx

ςy

 ; ς0 =

 u,xx + v,xy

u,xy + v,yy

 ; ςnl =

 w,xw,xx + w,yw,xy

w,xw,xy + w,yw,yy

 (A-2a)

ς1 =

 θx,xx + θy,xy

θx,xy + θy,yy

 ; ς2 =

 −w,xxx − w,xyy−w,xxy − w,yyy

 (A-2b)

ς3 = θx,x + θy,y; ς4 = −w,xx − w,yy (A-2c)

η =



η
(1)
xxx

η
(1)
yyy

η
(1)
zzz

η
(1)
xxy

η
(1)
xxz

η
(1)
xyy

η
(1)
xyz

η
(1)
xzz

η
(1)
yyz

η
(1)
yzz



;η0 =



2
5
u,xx − 1

5
u,yy − 2

5
v,xy

−2
5
u,xy + 2

5
v,yy − 1

5
v,xx

−1
5
w,xx − 1

5
w,yy

8
15
u,xy + 4

15
v,xx − 1

5
v,yy

4
15
w,xx − 1

15
w,yy

4
15
u,yy − 1

5
u,xx + 8

15
v,xy

1
3
w,xy

−1
5
u,xx − 1

15
u,yy − 2

15
v,xy

4
15
w,yy − 1

15
w,xx

− 2
15
u,xy − 1

15
v,xx − 1

5
v,yy



;ηnl =



2
5
w,xw,xx − 1

5
w,xw,yy − 2

5
w,yw,xy

−2
5
w,xw,xy − 1

5
w,yw,xx + 2

5
w,yw,yy

0

8
15
w,xw,xy + 4

15
w,yw,xx − 1

5
w,yw,yy

0

−1
5
w,xw,xx + 4

15
w,xw,yy + 8

15
w,yw,xy

0

−1
5
w,xw,xx − 1

15
w,xw,yy − 2

15
w,yw,xy

0

− 2
15
w,xw,xy − 1

15
w,yw,xx − 1

5
w,yw,yy


(A-3a)
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η1 =



−1
5
θx

−1
5
θy

0

− 1
15
θy

0

− 1
15
θx

0

4
15
θx

0

4
15
θy



;η2 =



0

0

−2
5
θx,x − 2

5
θy,y

0

8
15
θx,x − 2

15
θy,y

0

1
3
θx,y + 1

3
θy,x

0

− 2
15
θx,x + 8

15
θy,y

0



;η3 =



2
5
θx,xx − 1

5
θx,yy − 2

5
θy,xy

−2
5
θx,xy − 1

5
θy,xx + 2

5
θy,yy

0

8
15
θx,xy + 4

15
θy,xx − 1

5
θy,yy

0

−1
5
θx,xx + 4

15
θx,yy + 8

15
θy,xy

0

−1
5
θx,xx − 1

15
θx,yy − 2

15
θy,xy

0

− 2
15
θx,xy − 1

15
θy,xx − 1

5
θy,yy


(A-3b)

η4 =



1
5
w,x

1
5
w,y

0

1
15
w,y

0

1
15
w,x

0

− 4
15
w,x

0

− 4
15
w,y



;η5 =



0

0

2
5
w,xx + 2

5
w,yy

0

− 8
15
w,xx + 2

15
w,yy

0

−1
2
w,xy

0

2
15
w,xx − 8

15
w,yy

0



;η6 =



−2
5
w,xxx + 3

5
w,xyy

−2
5
w,yyy + 3

5
w,xxy

0

−4
5
w,xxy + 1

5
w,yyy

0

1
5
w,xxx − 4

5
w,xyy

0

1
5
w,xxx + 1

5
w,xyy

0

1
5
w,xxy + 1

5
w,yyy



(A-3c)

χ =



χsxx

χsyy

χsxy

χszz

χsxz

χsyz


;χ0 =



1
2
w,xy

−1
2
w,xy

1
4
w,yy − 1

4
w,xx

0

−1
4
u,xy + 1

4
v,xx

−1
4
u,yy + 1

4
v,xy


;χ1 =



0

0

0

0

−1
4
θy

1
4
θx


;χ2 =



−1
2
θy,x

1
2
θx,y

1
4
θx,x − 1

4
θy,y

−1
2
θx,y + 1

2
θy,x

0

0


(A-4a)

χ3 =



0

0

0

0

−1
4
θx,xy + 1

4
θy,xx

−1
4
θx,yy + 1

4
θy,xy


;χ4 =



0

0

0

0

1
4
w,y

−1
4
w,x


;χ5 =



1
2
w,xy

−1
2
w,xy

1
4
w,yy − 1

4
w,xx

0

0

0


(A-4b)
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Appendix B

The definitions of constituent matrices D̂ε, D̂ς , D̂η, D̂χ are given as follows

D̂ε =

h/2∫
−h/2



1

f (z)

g (z)

0

0





Qb

f (z) Qb

g (z) Qb

0

0



T

dz+

h/2∫
−h/2



0

0

0

f ′ (z)

1− g′ (z)





0

0

0

f ′ (z) Qs

[1− g′ (z)] Qs



T

dz (B-1a)

D̂ς =

h/2∫
−h/2

2µl20



1

f (z)

g (z)

0

0





1

f (z)

g (z)

0

0



T

dz +

h/2∫
−h/2

2µl20



0

0

0

f ′ (z)

g′ (z)





0

0

0

f ′ (z)

g′ (z)



T

dz (B-1b)

D̂η =

h/2∫
−h/2

2µl21



1

f ′′ (z)

f ′ (z)

f (z)

g′′ (z)

g′ (z)

g (z)





1

f ′′ (z)

f ′ (z)

f (z)

g′′ (z)

g′ (z)

g (z)



T

dz (B-1c)

D̂χ =

h/2∫
−h/2

2µl22



1

f ′′ (z)

f ′ (z)

f (z)

g′′ (z)

g′ (z)





1

f ′′ (z)

f ′ (z)

f (z)

g′′ (z)

g′ (z)



T

dz (B-1d)

where

Qb =
E (z)

1− ν2 (z)


1 ν (z) 0

ν (z) 1 0

0 0 (1− ν (z))/2

 ; Qs =
E (z)

2 (1 + ν (z))

 1 0

0 1

 (B-2)
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Appendix C

Details of strain-displacement matrices are expressed as followed

Bε =



B0
ε

B1
ε

B2
ε

B3
ε

B4
ε


; BεT =



(B0
ε)
T

(B1
ε)
T

(B2
ε)
T

(B3
ε)
T

(B4
ε)
T


; Bς =



B0
ς

B1
ς

B2
ς

B3
ς

B4
ς


; BςT =



(
B0
ς

)T(
B1
ς

)T(
B2
ς

)T(
B3
ς

)T(
B4
ς

)T


(C-1a)

Bη =



B0
η

B1
η

B2
η

B3
η

B4
η

B5
η

B6
η



; BηT =



(
B0
η

)T(
B1
η

)T(
B2
η

)T(
B3
η

)T(
B4
η

)T(
B5
η

)T(
B6
η

)T



; Bχ =



B0
χ

B1
χ

B2
χ

B3
χ

B4
χ

B5
χ


BχT =



(
B0
χ

)T(
B1
χ

)T(
B2
χ

)T(
B3
χ

)T(
B4
χ

)T(
B5
χ

)T


(C-1b)

where

B0
εc =


Rc,x 0 0 0 0

0 Rc,y 0 0 0

Rc,y Rc,x 0 0 0

 ; B1
εc =


0 0 Rc,x 0 0

0 0 0 Rc,y 0

0 0 Rc,y Rc,x 0

 (C-2a)

B2
εc =


0 0 0 0 −Rc,xx

0 0 0 0 −Rc,yy

0 0 0 0 −2Rc,xy

 ; B3
εc =

 0 0 Rc 0 0

0 0 0 Rc 0

 (C-2b)

B4
εc =

 0 0 0 0 Rc,x

0 0 0 0 Rc,y

 (C-2c)

B0
ς =
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 (C-3a)
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]
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]
(C-3c)
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N̂η =

 Nη
xxx 0 Nη
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0 Nη
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Table 1: Material properties of temperature-independent FGMs

E (Pa) α (1/K) κ (W/mK) ν

Al 7.0e10 23.0 204 0.3

Al2O3 3.8e11 7.2 10.4 0.3

Table 2: Material properties of temperature-dependent FGMs

Materials Proprieties P0 P−1 P1 P2 P3

Si3N4 E (Pa) 3.4843e11 0 -3.070e-04 2.160e-07 -8.946e-11

α (1/K) 5.8723e-06 0 9.095e-04 0 0

κ (W/mK) 13.723 0 -1.032e-03 5.466e-07 -7.876e-11

ν 0.24 0 0 0 0

SUS304 E (Pa) 2.0104e11 0 3.079e-04 -6.534e-07 0

α (1/K) 1.2330e-05 0 8.086e-04 0 0

κ (W/mK) 15.379 0 -1.264e-03 2.092e-06 -7.223e-10

ν 0.3262 0 -2.002e-04 3.797e-07 0
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Figure 1: Configuration of a rectangular FG plate
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Figure 2: Post-buckling path of a square SSSS1m isotropic plate under uniaxial compression (a/h = 50)

30



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.0

10.0

20.0

30.0

40.0

50.0

60.0

w/h

∆
T

=
T
c
−
T
m

n = 1, Tran et al. [16]
n = 1, Present
n = 5, Tran et al. [16]
n = 5, Present

Figure 3: Post-buckling paths of square SSSS2t Al2O3/Al plates under nonlinear temperature rise (a/h = 100)
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Figure 4: Post-buckling paths of square SSSS2t Si3N43/SU3S304 plates under uniform temperature rise (a/h = 100)
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Figure 5: Influence of gradient indices n on the post-buckling behavior of square SSSS1m Al2O3/Al microplates under

uniaxial compression (a/h = 20, h/l = 2)
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Figure 6: Influence of size effects on the post-buckling behavior of square SSSS1m Al2O3/Al microplates under uniaxial

compression (a/h = 20, n = 5)
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Figure 7: Influence of thickness ratios on the post-buckling behavior of square SSSS1m Al2O3/Al microplates under

uniaxial compression load (h/l = 10, n = 10)
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Figure 8: Influence of boundary conditions on the post-buckling behavior of square Al2O3/Al microplates under uniaxial

compression (h/l = 5, n = 5, a/h = 10)
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Figure 9: Influence of gradient indices n on the post-buckling behavior of square SSSS1t Si3N4/SU3S304 microplates

subjected to thermal loading (a/h = 20, h/l = 10)

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

w/h

∆
T

=
T
c
−
T
m

h/l =∞ h/l = 5
h/l = 2 h/l = 1.25
h/l = 1 h/l = 0.5

Figure 10: Influence of size effects on the post-buckling behavior of square SSSS2t Si3N4/SU3S304 microplates sub-

jected to thermal loading (a/h = 20, n = 5)
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Figure 11: Influence of thickness ratios on the post-buckling behavior of square SSSS2m Si3N4/SU3S304 microplates

subjected to thermal loading (h/l = 10, n = 10)
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Figure 12: Influence of boundary conditions on the post-buckling behavior of square Si3N4/SU3S304 microplates sub-

jected to thermal loading (h/l = 5, n = 5, a/h = 20)
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