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Abstract: In this paper, we present a design of a three-dimensional (3D) photonic crystal (PhC)
nanocavity based on an optimized woodpile structure. By carefully choosing the position of the
defect at the lattice center, we can create a cavity with high symmetry which supports well confined
Gaussian-like cavity modes similar to those seen in a Fabry Perot laser resonator. We could also tune
the resonant frequency of the cavity and manually choose the cavity mode order by adjusting the size
of the defect at a chosen position.

Keywords: 3D photonic crystal; woodpile; photonic band gap; microcavity; cavity mode

1. Introduction

There has been significant interest in three-dimensional photonic crystal (3D PhC) structures in
recent years aiming to exploit full photonic band gaps (PBG) [1–3] and the unprecedented confinement
of light at defects in these structures. A variety of structures have shown complete photonic bandgaps
including dielectric spheres in a face-centered-cubic (FCC) lattice [4–6], rod-connected diamond
(RCD) structures [7,8], ‘Yablonovite’ PhC [9] and woodpile based PhC structure [10]. Various
defects can be introduced in such perfect crystals to create localized photonic modes such as optical
waveguides [11–15] and nanocavities [16–22]. Light trapped in such defects interacts strongly with
light emitters making them suitable for ultra-low-threshold lasers [23–26], enhanced optoelectronic
sensors [27–30], ultrafast and low-power all-optical switches [31–34] and quantum information
processing devices with non-linearity at the single photon level [35–38]. Although much effort has
been made in applications of 1D or 2D PhCs [39–42], they still lose the confinement of light in the third
dimension but rely on a total internal reflection. This leads to out-of-plane losses and manufactural
restrictions such as suspended membranes or low index substrates. In a 3D PhC structure, the cavity
mode is strongly associated with the surrounding environment which could result in a rich variety
of mode patterns. Recently, fabrication of 3D photonic structures by direct laser writing (DLW)
using two-photon polymerization (TPP) [43] has been reported creating woodpile [44–47] and RCD
structures [48]. Notably, the woodpile structure is a promising structure which could be possible
to mass produce with lower cost methods via layer by layer 2D lithographic approaches [13,49].
Although current applications are rather limited by the challenges of fabrications, some pioneering
work has been proposed and implemented for various applications such as photon guiding [13,49]
and spontaneous-emission control [50].

In this study, we choose a woodpile structure formed by rectangular rods as the template. Design
of the defect in such woodpile based 3D PhC structures is investigated through comparing the
woodpile lattice with the RCD lattice [8]. Although a woodpile formed by rectangular rods may not
hold the widest photonic bandgap record as an inverse woodpile [10] or a RCD structure does [6–8],
such discussion about the position of a defect based on the lattice still could apply more generally to
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other kinds of structures [21]. We found that, by carefully choosing the position of the defect, we could
create a cavity with high symmetry which supports well confined cavity modes and also demonstrate
that such a cavity in a woodpile based 3D PhC structure works in a similar way to a Fabry Perot laser
resonator [51]. Moreover, choosing the specific defect position can help to simplify the analysis of the
mode pattern as a result of the combination of the cavity with and without the 3D PhC surroundings.

This paper is organized as follows. In Section 2, we introduce the simulation methods applied
throughout this paper. We then detail the designed woodpile structure in Section 3 with optimized
parameters used in our simulations and the position we choose for the cavity. The principle of choosing
this position is also discussed. In Section 4, we show the numerical results to demonstrate the tunable
cavity mode and mode volume.

2. Calculation Methods

We first use the plane-wave expansion (PWE) method [52] to calculate the band structure for the
woodpile template without any defect in the frequency domain. This gives us the dispersion relation of
the woodpile template and the position of the complete photonic bandgap. We then use our in-house
three-dimensional finite-difference time-domain (FDTD) software [17,20,21,53] with perfectly-matched
layer (PML) boundary and a non-homogeneous mesh of around 107 cells to implement each simulation
when various defects are introduced into the woodpile template. A broadband dipole source and
multiple field probes are placed inside the defect to excite and monitor the field decay over time.
The resonant frequencies fc, linewidths ∆f and Q factors (defined as fc/∆f) are then estimated by
analysing the field decay in the frequency domain via the fast Fourier transform (FFT) and the filter
diagonalization method using the Harminv software [54]. Effective mode volumes are also calculated
using the definition,

Veff =
∫ ∫ ∫

ε(r)|E(r)|2 d3r/[ε(r)|E(r)|2]max, (1)

where E(r) is the resonant field and ε(r) is the dielectric constant at position r. For each resonant
mode, we take the integration of the mode energy through sufficient computational volume to ensure
convergence.

3. Woodpile Parameters and Cavity Design

In Figure 1a we show the woodpile structure we are modelling. The woodpile forms an FCC
lattice when the height of the rods h is equal to c/4 [1], and the distance between two adjacent rods
d = c/

√
2 where c indicates the vertical period which is also the height of four stacking layers. Before

we show the numerical results and the defect design, we choose the optimized woodpile with widest
complete photonic bandgap simply by adjusting the width w of the rods [20]. Throughout this work
the refractive index of logs is nrod = 3.3, corresponding to common semiconductor materials such as
Gallium Phosphide (GaP), while the background material is air nair = 1. Figure 1b shows the band
structure calculated using plane-wave expansion (PWE) [52] method. The green region indicates
the location of the optimized complete photonic bandgap which ranges from normalized frequency
c/λ = 0.485 to 0.569 (where λ is the wavelength) and the gap/midgap ratio reaches a maximum value
of 15.88% when the width of rods w = 0.21c [20]. All the simulations shown in this paper are based on
this woodpile template with optimized parameter specified in Figure 1.

Since we have the optimized woodpile, we start to introduce a rectangular parallelepiped defect
to create a cavity. The whole simulated woodpile template has 37 stacking layers in the z direction and
13 rods in each layer. The location of the defect is placed between the 19th layer and the 20th layer
counting from the bottom. The refractive index of the defect is the same as that of the rods ndefect = 3.3
in this paper. Figure 2 shows the location of the defect in one vertical period (four stacking layers in
z axis). The defect is placed between the middle layers and the height of the defect is 2h which makes
it connect with both rods in the upper and lower layer. In both middle layers, the center of defect is
also between two adjacent rods.
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Figure 1. (a) Parameters of the woodpile structure defined in the simulation: vertical period c, height 
of rods h = c/4, distance between adjacent logs d = c/√2 and width of rods w. The refractive index of 
rods is nrod = 3.3, while the background material is air nair = 1; (b) The calculated band structure by 
using plane-wave expansion (PWE) method [52] with optimized parameters. The complete photonic 
bandgap reaches a maximum value of 15.88% when w = 0.21c [20]. The insets illustrate the symmetric 
points in Brillouin zone of the face-centered-cubic (FCC) lattice relative to the woodpile and the 
calculation routes to obtain the complete photonic bandgap. 

 
Figure 2. The location of the defect in one vertical period (four stacking layers in the z direction). (a) 
view of the xz-plane (b) view of the yz-plane (c) view of the xy-plane (from the top) and (d) the free 
3D view. L is the size of the defect in x and y direction while the height is always 2h to make it connect 
with both rods at the bottom and top. 

Figure 1. (a) Parameters of the woodpile structure defined in the simulation: vertical period c, height of
rods h = c/4, distance between adjacent logs d = c/

√
2 and width of rods w. The refractive index of rods

is nrod = 3.3, while the background material is air nair = 1; (b) The calculated band structure by using
plane-wave expansion (PWE) method [52] with optimized parameters. The complete photonic bandgap
reaches a maximum value of 15.88% when w = 0.21c [20]. The insets illustrate the symmetric points
in Brillouin zone of the face-centered-cubic (FCC) lattice relative to the woodpile and the calculation
routes to obtain the complete photonic bandgap.
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Figure 2. The location of the defect in one vertical period (four stacking layers in the z direction).
(a) view of the xz-plane (b) view of the yz-plane (c) view of the xy-plane (from the top) and (d) the free
3D view. L is the size of the defect in x and y direction while the height is always 2h to make it connect
with both rods at the bottom and top.



Appl. Sci. 2018, 8, 1087 4 of 11

Woodpile is face-center-cubic (FCC) structure, which could be considered as a rod-connected
diamond lattice. As shown in Figure 3, rods in different colors in rod-connected diamond lattice (a)
stand for different layers in woodpile lattice (b) [8]. The woodpile structure is obtained by substituting
short rods in rod-connected diamond lattice with a single long rod. The position of defects shown in
this paper is thus chosen from the body center of the lattice to get the most symmetrical position.
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4. Numerical Results

In this section, we use the finite-difference time-domain (FDTD) method to simulate the cavity
mode estimating the resonant mode frequency and Q-factor in various defects when changing the
size of the defect L from 0.1c–2c. A broadband dipole source whose bandwidth covers the complete
photonic bandgap is positioned at the center of the cavity and along the z-axis. We demonstrate that
effective mode volumes of the cavity mode could be suppressed by making the defect smaller, and
Q-factors of cavities can become high when the resonant frequency is located around the center of the
complete photonic bandgap. Figure 4 illustrates all the high Q-factor cavity modes we find near and
inside the photonic bandgap as the defect size L is increased. The dashed lines indicate the boundary
of the complete photonic bandgap and the position of the bandgap center related to the woodpile
template without a defect. We find that high Q-factor cavity modes do not exist far outside the bandgap
as expected although some of them appear at the band edge. Furthermore, the normalized resonant
frequency of both fundamental modes (Mode 1) and high order modes (Mode 2–5) decreases when
increasing the defect size L. The calculated Q-factors for the fundamental modes (Mode 1, black square
in Figure 4) are shown in Figure 5 as a function of normalized resonant frequency when defect size
L ranges from 0.1c–0.8c. The Q-factor reaches its maximum value near the middle of the photonic
bandgap when defect size L = 0.25c. As we use a finite structure in our simulation, the reflectivity
drops when the frequency moves away from the bandgap center resulting in a drop of the Q-factor.

For those cavity modes inside the complete photonic bandgap when the defect size
0.15c ≤ L ≤ 0.6c, the calculated normalized mode volumes are shown along with the Q-factors in
Figure 6. It is shown that the calculated normalized mode volume reduces from 0.64 to 0.29 (λ/n)3

when the defect size L decreases from 0.4c to 0.15c, while Q-factor reaches the highest value of 1.24× 105

when L = 0.25c and starts to drop quickly if the defect size is further reduced. As the cavity mode
approaches the band edge the mode volume reaches a minimum because the field outside the bandgap
is not confined. For L > 0.4c the mode volume appears to decrease slightly which may be a consequence
of limited calculation space when the mode approaches the band edge and becomes leaky. Figure 7
illustrates the energy distribution of cavity modes when defect size L = 0.5c, L = 0.25c, L = 0.2c and
L = 0.15c, respectively. In Figure 7, we observe nearly perfect Gaussian confinement in such defects with
“wings” (predominantly blue areas) floating inside the adjacent dielectric rods. Furthermore, we see
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that better confinement of the energy distribution of the cavity modes can be achieved by reducing the
defect size L from 0.5c to 0.15c when the intensity of the “wings” becomes weaker and weaker.
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In Figure 4 we noticed that multiple modes can coexist in the cavity when defect size increase.
To show the difference between these modes, we plot their energy distributions in Figure 8. The 2D
snapshots are taken through the center of the cavity in xy-plane. As cavity modes with the same order
share a similar mode pattern, we label them from Mode 1 to Mode 5 to distinguish them.
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Figure 9 shows the calculated Q-factors for high order cavity modes when defect size
0.9c ≤ L ≤ 1.8c. Like the Q-factor of fundamental modes (Mode 1) plotted in Figure 5, the Q-factor of
cavity modes within the same order also increases first and then decreases when the mode frequency
drops from the upper edge to the lower edge of the photonic bandgap, which means that modes appear
to be leaky when they approach the band edge due to the lack of the confinement from the structure.
Limited numbers of results were obtained for Mode 4 and 5 but are included here for completeness.

Appl. Sci. 2018, 8, x 7 of 11 

 
Figure 8. The energy distribution of the high order modes in xy-plane: (a) the mode pattern of Mode 
1 when normalized frequency c/λ = 0.481 and L = 0.8c; (b) the mode pattern of Mode 2 when 
normalized frequency c/λ = 0.506 and L = 1.2c; (c) the mode pattern of Mode 3 when normalized 
frequency c/λ = 0.568 and L = 1.2c; (d) the mode pattern of Mode 4 when normalized frequency c/λ = 
0.522 and L = 1.7c; (e) the mode pattern of Mode 5 when normalized frequency c/λ = 0.534 and L = 1.7c. 

Figure 9 shows the calculated Q-factors for high order cavity modes when defect size 0.9c ≤ L ≤ 
1.8c. Like the Q-factor of fundamental modes (Mode 1) plotted in Figure 5, the Q-factor of cavity 
modes within the same order also increases first and then decreases when the mode frequency drops 
from the upper edge to the lower edge of the photonic bandgap, which means that modes appear to 
be leaky when they approach the band edge due to the lack of the confinement from the structure. 
Limited numbers of results were obtained for Mode 4 and 5 but are included here for completeness. 

 

Figure 9. The calculated Q-factor for the various higher order cavity modes as a function of defect size L. 
Figure 9. The calculated Q-factor for the various higher order cavity modes as a function of defect
size L.



Appl. Sci. 2018, 8, 1087 8 of 11

5. Discussion and Conclusions

In all cases in this paper, the dipole is oscillating along the z-axis. In a more general situation,
a dipole could be in any orientation and other Ex or Ey modes (in which case the Ex or Ey component
could be much greater than Ez component) could be excited. The reason only z-axis orientated
case is discussed here is, as we decrease the defect size in xy-plane, we found that the Ex and Ey
modes are dramatically suppressed and only Ez modes survive in such a cavity (see Figure S1 in the
supplementary materials). It means the confined cavity mode is polarized along the z-axis when the
defect size L is small enough. In general, the resulting resonant mode in a cavity surrounded by PhC
structure with complete photonic bandgap could be considered a combination between cavity mode
itself without PhC structure and the confinement of complete photonic bandgap. However, the mode
distribution in a 3D PhC structure is strongly affected by the surrounding environment. It leads to
a great complexity of the investigation due to kinds of potential defect positions. In this paper we
demonstrate that, by carefully choosing the position of the defect at the lattice center, a cavity with high
symmetry can support well confined Gaussian-like cavity modes and the analysis of such cavities can
be greatly simplified by using symmetrical lattices. We find that high Q-factor cavities can be obtained
when the resonant frequency close to the center of the photonic bandgap and small mode volumes of
the resonant modes can be achieved by reducing the cavity size. Furthermore, we can tune the size of
the cavity and manually choose the cavity mode with desired frequency. Additionally, the patterns of
the resonant modes investigated in this paper can then be used for the examination of mode orders.
In the future, we could introduce light emitters in such cavities to control the spontaneous-emission
and design waveguides to couple cavity modes out. As an example, we provide our preliminary work
on the fabrication of polymer woodpile structures with incorporated defects using DLW method in
the supplementary materials (Figure S2). In the long term, the investigation of manipulating the light
propagation and confinement in woodpile could lead to the ultimate template for photonic integrated
circuits and optical computers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/7/1087/s1,
Figure S1: Amplitude of the electric field (Ex, Ey and Ez component) of Ex mode (a–c) and Ez mode (d–f) as
a function of time and their corresponding fast Fourier transform when defect size L = 0.25c, Figure S2: Scanning
electron microscopy images of the fabricated polymer woodpile structures using the DLW method, (a) with
various defects introduced (b) with dye doped defects embedded.
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switching by single photons. Nat. Photonics 2012, 6, 605–611. [CrossRef]
34. Chen, W.; Beck, K.M.; Bücker, R.; Gullans, M.; Lukin, M.D.; Tanji-Suzuki, H.; Vuletic, V. All-optical switch

and transistor gated by one stored photon. Science 2013, 341, 768–770. [CrossRef] [PubMed]
35. Fushman, I.; Englund, D.; Faraon, A.; Stoltz, N.; Petroff, P.; Vučković, J. Controlled phase shifts with a single
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