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Abstract. While there has been some discussion on how Symbolic Com-
putation could be used for AI there is little literature on applications in
the other direction. However, recent results for quantifier elimination
suggest that, given enough example problems, there is scope for machine
learning tools like Support Vector Machines to improve the performance
of Computer Algebra Systems. We survey the authors own work and
similar applications for other mathematical software.
It may seem that the inherently probabilistic nature of machine learning
tools would invalidate the exact results prized by mathematical software.
However, algorithms and implementations often come with a range of
choices which have no effect on the mathematical correctness of the end
result but a great effect on the resources required to find it, and thus
here, machine learning can have a significant impact.
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1 Introduction

Machine Learning, refers to tools that use statistical techniques to give computer
systems the ability to learn rules from data; that is, improve their performance
on a specific task, without changing their explicit programming. Although many
of the core approaches date back decades, machine learning has found great
success in recent years, driven by the advances in both computer hardware and
the availability of data. There have well publicised successes of machine learning
recently such as Google’s AlphaGo being the first to beat a professional human
Go player1. We are all likely to have interactions with software that at least
partially learns on a daily basis, whether through traffic signal control [40] or
the extraction and interpretation of our views [39].

Most industries have felt some effect from the advance of these tools, and
software engineering itself is no different. Indeed, the idea of using machine
learning in the software development process is not a new one [41]. In particular,
machine learning is now a common tool in the testing and security analysis of
software [21]. Machine learning is at its most attractive when the underlying
functional relationship to be modelled is complex or not well understood. It may
seem that machine learning is hence not relevant to the sub-field of mathematical
software where underlying functional relationships are the key object of study.

1
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html
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Further, the inherently probabilistic nature of machine learning tools seems like
it would invalidate the exact mathematical results prized by such software.

However, as most developers would acknowledge, mathematical software of-
ten comes with a range of choices which, while having no effect on the correctness
of the end result, could have a great effect on the resources required to find it.
These choices range from the low level (in what order to perform a search that
may terminate early) to the high (which of a set of competing exact algorithms
to use for this problem instance). In making such choices we may be faced with
decisions where the underlying relationships are not fully understood, but are
not themselves the key object of study. Thus in practice we will use a, usually
fairly crude, man-made heuristic in order to proceed with the implementation.

It is possible that many of these decisions could be improved by allowing
learning algorithms to analyse the data. It is even possible that such study could
lead to a better understanding of the underlying relationship. For example, a
standard step in the use of machine learning is feature selection: identifying a
minimal number of features about the data to use in making the decision. The
primary reason for this is to reduce the resources required to train a classifier,
and reduce the risk of over-fitting. However, in identifying the most important
features the developers of mathematical software may also get insight on new
mathematical results, or at least hypotheses to guide future development.

We proceed by surveying the author’s own work applying machine learning
in one particular area of symbolic computation. We then consider where else
in computer algebra and mathematical software more broadly there may be
potential applications and existing inspiration.

2 Machine Learning for CAD

The author has been involved in two applications of machine learning [22], [23]
to improve the performance of a particular algorithm. Cylindrical Algebraic De-
composition (CAD) refers to both a mathematical object and the algorithms to
produce them, both first introduced by Collins in the 1970s. Here:

– decomposition means a partition of Rn into connected subsets called cells;
– algebraic is short for semi-algebraic and means that each cell may be de-

scribed by a conjunction of polynomial constraints;
– cylindrical refers to the structure of the decomposition: the projections of

any two cells, onto a lower coordinate space with respect to the given variable
ordering, are either identical or disjoint.

CADs were originally produced as sign-invariant for a set of input polynomials2,
meaning each polynomial is to have constant sign on each cell. However, for
almost all applications what is truly required is a decomposition truth-invariant
for logical formulae: where each formula has constant truth value on each cell. A
sign-invariant decomposition for the polynomials in the formulae produces truth
invariance, but it can be achieved more efficiently [28], [18], [5].

2 See for example [2] for a description of the original CAD algorithm.
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In either case, the invariance properties mean only a finite number of sample
points need to be queried to solve problems. In particular, CADs offer a tool
to perform Quantifier Elimination (QE). Through QE there are a multitude
of applications throughout engineering and the sciences (see for example [33]).
Additional application of CAD directly include identification of steady states in
biological networks [4], and programming with multi-valued functions [14].

However, CAD is well known for its worst case complexity doubly exponential
[15]3. Hence it is important to optimise how CAD is used, such as the setting of
any optional parameters and the presentation of input.

2.1 Deciding whether to pre-condition

One choice a user could make is whether to give their problem to CAD directly, or
to first precondition it. One common technique for input formulae with multiple
equations is the use of a Gröbner Basis (GB). A GB is a particular generating
set of an ideal with useful properties: although our task is not to study the ideal
it turns out the GB can give a simpler representation for CAD to work with.

To be precise: let E = {e1, e2, . . . } be a set of polynomials; G = {g1, g2, . . . }
be a GB for E; and B be any Boolean combination of constraints. Then

Φ = (e1 = 0 ∧ e2 = 0 ∧ . . . ) ∧B and

Ψ = (g1 = 0 ∧ g2 = 0 ∧ . . . ) ∧B

are equivalent, and a CAD truth-invariant for Ψ can solve problems involving Φ.
This was studied first in 1991 [10] and then again in 2012 [36]. In both cases

the conclusion was that usually GB pre-conditioning is beneficial for CAD, but
there are some examples where it is greatly detrimental. In [22] we considered
using machine learning to decide when to use GB. On a dataset of over a thou-
sand randomly generated problems with multiple equations we found 75% were
easier to study after a GB was taken. We trained a Support Vector Machine
(SVM) classifier [13] with radial basis function (see for example [31]) to make
the decision. We used as problem features simple algebraic properties (degrees,
density of occurrence of variables etc.) of both the input polynomials and the
GB. Only when including those of the GB could the classifier make good deci-
sions: not a problem since for any problem where CAD is tractable GB is trivial.
The classifier chooses, not whether to construct the basis, but whether to use it.
In [22] we also showed how feature selection experiments (identifying a minimal
subset of the features) could improve accuracy (reducing the risk of over-fitting).

2.2 Choosing a variable ordering

Another choice a user may have to make for CAD is the variable ordering, used
in the definition of cylindricity, and crucial to the computational path of the
algorithm. Depending on the application this may be free, constrained or fixed.

3 Doubly exponential usually in the number of variables, although the logical structure
can be used to improve this somewhat [5], [18], [19].
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For example, for QE one must order variables as they are quantified; but
there is no restriction on free variables and adjacent quantifiers of the same
type may be swapped. It is well known that this choice can dramatically affect
the feasibility of a problem. In fact, there are a class of problems in which one
variable ordering gives output of double exponential complexity in the number of
variables and another output of a constant size [9]. There are heuristics available
to make the choice but each can be misled by certain examples.

In [23] we investigated machine learning for this choice. In this case the
choice is not binary but from many different orderings4, not a typical context
for machine learning classification. Instead of the ordering itself, we aimed for
machine learning to pick which of three existing heuristics [16], [6], [8] we should
follow. Experiments on over 7000 problems identified substantial subclasses on
which each of the three heuristics made the best decision. This time we trained
three SVM classifiers, one for each heuristic, and used the relative magnitude of
their margin values to choose the one to follow for each problem. We found this
machine learned choice did significantly better than any one heuristic overall.

3 Potential use in Symbolic Computation

3.1 Machine learning elsewhere in CAD/QE

It seems [23] was the first publication on the application of machine learning to
symbolic computation. The only similar work since is [24] which applied machine
learning to decide the order of sub-formulae solving for their QE procedure5.

There are certainly other decisions to be made when using CAD: such as the
designation of equational constraints [28], [18], [5]; and for some CAD algorithms
even the order of polynomials and formulae [17]. Perhaps of most importance is
the high level choice of which CAD implementation to use for a problem: most
comparison experiments will show problem instances where different solvers pros-
per. Looking wider still, if the application problem were Quantifier Elimination
then there are a multitude of non-CAD approaches, such as virtual substitution
[33] or QE by comprehensive GB [20], superior for classes of input. The author
will be leading an upcoming EPSRC project (EP/R019622/1) on these topics.

3.2 Machine learning elsewhere in computer algebra

Computer Algebra Systems (CASs) often have a choice of algorithms to use when
solving a problem. Since a single one is rarely the best for the entire problem
space, CASs usually use meta-algorithms to choose, where decisions are often
based on some numerical parameters [11]. A prominent example would be how
and when to simplify mathematical expressions (see [32] and references within).
Could machine learning be more effective? In a presentation at ICMS 2016 it
was reported that Maple’s user level symbolic integration command calls 16

4 If the choice is completely free then n variables have n! possible orderings.
5 The feature set they used for their SVM was seeded from those in [23].
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different integration procedures in sequence until one returns an answer. It is
likely that the optimal order of calls would vary with problem instance. Ever
broader, a generic command like Maple’s solve or Mathematica’s Solve has
to contend with not knowing exactly what the user means by “solve”, inferring
from the input. Machine learning could possibly assist with this, perhaps not
just by viewing the input, but also the user’s session history.

4 Machine Learning elsewhere in Mathematical Software

4.1 Satisfiability checking

There has been some use of machine learning within the satisfiability checking
community for their SAT-solvers [3]. These are tools dedicated to the solution
of the Boolean SAT problem (given a Boolean formula decide if there is an
allocation of values to variables that satisfies it). Despite the SAT problem being
NP-Complete, there exist solvers which can process formulae with millions of
variables, and they are a common tool in many industries.

There is rarely a single dominant SAT solver; instead, different solvers per-
form best on different instances. The portfolio solver SATZilla [38] takes sets
of problem instances and solvers, and constructs a portfolio optimizing a given
objective function (such as mean runtime, percent of instances solved, or score
in a competition). SATZilla did well in SAT competitions6.

Machine learning within the actual search algorithms was a prominent part of
the MapleSAT [27] solver. The developers view the question of solver branching
as an optimisation problem where the objective is to maximize the learning rate,
defined as the propensity for variables to generate learnt clauses. Experiments
showed this to correlate well with efficiency, but the cost of an absolute solution
could outweigh the savings. Hence the chosen approach was to use machine
learning to gain a heuristic solution to the optimisation problem.

Another use of machine learning in SAT is the choice of initial value to
variable allocation to begin the search. In [37] the author describes using a
logistic regression model to predict the satisfiability of formulae after fixing the
values of a certain fraction of the variables and adapting MiniSAT to determine
the preferable initial values using this and a Monte-Carlo approach. The author
reported a high accuracy in the setting of backbone variables (variables that
have the same value in all solutions of the formula) on initiation.

4.2 Satisfiability modulo theories

SAT-solvers can be applied to problems outside of the Boolean domain. The
approach, called Satisfiability Module Theories (SMT), is to iteratively use a
SAT solver to find solutions to the Boolean skeleton of a formula and then
query whether this is a solution in the domain, learning new logical restrictions

6 Although, because problems change little between competitions there is a risk of over-
fitting being rewarded: www.msoos.org/2018/01/predicting-clause-usefulness
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when not [Chapter 26][3]. In the domain of non-linear real arithmetic, symbolic
algorithms developed for QE are the basis of these theory solvers and so the
results and potentials in Sections 2 and 3.1 all apply. There are likely similar
questions of which tool to use for an instance in many of the other domains also.

Machine learning can also be applied to fundamental questions regarding the
Boolean encoding. In [30] the authors studied whether it was best to encode
atomic subformulas with Boolean variables, or to encode integer variables as
bit-vectors, for working in separation logic with uninterpreted functions. They
concluded that a hybrid approach was needed after evaluating a wide range
of benchmarks and used statistical techniques to decide what to do: an early
application of a machine learning approach to SMT-solvers.

4.3 Mathematical knowledge management

Perhaps the area of mathematical software with the greatest potential for ma-
chine learning applications is Mathematical Knowledge Management (MKM)
[12] since many of the tasks are similar to Natural Language Processing (NLP)
where machine learning has seen extensive use. For example, [35] describes the
automatic identification of a suitable top level from the Mathematics Subject
Classification (MSC) system for thousands of articles using an SVM; while [29]
describes how NLP techniques were adapted to build a part of speech tagger
used for key phrase extraction in the database zbMATH.

4.4 Automated reasoning

Theorem Provers (TPs) prize correctness to a greater extent than even computer
algebra systems. They piece together mathematical results from the most basic
rules of logic to give a certificate of correctness. The search space for proofs can
be huge so we need techniques to cut it down or guide searches through. So it is
perhaps not surprising that Automated Reasoning has been looking at how best
to use machine learning for some time.

The work surveyed in Section 2 followed [7] which used SVMs and Gaussian
processes to select from different search strategies for the E prover (see references
within for other studies). Elsewhere, machine learning is used to select the most
relevant theorems and definitions to use when proving a new conjecture in the
MaLARea system [34]. An overview of such premise selection approaches is
given in [26] with the first deep learning approach detailed in [1].

These approaches are relevant also for proof assistants. For example, Sledge-
hammer allows for Isabelle/HOL to send goals to a variety of automated TPs
and SMT solvers. A relevance filter heuristically ranks the thousands of facts
available and selects a subset based on syntactic similarity to the goal, with the
MaSh option based on machine learning outperforming the standard [25].



Machine Learning for Mathematical Software 7

5 Summary

There are challenges in applying machine learning to mathematical software:

– Formulating choices in a way suitable for machine learning: e.g. choosing
from existing heuristics rather than an ordering directly (Section 2.2).

– Obtaining datasets of sufficient size for training: for the work in Section
2.1 we had to build random polynomials while for that in Section 2.2 we
borrowed benchmark sets from another discipline (SMT).

– Making related choices in tandem: for example the best variable ordering for
CAD may change after GB preconditioning! How best to deal with this?

However, we have described successful applications in diverse areas and noted
some potentials − an ICMS 2018 session should provide further inspiration.

Acknowledgements Surveyed work in Section 2 was supported by the Eu-
ropean Union’s Horizon 2020 research and innovation programme under grant
agreement No H2020-FETOPEN-2015-CSA 712689 (SC2); and EPSRC grant
EP/J003247/1. The author is now supported by EPSRC grant EP/R019622/1.

References

1. Alemi, A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: Deepmath - Deep
sequence models for premise selection. In: Proc. 30th International Conference
on Neural Information Processing Systems (NIPS ’16). pp. 2243–2251. Curran
Associates Inc. (2016)

2. Arnon, D., Collins, G., McCallum, S.: Cylindrical algebraic decomposition I: The
basic algorithm. SIAM J. Computing 13, 865–877 (1984)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability (Vol-
ume 185 Frontiers in Artificial Intelligence and Applications). IOS Press (2009)

4. Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D.,
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