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Abstract 

Magnetic Induction Tomography (MIT) is an imaging technology that measures changes in 
the electric properties of a sample located within the imaging region. Measurement of low 
conductivity contrasts such as biological tissue or ionized water flow in pipelines requires 
highly accurate systems due to the small amplitude of the measured signals. Optimsation of 
the sensors results in enhanced MIT performance. Geometric characteristics of MIT sensors 
impact the intensity of the electromagnetic field, and the inductive coupling between a) the 
sensors and b) the sensors and the medium. Three correlation models are derived to help 
developers predict the relative performance of MIT systems for a given set of coil 
characteristics. Bivariate and multiple regression analyses are performed on a dataset from 
Finite Element Method (FEM) simulations to validate the relationship between the sensor 
geometry and three performance parameters for a given set of uniform background 
distributions. Correlation models are provided for prediction of induced voltage level, eddy 
currents and system sensitivity relative to the geometric characteristics of the sensors. The 
performance of the computed models is validated using a dataset of 180 coil designs and four 
uniform electrical conductivity distributions. Predictions from the developed correlations are 
compared to reference data from simulations and experiments. Errors estimated for the 
predicted performance parameters together with the variance for each correlation are 
presented. The predicted data fitted the reference values within ±15%, showing reasonable 
accuracy of the models and a balanced variance-bias trade-off. It was found that the 
performance of MIT systems is largely affected by the coil dimensions and the number of 
turns, as well as by the coil shape and wire diameter to a lesser degree. 
 

Keywords: Magnetic Induction Tomography, sensor design, multiple regression 

 

1. Introduction 
Magnetic Induction Tomography (MIT) is an imaging 

technique for measurement of electrical properties through 
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electromagnetic induction [1]. MIT systems for low 
conductivity measurement comprise an array of sensors that 
are typically positioned around the circular perimeter of the 
container [2], [3], [4] The sensors measure changes in the 
electromagnetic field distribution due to the induction of eddy 
currents in a conductive medium. The received signal 
encompasses information from the primary induced magnetic 
field and the secondary eddy current field. The secondary field 
provides information inherent to electromagnetic properties of 
the species within the imaging region. Hence, the distribution 
of the electric properties of conductive inclusions can be 
inferred from changes in the measured signals.  

MIT is attractive for biological tissue imaging, and ionic 
water transport monitoring due to its ability  to detect low 
conductivity contrasts on differently hydrated layers and in 
multiphase pipelines [5], [6]. Low conductivity imaging 
requires high excitation frequency and high-resolution 
equipment. At high frequencies, the skin depths of the 
electromagnetic fields are comparable to the target dimensions 
and the signal arising from the induced eddy currents is only 
a fraction of that of the primary magnetic field. The amplitude 
measurements from low conductive medium imaging is a few 
orders of magnitude smaller than the driving input resulting in 
weak and noisy signals [7].  

Several MIT systems have been designed over the past 
three decades, most of which rely on circular helix coils 
sensors [2],  [8], [9], [10], [11], [12], [13], [14]. The reason for 
this selection is, however, not well elaborated in the literature. 
The performance of MIT systems largely depends on the 
intensity of the induced field and currents. The inductive 
coupling between the sensors and the medium is influenced by 
the hardware design, including the sensors [15]. Limited 
literature has addressed the sensor optimisation design for 
MIT, suggesting the use of alternative geometries [16] and 
manufacturing techniques [17].  

This paper is an extended version of the work published in  
[18], where a systematic evaluation of the effect of sensor 
design on selected performance parameters was performed. 
Expectedly, from [18], large numbers of turns and small wire 
cross sections provide enhanced sensitivity and large coil 
couplings. Furthermore, square helix coils induce larger 
voltages and increase the system sensitivity in contrast to 
circular geometries. The degree of association of the coil 
geometric parameters to the system performance variables is, 
however, still unknown.  

MIT signals are proportional to the electrical and physical 
properties of the inclusions which, depending on the process, 
can vary in both spatial and time domain. The nature of the 
problem presents significant challenges in defining models for 
non-continuous conductivity distributions which are 
representative for the target of interest and that address a range 
sufficiently wide to encompass all possible scenarios. 

Consequently, the present study focuses on the design 
parameters of MIT sensors for a uniformly distributed 
conductive medium. This approach allows quantifying the 
performance of the MIT system in connection to the overall 
variations of the electrical properties within the medium and 
to the design of the system.   

This paper assesses combined variations of the sensor 
geometry. The design parameters comprise the traditional 
circular-shaped coils as well as square helixes. The sensor 
size, wire gauge and number of turns are also addressed in this 
study. The dimensions of the coils and the size of the saline 
inclusion used in this work consider the theoretical spatial 
resolution and skin effect in low conductive fluids. This study 
also combines variables whose influence on the MIT 
performance is not straightforward, namely the wire gauge 
and the number of turns. The number of turns is known to 
affect the mutual coupling and the parasitic capacitance [13], 
[19]. However, the impact of the number of turns, combined 
with other geometry parameters, on the induced voltage 
resulting from the secondary magnetic field arising from flow-
induced eddy current is yet to be quantified. Moreover, at high 
frequencies, the current density across the wire cross section 
is not uniform, due to the skin effect of the copper.  

Statistical procedures provide quantitative tools to assess 
the relative importance of the geometric variables on the MIT 
performance. All the procedures used in this work are based 
on inferential statistics, which allow the testing of specific 
hypotheses about the sensor geometry [20]. The two main 
types of inferential tests have been adopted in this work: the 
tests of association to describe the relationship between 
variables and the tests of group differences for data dispersion 
analysis and correlation validation. 

A comprehensive evaluation of the impact on the MIT 
performance of the changes in the coil design parameters was 
performed. The results presented in this work are based on 
both numerical simulations and experimental tests of a dual 
coil MIT system. Numerical results are analysed here through 
a combination of statistical techniques that comprise bivariate 
correlations, uniqueness indices, and multiple regressions. 
The bivariate association tests can provide a measure of the 
statistical significance, a measure of association between 
variables, or both [20].  Spearman test provides a 
measurement of both significance and association. 
Furthermore, Spearman correlation coefficient measures the 
degree of correlation between a pair of combined variables i.e. 
ordinal and continuous, irrespective of their linearity or lack 
thereof [20],[21]. Aimed at non-parametric data, the Mann-
Whitney test is an alternative bivariate test for variable 
association irrespective of the data distribution shape [22]. 
The ideal unique variance accounted for in the bivariate 
performance factors is valid as long as two ideal conditions 
hold: (a) the independent and dependent variables show strong 
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correlations, and (b) the independent variables demonstrate 
weak correlation with each other. Computation of the relative 
importance of geometric parameters on the overall system 
performance is achieved through multiple regression analyses. 
Multiple regression provides the model that best fits the 
behaviour of the data. Similarly to the correlation approach 
taken for data processing from experiments in multiphase flow 
[23], curve fitting coefficients are used to describe the 
performance of the MIT systems via correlation models.   

This paper extends the simulation studies performed in [18] 
and move from a descriptive analysis to an inferential 
exploration in order to develop, for the first time, algebraic 
models to help researchers predict the overall performance of 
MIT systems for a given coil setup. In the following sections, 
the influence of sensors geometry (i.e. size, wire gauge, 
number of turns and profile) on the intensity of the induced 
signals and system sensitivity for uniform conductivity 
distributions is studied.  

The outcome is exploited in the optimisation design process 
and factor correlations are provided to describe MIT 
performance for a given sensor geometry. The correlations 
presented here are the best fits to describe the behaviour of the 
data. These correlations have the potential to help researchers 
predict the relative overall performance of MIT systems for 
given coil setups. The proposed models allow enhanced sensor 
designs without the need to perform experimental tests or 
simulation work. 

 

2. Methodology 

The methodology adopted in this work comprises the 
following stages: 

- Perform numerical simulations with varying coil 
geometries to assess changes in the receiving signals. 

- Perform experimental tests on selected coil 
geometries.  

- Analyse the induced fields and the amplitude of the 
signal from the evaluated sensors using statistics.  

- Derive correlations that describe the performance of 
MIT systems with respect to the sensor design. 

- Validate the derived correlations by contrasting the 
predicted value to reference data.  

The following subsections describe the model setup, the 
computational approach used to solve the electromagnetic 
problem numerically, and the data processing techniques. 

2.1 System Setup 

The MIT experimental setup is based on the dual coil system, 
illustrated in Figure 1. The dual coil assembly greatly 
simplifies the numerical model and the analysis process. 

 

 

 
 
Figure 1. System setup for sensor geometry characterisation 
showing the profile of generic transmitting and receiving coils of 
outer dimensions 𝐷𝐷𝐷𝐷, 𝑁𝑁 turns and wire diameter 𝑑𝑑𝑑𝑑. 
 

The system used for evaluation accounts for a pair of coils, 
each of which acts as transmitting (Tx) and receiving (Rx) 
sensors. The system illustrated in Figure 1 shows the system 
setup with generic coils of outer dimension 𝐷𝐷𝐷𝐷 formed with 𝑁𝑁 
turns of wires of diameter 𝑑𝑑𝑑𝑑. 

In the experimental setup the coils were located across a 
circular imaging region of 110 mm in diameter. The 
transmitting coil was voltage driven via a function generator 
(GW Instek AFG-2125) at 5 Vpp with an operating frequency 
of 10 MHz. The excitation signal induces a magnetic field that 
is sensed by Rx, located at 180⁰ from Tx. Rx is connected to a 
digital oscilloscope (PicoScope 5444B) that measures the 
induced voltage and phase in the receiving sensor for further 
data processing. A cylindrical saline inclusion of 70 mm in 
diameter was used to evaluate the sensitivity of the MIT 
system to changes in conductivity. The inclusion was placed 
in the centre of the imaging region equidistantly from Tx and 
Rx.  

2.2 Numerical simulations 

A broad range of geometry parameters were evaluated 
using CST Student Edition®. The solution of the numerical 
model involves solving the governing equations of the 
electromagnetic phenomena for the entire domain. For a time-
harmonic field with linear materials the problem is described 
by Maxwell’s equations in (1) 

 
∇ × 𝐄𝐄 =  −𝑗𝑗𝑗𝑗𝐁𝐁 

 ∇ × 𝐇𝐇 = 𝐉𝐉 + 𝑗𝑗𝑗𝑗𝐃𝐃 = (𝜎𝜎 + 𝑗𝑗𝑗𝑗𝑗𝑗)𝑬𝑬 + 𝐉𝐉𝐬𝐬 
∇ ∙ 𝑗𝑗𝐄𝐄 =  𝜌𝜌 
∇ ∙ 𝜇𝜇𝐇𝐇 =  0 

 
 

(1) 
 

where 𝐄𝐄 and 𝐇𝐇 are the magnetic and electric fields, 𝐁𝐁 and 𝐃𝐃 
are the magnetic and displacements currents, respectively, and 
𝐉𝐉 is the current density.  The electrical properties are given by 
the permeability (𝜇𝜇), the conductivity (𝜎𝜎), and the permittivity 
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( 𝑗𝑗 ). 𝑗𝑗  is the angular frequency,  𝜌𝜌  is the electric charge 
density, and 𝐉𝐉𝐬𝐬 is the source current density. 

The boundary value problem governed by (1) is solved via 
volume discretisation with Finite Element Method (FEM). 
FEM discretises the integral form of Maxwell’s equations for 
all subdomains. The distribution of the unknown parameters 
within each domain is interpolated from the values of the 
edges (edge FEM). The external boundary condition forced a 
zero normal component of the field. Placing the external 
boundary conditions far away from the electromagnetic 
source, allow a sensible approximation to the decay of the 
field [7]. The simulation model exploits the CST Student 
Edition® software capability to improve mesh quality in the 
area of interest by using the numerical approximations of 
stranded inductors enclosed in dummy objects. The coil 
domain ensures a closed current path in agreement with 
Maxwell’s equations. This condition is satisfied by 
introducing an excitation source across an infinitesimal cross-
sectional slit. The coil domain function assumes the source is 
outside the modelling domain and in doing so it provides the 
possibility to model alternative features outside the coil array. 
The sensing coils were modelled as open circuits with the 
electromotive force computed from (2) representing the 
maximum potential difference when no external load is 
connected.  

 

𝑉𝑉𝑅𝑅𝑥𝑥 = �𝐄𝐄 ∙ 𝑑𝑑𝑑𝑑 (2) 
 

 
where  𝑉𝑉𝑅𝑅𝑥𝑥 is the induced voltage in the receiving coil and 𝑑𝑑𝑑𝑑 
is the length element of the coil. 

 The induced voltage, induced current density, electric and 
magnetic field distributions were computed for 180 scenarios. 
Two data sets, each accounting for 90 coil configurations, 
were simulated. The first dataset (see Table 1) was used to find 
the correlation between the sensor geometry and the MIT 
performance parameters. Dataset 2 was used to validate the 
correlations derived using Dataset 1 and assess the ability of 
the correlations to extrapolate as well as to interpolate among 
the given range. The simulation campaign accounted for a 
systematic variation of the geometry of the sensors that 
resulted in a total of 180 coil configurations. The simulation 
combination comprised three coil outer dimensions (𝐷𝐷𝐷𝐷 ), 
three wire diameters (𝑑𝑑𝑑𝑑), five numbers of turns (𝑁𝑁) and two 
coil profiles, i.e. circular and square helixes, for each dataset.  
Furthermore, the system performance for various conductive 
mediums was assessed changing the electrical conductivity 
(σ) of the homogeneous saline inclusions.  
The simulation model was validated against experimental 
results of selected sensor geometries and readily known 
responses for changes in electric properties of the conductive 
medium placed between the sensors.  

Table 1. Geometric parameters for geometry correlation and for 
validation  

 𝐷𝐷𝐷𝐷 
(mm) 

𝑑𝑑𝑑𝑑 
(mm) 𝑁𝑁 

σ 
(Sm-1) Profile 

Dataset 1 25 0.50 2 0 CHa 
 34 0.60 6 1 SHb 
 50 0.75 10 5  
   14   
   18   

Dataset 2 20 0.40 4 0 CHa 
 40 0.55 8 1 SHb 
 54 0.85 12 3  
   16 5  
   20   

     aCircular helix coils. 
     bSquare helix coils. 

 

2.3 Statistical analysis  

 The degree of association among the geometric variables 
and selected MIT performance parameters was assessed 
through bivariate correlations. For ordinal data, i.e. 𝐷𝐷𝐷𝐷, 𝑑𝑑𝑑𝑑, 
and 𝑁𝑁, the Spearman correlation factor was used to measure 
association between variables and their statistical significance. 
The relative correlation between the variables and the nominal 
predictors (i.e. coil profile) was assessed using Mann-Whitney 
tests.  

The quantification of the change of the mean levels of the 
variables was analysed through a comparison of multiple 
regressions. Through the Analysis of Variance (ANOVA), the 
overall regression correlations were tested to ensure a good fit 
for the dataset. The correlations that presented the best fit for 
every performance parameter, based on tests of group 
differences, were selected and further validated. The 
validation of the correlations accounted for contrasting the 
predicted values to reference figures from the two datasets and 
the experimental results. The resulting equations expressed 
the MIT performance including the sensitivity, denoted 𝑆𝑆𝑖𝑖; the 
ratio of the amplitude measured by the receiving sensor (𝑉𝑉𝑅𝑅𝑥𝑥) 
to that of the transmitting sensor (𝑉𝑉𝑇𝑇𝑥𝑥), denoted 𝑉𝑉𝑖𝑖;  and the 
magnitude of the induced conduction current 𝐽𝐽𝑖𝑖in terms of the 
coil outer dimensions (𝐷𝐷𝐷𝐷 ), the wire diameters (𝑑𝑑𝑑𝑑 ), the 
number of turns (𝑁𝑁) and the coil profiles 𝐺𝐺. 

 

2.4 Optimisation of the problem formulation  

The MIT performance indicators 𝑉𝑉𝑖𝑖 ,  𝐽𝐽𝑖𝑖   and 𝑆𝑆𝑖𝑖  can be 
formulated as objectives with 𝐷𝐷𝐷𝐷 , 𝑑𝑑𝑑𝑑 , 𝑁𝑁  and 𝐺𝐺  being the 
design variables. Optimisation algorithms can then be 
employed to determine the most appropriate values of 𝐷𝐷𝐷𝐷 , 
𝑑𝑑𝑑𝑑 , 𝑁𝑁  and 𝐺𝐺  to create a suitably optimised MIT sensor 
design. The software selected to implement the optimisation 
was MATLABTM. It is convenient to formulate MATLABTM 
optimisation problems as minimisation. The latter requires to 
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adapt the MIT performance indicators, that should be 
maximised, by negating them. The performance indicators 
formulations are designed for the Geometric parameters 
defined in Table 1. It is therefore required to limit the range of 
values the design variables can take. The formulation of the 
optimisation problem for MIT sensor design can be 
summarised as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚   𝑓𝑓(𝑥𝑥), 𝑥𝑥 𝜖𝜖 ℝ𝑛𝑛 
               𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑆𝑆𝐷𝐷𝑆𝑆 𝑆𝑆𝑡𝑡:              𝐷𝐷𝐷𝐷  𝜖𝜖  [20, 54] 

                    𝑑𝑑𝑑𝑑  𝜖𝜖  [0.40, 0.85] 
                                               𝑁𝑁  𝜖𝜖  [2, 20] 

                                           𝐺𝐺  𝜖𝜖  {1, 2} 
where,  
 𝑓𝑓(𝑥𝑥) = [−𝑉𝑉𝑖𝑖(𝑥𝑥),−𝐽𝐽𝑖𝑖(𝑥𝑥),−𝑆𝑆𝑖𝑖(𝑥𝑥)] 
𝑉𝑉𝑖𝑖(𝑥𝑥), 𝐽𝐽𝑖𝑖(𝑥𝑥), 𝑆𝑆𝑖𝑖(𝑥𝑥)  is the objective function evaluated at 𝑥𝑥 
𝑥𝑥 = [𝐷𝐷𝐷𝐷,𝑑𝑑𝑑𝑑,𝑁𝑁,𝐺𝐺 ] is a vector of decision variables.  

Two approaches have been adopted to handle the three 
objectives. The first one was to combine the objectives into a 
single weighted sum of normalised objectives. The second 
was to use a Pareto approach where all objectives are 
considered in parallel. The latter enable to create a set of 
equally optimal solutions. The solution obtained using the 
weighted sum is one of the solution found for the specific set 
of weightings selected by the user. Details on model 
optimization are outside the scope of this manuscript, 
however, an example of the problem optimisation is given in 
section 6.2. Further details can be found in [24].  

 

3. Experimental measurements  

In this section, simulation outputs are contrasted to the 
experimental study carried on selected coils geometry 
configurations. The analysis aims to validate the extended 
simulation results to be used for the sensor optimisation. 
During the experiments, circular and square-shaped 
geometries were explored. The size of the transmitting and 
receiving coils was modified in order to account for outer 
dimensions of 25 mm, 34 mm, and 50 mm. 

Measurement of the coil inductance at 5 Khz for various 
coil profiles and number of turns is plotted in Figure 2. The 
simulated inductance is contrasted to data measured in the lab 
and to the measured circuit resonance frequency from coils of 
34 mm wound from copper wire of 0.5 mm. The overall trends 
observed in the experimental measurements coincide with 
those from simulation. Contrasting the inductance of both 
square helix (SH) and circular coil (CH), it is evident that 
consistently larger inductances are measured in square-shaped 
coils. Furthermore, the data shows a quadratic trend that yields 
larger differences between both geometries for an increasing 
number of turns. In this regard, the mean relative change 
between    the    square    and    the    circular    coils   for   every  

 

 
(a) 

 
(b) 

 

Figure 2. Results for (a) coil inductance and (b) self-resonance 
frequency of circular (CH) and square helix (SH) for various number 
of turns 
 
variation in the number of turns are in agreement, with ratios 
of  0.37 and 0.33 for the simulated data and the experimental 
points, respectively. The variation evidenced between the 
measured and simulated inductances is attributed to the 
frequency of the modelling. As the frequency increases the 
simulation model is able to capture the change in reactance 
and the skin effect that are not considered in the low-frequency 
AC measurements [19]. 

In accordance with the trend of the coil inductance, the 
experimental validation of the circuit resonance frequency 
shows a non-linear tendency (see Figure 2b). Detailed analysis 
of the self-resonance of the coils with varying wire diameters 
and dimensions resulted in the number of turns being the 
governing factor [18]. Accordingly, in the remaining of the 
paper, the self-resonance frequency is not considered among 
the performance parameters but it is included as a limiting 
factor for the maximum number of turns of the coils. 

The ratio of induced to excitation voltage for circular and 
square coils of various number of turns and diameters is 
presented in Figure 3. The overall simulated and experimental 
voltage ratio trends are consistent among themselves. 
However, it is noteworthy that the experimental and 
simulation results for the circular helix coil of 34 mm and 6 
turns differ to the overall trend seen in the remaining data 
points.  This oddity is attributed to the proximity of the 
operating frequency to the circuit resonance frequency, at 
which the measured induced voltage peaks. This effect is 
neglected in the simulations given the numerical 
approximation used to model the coil domain. Disregarding 
the outliner above, the absolute mean difference between all 
the experimental data points and the simulated voltage ratios 
is 0.06 which corresponds to a mean percent difference of 
17%.   

4. Performance parameters  

Due to the complexity of the eddy current problem, it is 
challenging to obtain a governing factor that uniquely 
quantifies the MIT performance. In the present work, various 
combinations of geometric parameters were tried and judged 
by their impact on a comprehensive selection of performance  
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Figure 3. Induced to excitation voltage ratio of circular (CH) and 
square helix (SH) showing similarities between result from 
simulations in CST (Sim) and bench tests measurements (Exp) for 
various diameters and number of turns.  
 
indicators encompassing for the overall system operation. The 
performance parameters are defined below.  

The amplitude of the acquired measurement given by (3) is 
proportional to the background field generated by the driving 
signal, hence affecting the signal-to-noise ratio. The 
performance factor, designated 𝑉𝑉𝑖𝑖 , accounts for the ratio of 
induced to driving signal as  

 

𝑉𝑉𝑖𝑖 =
𝑉𝑉𝑅𝑅𝑥𝑥𝑖𝑖
𝑉𝑉𝑇𝑇𝑥𝑥𝑖𝑖

 (3) 
 

 
where 𝑉𝑉𝑖𝑖  is the scalar quantity defined by the ratio of the 
amplitude measured by the receiving sensor (𝑉𝑉𝑅𝑅𝑥𝑥) to that of 
the transmitting sensor (𝑉𝑉𝑇𝑇𝑥𝑥) for scenarios 𝑚𝑚 = {1,2,⋯ ,𝑚𝑚}. In 
this study the geometry parameters were alternatively changed 
to account for a total of 90 coil configurations (𝑚𝑚 = 90 ) 
corresponding to the Dataset 1 in Table 1.  

The signal of interest in MIT systems arises from the 
induced eddy currents in the conductive medium. The scale of 
this signal is, however, only a fraction of the full 

measurement. An enhanced sensor design should, therefore, 
account for high induction currents and large rate of 
penetrations, i.e. skin depths. In this study, the strength of the 
conduction currents in the imaging region was evaluated along 
a central longitudinal axis (see Figure 4). The magnitude of 
the induced conduction current 𝐽𝐽 was computed as the 
maximum scalar registered within all mesh elements indexed 
by {1,⋯ ,𝑚𝑚}  for every scenario 𝑚𝑚 = {1,2,⋯ ,𝑚𝑚} (𝑚𝑚 = 90) as 
in (4). This is given in the equation below 

 
𝐽𝐽𝑖𝑖 = max

𝑗𝑗∈{1,2,⋯,𝑚𝑚}
�𝐽𝐽𝑗𝑗� (4) 

 
where 𝑚𝑚  is the total number of sub-domains along the 
longitudinal axis.  

Equally relevant, is the sensitivity of the system to changes 
in conductivity within the imaging area. MIT sensitivity is 
deduced from the Geselowitz relationship expressed as 

 

𝑆𝑆𝑖𝑖 =
∆𝑉𝑉𝑅𝑅𝑥𝑥𝑖𝑖
𝐼𝐼𝑇𝑇𝑥𝑥𝑖𝑖∆𝜎𝜎𝑚𝑚

 

 

(5) 
 

where 𝑆𝑆 is the sensitivity of the system for a given change of 
electrical conductivity (∆𝜎𝜎 ). 𝐼𝐼𝑇𝑇𝑥𝑥  is the current through the 
transmitting coil. Again, the index 𝑚𝑚 = {1,2,⋯ ,𝑚𝑚} (𝑚𝑚 = 90 ) 
refers to the evaluated scenarios. Note that the original 
relationship derived by [16] considers the variation of the 
complex conductivity (∆κ = 𝜎𝜎 + 𝑗𝑗𝑗𝑗𝑗𝑗0𝑗𝑗𝑟𝑟). Here, the 
conductivities evaluated are high (𝑗𝑗𝑗𝑗/𝜎𝜎 ≪ 1), which allows 
the application of the eddy-current approximation in 
accordance to (5) [25].  

From (3) to (5) it is inferred that the smaller the values of 
the performance parameters 𝑉𝑉𝑖𝑖 , 𝐽𝐽𝑖𝑖 , and 𝑆𝑆𝑖𝑖 , the poorer the 
performance of the MIT system is. 

5. Optimisation of the sensor design 

The range of the geometric parameters from the dataset 1 is 
summarised in Table 2. The coil profiles were arranged as 
circular helix coils (CH) or squared-shaped helixes (SH). The 
resulting values for each behaviour factor were grouped as per 
geometry parameter cluster and summed together. The cluster 
covariance    (s𝑥𝑥𝑥𝑥)    serves    to    identify    if    any    possible  

 

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12

Vi

  
    

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12

Vi

  
    

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12

Vi

Number of turns
    
    

 
 

 
 

  
Sim CH (50mm) Exp CH (50mm)
Sim CH (34mm) Exp CH (34mm)
Sim CH (25mm) Exp CH (25mm)
Sim SH (34mm) Exp SH (34mm)

 

   
Figure 4  Electromagnetic field intensity [A.m-2] induced by circular helix coils of various diameters, for a given number of turns, measured 

along the longitudinal axis of the cylindrical imaging region. The vertical grid line signalises the position of the centre of the coils. 
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Table 2. Result Summary of numerical simulations 

  𝑉𝑉𝑖𝑖 𝐽𝐽𝑖𝑖 𝑆𝑆𝑖𝑖 
Geometric 
parameter �𝑉𝑉𝑖𝑖 s𝑥𝑥𝑥𝑥 R2 �𝐽𝐽𝑖𝑖 s𝑥𝑥𝑥𝑥 R2 �𝑆𝑆𝑖𝑖 s𝑥𝑥𝑥𝑥 R2 
𝐷𝐷𝐷𝐷a 25 0.017 9.0E-2 9.7E-1 14.99 2.6E-1 7.9E-3 0.01 1.3E-2 

 
4.0E-1 

 34 0.033 16.85 0.03 
50 0.078 18.18 0.10 

𝑑𝑑𝑑𝑑a 0.50 0.042 7.9E-6 7.6E-5 16.34 6.1E-4 4.3E-4 0.05 -1.0E-5 
 

2.6E-3 
 0.60 0.042 16.62 0.04 

0.75 0.043 17.06 0.04 
𝑁𝑁 2 0.025 3.8E-5 5.8E-7 26.42 -1.4E+0 7.1E-1 0.00 6.3E-3 

 
3.2E-1 

 6 0.026 9.58 0.01 
10 0.026 6.05 0.02 
14 0.026 4.45 0.04 
18 0.025 3.51 0.06 

Profile CHb 0.061 2.8E-4 4.0E-3 25.54 -3.5E-3 6.4E-4 0.06 2.9E-5 8.6E-4 
SHc 0.066 24.49 0.07 

     aMeasured in mm. 
     bCircular helix coils. 
     cSquare helix coils. 

 
relationships among the variables ( s𝑥𝑥𝑥𝑥 ≠ 0 ) are direct or 
inverse, i.e., s𝑥𝑥𝑥𝑥 > 0 or s𝑥𝑥𝑥𝑥 < 0, respectively. The coefficient 
of determination R2, given by (6), further validates if the  
premise of a linear relationship between the variables is 
correct. 

The quantification of the effects of the geometric variables 
(𝐷𝐷𝐷𝐷, 𝑑𝑑𝑑𝑑, 𝑁𝑁, and profile) on the performance factors 𝑉𝑉𝑖𝑖, 𝐽𝐽𝑖𝑖, and 
𝑆𝑆𝑖𝑖 and the nature of the predictive relationship was assessed 
using the statistical procedures detailed in Section 2.3. 

 

𝑅𝑅2 =

⎝

⎜
⎛ s𝑥𝑥𝑥𝑥

�∑𝑃𝑃𝑖𝑖
2

𝑚𝑚 − 𝑃𝑃�2�∑𝑥𝑥𝑖𝑖
2

𝑚𝑚 − �̅�𝑥2
⎠

⎟
⎞

2

 (6) 

 
where, 𝑃𝑃𝑖𝑖  is the performance parameter,  𝑥𝑥𝑖𝑖 is the geometric 
factor for scenarios 𝑚𝑚 = {1,2,⋯ ,𝑚𝑚} (𝑚𝑚 = 90 )  and 𝑃𝑃�  and �̅�𝑥 
are their respective mean values.  

From the response of the performance variables to changes 
in geometric characteristics in Table 2, it is clear that the coil 
size has the most influence on the induced voltage, with a joint 
positive variability as by the sign of the covariance and the 
coefficient of determination. The remaining parameter 
configurations do not follow a linear relation. However, from 
the covariance analysis, it is expected for the coil dimensions 
to also have a large influence on the measurement sensitivity,   
whereas the number of turns would inversely affect the 
intensity of the induced currents.   
The degree of association among the continuous variables is 
summarised in the bivariate analysis presented in Table 3 in 
terms of the Spearman correlation coefficient (ρ) and its 
significance index (sig<0.05).  The authors corroborated that 
the ideal predictive situation, in which the independent 
geometric variables display relatively weak correlations 
among themselves, was met (ρ=0.00, sig=1.00).  

 

Table 3. Analysis of the results using Spearman and the Mann-
Whitney correlation methods  

  𝑉𝑉𝑖𝑖 𝐽𝐽𝑖𝑖 𝑆𝑆𝑖𝑖 
𝐷𝐷𝐷𝐷 ρ 0.943 0.147 0.605 
 sig 0.000 0.165 0.000 
𝑑𝑑𝑑𝑑 ρ 0.049 0.041 -0.043 
 sig 0.647 0.700 0.688 
𝑁𝑁 ρ 0.009 -0.973 0.748 
 sig 0.935 0.000 0.000 
Profile sig 0.082 0.218 0.580 

 

 
The system response for the three performance factors in 

Table 3  shows mostly positive correlations with the geometric 
variables.   Inverse   relations   were   seen   for   eddy   current 
induction with increasing number of turns (ρ=-0.973) and for 
sensitivity for increasing wire gauge (ρ=-0.043). Some 
geometric parameters were more strongly related to the system 
performance than others. Accordingly, Spearman coefficient 
confirmed a strong relationship between the coil size and the 
induced   voltage   ratio   (ρ=0.943).   These outcomes are in 
agreement with the intensification of sensitivity of the system 
with increasing sensor size and number of turns. The 
aforementioned correlations are statistically significant at the 
0.05 level.  

Conversely, results from the Mann-Whitney tests, applied 
to the nominal-type data, i.e. coil profile, suggest that the 
correlation among the performance factors is less statistically  
significant (sig>0.05) when contrasted between coil profiles; 
i.e. sig =0.082, 0.218, and 0.580 for 𝑉𝑉𝑖𝑖, 𝐽𝐽𝑖𝑖, and 𝑆𝑆𝑖𝑖, respectively. 
Through multiple regression analyses, the combined influence 
of the various geometric parameters on the performance 
factors was assessed. R2-adjusted in Table 4 displays the 
quality of the predictions, and allows comparison among the 
correlations. The developed correlations account for a 
combination of geometric variables that describe over 98% of 
the variability of the performance predictors. The 
Standardised Beta coefficients serve to compare the relative 
importance of the geometric variables. It is evident from Table 
4 that the coil diameters and the number of turns were the 
parameters with the largest impact on the performance factors, 
followed by the coil profile. The wire gauge was the least 
relevant one.   

The global correlations for every performance factor, given 
by (7) to (9), were obtained by fitting data with quadratic and 

Table 4. Multiple regression analysis  

 𝑉𝑉𝑖𝑖 correlation  𝐽𝐽𝑖𝑖 correlation 𝑆𝑆𝑖𝑖 correlation 
 

Stand. 
Beta 

R2-
adjust 

Std. 
error of 
estimate  

Stand. 
Beta 

R2-
adjust 

Std. 
error of 
estimate  

Stand. 
Beta 

R2-
adjust 

Std. 
error of 
estimate  

𝐷𝐷𝐷𝐷 0.991 0.987 0.00134 0.081 0.994 0.02494 0.582 0.998 0.03428 
𝑁𝑁 0.140   -0.944   0.759   
𝑑𝑑𝑑𝑑 0.012   0.024   -0.026   

Profile 0.066   -0.078   0.058   
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logarithm curves. The ANOVA tests indicate that the ability 
of the three correlations to predict the performance factors was 
statistically significant (sig ≤ 0.005). These models provide 
design guidelines that lead to enhanced sensors design for a 
wide range of imaging areas and conductivity contrasts. 

 
𝑉𝑉𝑚𝑚 = (𝑎𝑎1𝐷𝐷𝐷𝐷 + 𝑎𝑎3𝑁𝑁2 + 𝑎𝑎5𝑁𝑁0.5 + 𝑎𝑎8𝐺𝐺 + 𝑎𝑎9)2 (7) 

𝐿𝐿𝑡𝑡𝐿𝐿(𝐽𝐽𝑚𝑚) = 𝑎𝑎1𝐷𝐷𝐷𝐷 + 𝑎𝑎2𝐷𝐷𝐷𝐷0.5 + 𝑎𝑎3𝑁𝑁2 + 𝑎𝑎4𝑁𝑁 + 𝑎𝑎5𝑁𝑁0.5

+ 𝑎𝑎7𝑑𝑑𝑑𝑑0.5 + 𝑎𝑎8𝐺𝐺 + 𝑎𝑎9 
(8) 

 
𝐿𝐿𝑡𝑡𝐿𝐿(𝑆𝑆𝑚𝑚) = 𝑎𝑎1𝐷𝐷𝐷𝐷 + 𝑎𝑎2𝐷𝐷𝐷𝐷0.5 + 𝑎𝑎3𝑁𝑁2 + 𝑎𝑎4𝑁𝑁 + 𝑎𝑎5𝑁𝑁0.5

+ 𝑎𝑎6𝑑𝑑𝑑𝑑 + 𝑎𝑎8𝐺𝐺 + 𝑎𝑎9 
(9) 

 
where the wire diameter, 𝑑𝑑𝑑𝑑, and coil outer dimension, 𝐷𝐷𝐷𝐷, 
are expressed in millimetres, 𝜎𝜎  in S.m-1, 𝐹𝐹𝑖𝑖  are the model 
parameters listed in Table 5 and 𝐺𝐺 is the profile index, with 
nominal values of 1 for CH and 2 for SH. 
The spread of data around the composite correlations is 
illustrated in Figure 5. Results showed a significant linear 
relationship between predicted and reference values with an 
overall fitting inside the ±15% deviation range. The strong 
influence of the sensor size is evidenced once more in Figure 
5a, where three clear data clusters appear, each corresponding 
to a given inductor size. Similarly, the dispersion of the data 
derived from the 𝐽𝐽𝑖𝑖  correlation indicates an inverse 
relationship between the data and the number of turns 
irrespective of the conductivity (see Figure 5c and Figure 5d). 

Table 5. Correlation constants 
 𝑉𝑉𝑖𝑖 correlation  𝐽𝐽𝑖𝑖 correlation  𝑆𝑆𝑖𝑖 correlation 

 𝑎𝑎1 0.001119 -0.015762 -0.060902 
𝑎𝑎2 - 0.221681 1.246442 
𝑎𝑎3 -6.686246E-6 -0.001315 0.002449 
𝑎𝑎4 - 0.123560 -0.262666 
𝑎𝑎5 0.000934 -0.860193 1.800712 
𝑎𝑎6 - - -0.186440 
𝑎𝑎7 - 0.117432 - 
𝑎𝑎8 0.001540 -0.0484915 0.0852280 
𝑎𝑎9 -0.009126 0.1758𝜎𝜎 − 0.4643 -11.639089 

 

6. Performance of correlations 

The assertiveness in the prediction of the performance 
parameters was contrasted via the relative performance factor 
𝐹𝐹𝑟𝑟𝑟𝑟.  The   relative   performance   indicator   is   a modification 
of the factor recommended by [26] and [27], combining the 
percent errors described by (10).   

𝐹𝐹𝑟𝑟𝑟𝑟 =
|𝐸𝐸1| − |𝐸𝐸1 𝑚𝑚𝑖𝑖𝑛𝑛|

|𝐸𝐸1 𝑚𝑚𝑚𝑚𝑥𝑥| − |𝐸𝐸1 𝑚𝑚𝑖𝑖𝑛𝑛| + �
𝐸𝐸𝑗𝑗 − 𝐸𝐸𝑗𝑗 𝑚𝑚𝑖𝑖𝑛𝑛

𝐸𝐸𝑗𝑗 𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐸𝐸𝑗𝑗 𝑚𝑚𝑖𝑖𝑛𝑛

3

𝑗𝑗=2

 (10) 

 
where 𝐹𝐹𝑟𝑟𝑟𝑟 is the relative performance factor and ranges from 
0 to 3, 0 being the best relative performance. 𝐸𝐸 refers to the 
error of the predicted values computed as follows.  
 

  

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5. Predicted performance parameters against reference values showing data dispersion around (a) 𝑽𝑽𝒊𝒊, (b) 𝑺𝑺𝒊𝒊 , (c) 𝑱𝑱𝒊𝒊 for medium 
conductivity of 1 S.m-1, and (d) 𝑱𝑱𝒊𝒊 for medium conductivity of 5 S.m-1. 
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𝐸𝐸1 = �
1
𝑚𝑚
�

(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟
(𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟

𝑛𝑛

𝑖𝑖=1

� × 100  
(11) 

 

𝐸𝐸2 = �
1
𝑚𝑚
��

(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟
(𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟

�
𝑛𝑛

𝑖𝑖=1

� × 100 

 (12) 

𝐸𝐸3 =

⎣
⎢
⎢
⎡
�

1
𝑚𝑚 − 1

��
(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟

(𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟
�
2𝑛𝑛

𝑖𝑖=1 ⎦
⎥
⎥
⎤

× 100 
 

(13) 
 

 
here 𝑃𝑃𝑖𝑖  are the performance parameters, namely 𝑉𝑉𝑖𝑖 , 𝐽𝐽𝑖𝑖 , or 𝑆𝑆𝑖𝑖 . 
The suffixes ‘𝑝𝑝𝑝𝑝𝑆𝑆𝑑𝑑’and ‘𝑝𝑝𝑆𝑆𝑓𝑓’, refer to the predicted and the 
reference values, respectively. 𝐸𝐸1  is the mean percent error 
and measures the bias in the prediction, indicating the degree 
of over or under prediction. In the absolute mean percent error 
(𝐸𝐸2), the signs of the deviations are not considered, which is 
key in the assessment of the prediction accuracy of the 
correlations as the positive and negative errors are not 
cancelled. 𝐸𝐸3 is the root mean square percent deviation, which 
indicates the proximity of the predictions to the reference 
values.  

The absolute deviations were also computed via the 
statistical parameters 𝐸𝐸4 , 𝐸𝐸5 , and 𝐸𝐸6 , given by (14)-(16). 
These errors are similar to 𝐸𝐸1, 𝐸𝐸2 , and 𝐸𝐸3 but are expressed in 
absolute magnitude terms non-relative to the reference values.  

𝐸𝐸4 =
1
𝑚𝑚
�(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟

𝑛𝑛

𝑖𝑖=1

  
(14) 

𝐸𝐸5 =
1
𝑚𝑚
��(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟�
𝑛𝑛

𝑖𝑖=1

 
 

(15) 

𝐸𝐸6 = �
1

𝑚𝑚 − 1
��(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟�

2
𝑛𝑛

𝑖𝑖=1

 

 
(16) 

 

 
𝐸𝐸4  is the mean error and predicts the agreement between 
predicted and reference measures relative to the reference 
parameter. 𝐸𝐸5  and 𝐸𝐸6  are the mean absolute and the root-
mean-square errors, respectively. 

The variance (𝑠𝑠2) of the difference between the reference 
and predicted variables is derived for every correlation from 
(17). 
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��
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𝑚𝑚
�

(𝑃𝑃𝑖𝑖)𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 − (𝑃𝑃𝑖𝑖)𝑟𝑟𝑝𝑝𝑟𝑟
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��
2

�

× 100 

 
(17) 

 

 

Note that the second term on the right hand side of the 
equation is the mean of the data points for every scenario 𝑚𝑚 =
{1,2,⋯ ,𝑚𝑚} (𝑚𝑚 = 90 ). 

6.1 Overall Evaluation 

The global evaluation considered all four geometric 
parameters and three prediction correlations in order to study 
their combined performance. The evaluation was first 
performed using the numerical results from the Dataset 1. 
Subsequently, to validate the models, and make the evaluation 
unbiased a second database, Dataset 2 in Table 1, was used for 
geometric parameters inside and outside the initial evaluated 
range.   

Table 6 shows the accuracy of the predictions of all three 
correlations using both datasets. The evaluation using Dataset 
1 led to the errors listed in Columns 2 to 5 of Table 6. The 
deviations computed using Dataset 2 are shown in Columns 6 
to 10 of Table 6. 

The outputs from the correlations show consistency based 
on the computed statistical variances, 𝑠𝑠2, which were lower 
than 4% for all models and datasets. The relative performance 
factor was systematically larger when the correlations are 
validated outside the range from which they derived, i.e. for 
Dataset 2. The 𝑉𝑉𝑖𝑖  correlation provided the most precise 
predictions as by the relative performance indicator, followed 
by the 𝑆𝑆𝑖𝑖 model. Predictions of eddy currents (𝐽𝐽𝑖𝑖) resulted in 
the largest deviations with an absolute mean percentage error 
of up to 11.27% for Dataset 1 and nearly 21% for Dataset 2, 
as seen in row 2.  
𝐸𝐸4, 𝐸𝐸5, and 𝐸𝐸6 evidence the small magnitudes of the signals 

arising in the eddy current problem as previously stated. The 
absolute deviations of the 𝑉𝑉𝑖𝑖 correlation are overall less than 
1.1771E-4 for Dataset 1 and below 1.5853E-4 for Dataset 2. 
The root mean square error 𝐸𝐸6  penalises large errors and 
reduces the impact of small ones, while 𝐸𝐸5 is more appropriate 
for small errors. Consequently, the absolute deviations in the 
predictions using the 𝐽𝐽𝑖𝑖  and 𝑆𝑆𝑖𝑖  correlations are below 
4.0431E-1 A.m-2 and 2.5331E-4, respectively, among all 
datasets.   

6.2 Application of MIT sensor design model 

The proposed correlations are employed to predict the 
geometric combination that ensures large and stable signals 
from highly sensitive systems. For instance, the developed 
models can be used to decide between two alternative coil 
designs as detailed in the following case study aiming to tune 
the diameter of a circular coil. 
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Consider an MIT system targeting measurements of a 
medium of a conductivity ranging between 1 Sm-1 and 5 Sm-1. 
The perimeter of the imaging region restricts the coil size to 
less than 45 mm. The maximum number of turns is 6 from a 
0.5 mm copper wire. The application of the developed models 
is as follows.  

a) Substitute in equation (7) the parameters of the 𝑉𝑉𝑚𝑚 
model from Table 5. 

b) Specify the desired diameter 𝐷𝐷𝐷𝐷 = 45 or 𝐷𝐷𝐷𝐷 = 35, the 
number of turns 𝑁𝑁 = 6, and the coil profile index 𝐺𝐺 =
1 corresponding to circular helix coils. This yields  

𝑉𝑉45 = (𝐴𝐴1(45) + 𝐴𝐴3(6)2 + 𝐴𝐴5(6)0.5 + 𝐴𝐴8(1) + 𝐴𝐴9)2 = 2.007𝐸𝐸 − 3 

𝑉𝑉35 = (𝐴𝐴1(35) + 𝐴𝐴3(6)2 + 𝐴𝐴5(6)0.5 + 𝐴𝐴8(1) + 𝐴𝐴9)2 = 1.130𝐸𝐸 − 3 

where subscripts ‘45’  and ‘35’ refer to the coil sizes under 
evaluation.  
c) Similarly to (a) and (b), substitute the parameters 𝑎𝑎1 to 

𝑎𝑎9 of the 𝐽𝐽𝑚𝑚 model  (see Table 5) and the coil geometric 
characteristics in equation (8) to calculate the 
maximum induction currents model:  

 𝐽𝐽45𝜎𝜎=5 = 6.518𝐸𝐸 − 1 A.m-2 
 𝐽𝐽35𝜎𝜎=5 = 6.254𝐸𝐸 − 1 A.m-2 
d) Likewise, include the geometric parameters of interest 

in equation (9) to calculate the system sensitivity:  
 𝑆𝑆45 = 7.883𝐸𝐸 − 4  
 𝑆𝑆35 = 3.229𝐸𝐸 − 4  
 
Based on the obtained results, the performance parameters 

calculated for the 45 mm sensor, are consistently superior to 
those of the 35 mm sensor. In particular, the voltage ratio and 
sensitivity factor were 1.8 and 2.4 times higher than those of 
the 35mm sensor, respectively.  

Now for the same range of performance factors computed 
above, let us navigate other wire gauges and coil profile 
possibilities. This is achieved by simultaneously optimising 

the performance models via a multi-objective problem 
formulation given in section 2.4. There are many optimisation 
algorithms available. In this work two types of methods were 
selected to illustrate the approach: the Interior-Point 
Optimization (fmincon), and Multi-Objective Genetic 
Algorithm (MOGA) (gamultiobj) from the MATLABTM 
optimisation toolbox. The procedure is the following. 

a) Define the ranges of the inequality constraints as: 
𝐷𝐷𝐷𝐷 = [45,35]; 𝑑𝑑𝑑𝑑 = [0.40,0.85]; 𝑁𝑁 = [2,6]; 𝐺𝐺 = [1,2] 

b) Define  the MIT sensors criteria by the correlations (7), 
(8) and (9), that is: 

𝑉𝑉𝑚𝑚 = (𝑎𝑎1𝐷𝐷𝐷𝐷 + 𝑎𝑎3𝑁𝑁2 + 𝑎𝑎5𝑁𝑁0.5 + 𝑎𝑎8𝐺𝐺 + 𝑎𝑎9)2 

𝐽𝐽𝑚𝑚 = 10(𝑚𝑚1𝐷𝐷𝐷𝐷+𝑚𝑚2𝐷𝐷𝐷𝐷0.5+𝑚𝑚3𝑁𝑁2+𝑚𝑚4𝑁𝑁+𝑚𝑚5𝑁𝑁0.5+𝑚𝑚7𝑝𝑝𝑑𝑑0.5+𝑚𝑚8𝐺𝐺+𝑚𝑚9) 
𝑆𝑆𝑚𝑚 = 10(𝑚𝑚1𝐷𝐷𝐷𝐷+𝑚𝑚2𝐷𝐷𝐷𝐷0.5+𝑚𝑚3𝑁𝑁2+𝑚𝑚4𝑁𝑁+𝑚𝑚5𝑁𝑁0.5+𝑚𝑚6𝑝𝑝𝑑𝑑+𝑚𝑚8𝐺𝐺+𝑚𝑚9) 

c) Deduce the objective function for the purpose of 
minimisation  𝑓𝑓(𝑥𝑥) = [−𝑉𝑉𝑖𝑖(𝑥𝑥),−𝐽𝐽𝑖𝑖(𝑥𝑥),−𝑆𝑆𝑖𝑖(𝑥𝑥)]  

d) Using fmincon find one solution that minimises the 
weighted sum of the individual objectives defined in 
(c): 

 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼
−𝑉𝑉𝑖𝑖(𝑥𝑥)
𝑁𝑁𝑉𝑉

+ 𝛽𝛽
−𝐽𝐽𝑖𝑖(𝑥𝑥)
𝑁𝑁𝐽𝐽

, +𝛾𝛾
−𝑆𝑆𝑖𝑖(𝑥𝑥)
𝑁𝑁𝑆𝑆

 

where the normalisation factors are 𝑁𝑁𝑉𝑉, 𝑁𝑁𝐽𝐽 and 𝑁𝑁𝑆𝑆, and 
the weighting factors used to emphasise the relative 
importance of the objectives are  𝛼𝛼,𝛽𝛽  and 𝛾𝛾 , where  𝛼𝛼 +
𝛽𝛽 + 𝛾𝛾=1 

 
The returned results are: 
𝐷𝐷𝐷𝐷 = 45 mm, 𝑑𝑑𝑑𝑑 = 0.60 mm, 𝑁𝑁 = 6, and 𝐺𝐺 = 2. 

 
The coil diameter is in agreement with the previous 

calculations. The multiobjective evaluation, allows to 
separately evaluate each objective function and study their 

Table 6. Accuracy of prediction of performance models  

 𝑉𝑉𝑖𝑖c 𝐽𝐽𝑖𝑖𝜎𝜎=1
c 𝐽𝐽𝑖𝑖𝜎𝜎=5

c 𝑆𝑆𝑖𝑖c 𝑉𝑉𝑖𝑖d 𝐽𝐽𝑖𝑖𝜎𝜎=1
d 𝐽𝐽𝑖𝑖𝜎𝜎=3

d 𝐽𝐽𝑖𝑖𝜎𝜎=5
d 𝑆𝑆𝑖𝑖d 

𝐸𝐸1a 0.3455 9.7781 11.1633 0.2879 0.0538 -14.6176 -17.5665 11.3386 0.7569 

𝐸𝐸2a 5.4276 9.9703 11.2709 5.9772 6.6253 20.7793 17.6337 11.6268 7.9100 

𝐸𝐸3a 7.1260 11.5848 12.8095 7.7600 9.5109 23.0032 18.5606 13.7733 11.5742 

𝐸𝐸4b -1.8194E-6 1.0567E-2 6.0245E-2 -1.2819E-6 1.2375E-5 -1.1866E-2 -3.8499E-2 4.0431E-1 -3.2217E-5 

𝐸𝐸5b 7.7424E-5 1.1113E-2 6.1959E-2 9.7102E-5 9.6445E-5 1.6517E-2 3.8558E-2 4.0431E-1 2.5331E-4 

𝐸𝐸6b 1.1771E-4 1.8048E-2 9.7946E-2 2.3962E-4 1.5853E-4 2.1579E-2 4.6450E-2 4.7432E-1 5.7766E-4 

𝑠𝑠2 0.5066 0.3752 0.3806 0.6014 0.99045 3.1309 0.3244 0.5970 1.3338 

𝐹𝐹𝑟𝑟𝑟𝑟  0.017 1.132 1.373 0.089 0.228 2.832 2.515 1.467 0.482 

       aFigures shown in percentages. 
     bUnits: 𝑉𝑉𝑖𝑖 is a ratio, 𝐽𝐽𝑖𝑖 in A.m-2 and 𝑆𝑆𝑖𝑖 is dimensionless. 
       cReference values from Dataset 1. 
       dReference values from Dataset 2. 
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relationship. Figure 6 shows the Pareto set found using the 
gamultiobj MATLABTM function. It represents a set of 
optimal solutions found for one run of the simulation 
algorithm. It illustrates the relationship between the 
performance correlations. The highlighted data points 
correspond to the solution the objective function values 
corresponding to the solution obtained with fmincon where: 
𝐷𝐷𝐷𝐷 = 45 mm, 𝑑𝑑𝑑𝑑 = 0.60 mm, 𝑁𝑁 = 6, and 𝐺𝐺 = 2. 
 

7. Discussion  

The correlations developed (7) – (9) contain a combination 
of independent variables that accounted for over 98% of the 
variance observed in all performance factors and showed good 
agreement with reference values and experimental data. 
The induced voltage ratio, closely related to the signal-to-
noise ratio, was found to be primarily influenced by the coil 
size and shape. The developed model resulted in predictions 
with a mean absolute error below 4% and a proximity to 
reference values within a 10% margin. The sensitivity of the 
system to changes in conductivity was strongly influenced by 
the number of turns and the coil size. The associated 
correlation demonstrated a small negative relationship 
between the sensitivity model prediction and the wire 
diameter. 

The induced eddy currents had a close negative interaction 
to the number of turns as by Spearman coefficient and multiple 
regression analyses. The 𝐽𝐽𝑖𝑖  correlation presented the poorest 
performance with a large mean percent error and among the 
highest variance figures recorded, i.e. 21% and 3% for the 
scenario with the lowest conductivity (1 S.m-1), respectively. 
Overall, the error of the predictions is greater for reference 
values outside the initial database spectrum, hence care is 
advised if intended to be implemented using parameters 
outside the spectrum within which they were derived and as 
well as for heterogeneous conductivity distributions.   
 

8. Final remarks and further work   

Knowledge of the effects of varying the geometry of the 
coils is beneficial to enhance the design of the sensors since 
comprehensive studies of their effect on MIT system 
performance is not available in the literature. This paper 
derived performance models based on 90 sensor geometry 
combinations. The data was processed through both bivariate 
correlation and multiple regression analyses. The correlation 
factor among four geometric parameters (coil size, wide 
diameters,   coil   profile   and   number   of   turns)   and   three  

 

 
Figure 6. Illustration of the relationship between different objective 
functions 

 
performance factors (voltage ratio, induced eddy currents, and 
sensibility) is given. The developed models resulted in 
predictions of the performance parameters within a ±15% 
deviation margin. 

The case study illustrated how the application of the models 
could be extended to predict the level of the signal to be 
measured from a particular sensor design and hence provide 
useful information to researchers.  

The incorporation of the developed correlations into 
optimisation algorithms with different weights for each 
derived model will be considered in future work. This 
approach will require the use of global optimisation 
algorithms, increasing the overall computational complexity 
yet allowing the automation of the sensor design process. 
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