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A local radial basis function collocation method for band structure 

computation of 3D phononic crystals  
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Abstract: In this paper, we further extend the local radial basis function collocation method 
(LRBFCM) for efficient computation of band structures of phononic crystals from 2D to 3D. The 
proposed LRBFCM uses one fictitious node to tackle instability problems caused by calculation of 
derivatives of the wave pressure. A few examples of sound pressure wave propagation are 
modelled to validate the developed method. Comparisons with finite element modelling 
demonstrate the high stability and efficiency of the new method in computation of band structures 
of 3D phononic crystals.  
Keywords: Phononic crystals, interface conditions, wave propagation, band structures, eigenvalue 
problems, radial basis functions.  

1. Introduction

Due to periodic variations in material properties in periodic structures or metamaterials, acoustic, 
optical or elastic stress waves of a certain range of frequencies (between the bandgaps) cannot 
propagate [1, 2]. This phenomenon can be utilized in a variety of applications such as design of 
soundproofing walls, invisible cloths and aeroplanes, and seismic cloaks for earthquake damage 
mitigation. Both experimental and theoretical investigations on the elastic/acoustic wave 
propagation in phononic crystals are carried out during the last decades. Experiments on phonotic 
crystals with a large number of periodical structures are difficult to conduct; they are also 
unnecessary when the materials are elastic and theoretical or numerical solutions are available [3, 
4]. This paper will focus on numerical modelling of the behavior of phonotic crystals subjected to 
acoustic pressure waves.  

Many numerical methods have been used to compute the band structures and bandgaps of 
phononic crystals, as experiments are often too delicate or complicated to undertake and control. 
However, most of the existing numerical methods cannot efficiently tackle this problem. For 
example, in the most popular finite element method (FEM), the numerical integration of periodic 
boundary conditions is often very time consuming [5, 6]. The plane wave expansion and the 
wavelet method neglect transverse waves in solids which may result in numerical errors [7-10]. 
The multi-scattering theory method [11, 12] and the Dirichlet-to-Neumann map method [13-15] 
are limited for scatterers with circle or sphere shapes. The boundary element method (BEM) 
involves singular integrals and may result in unreal, fictitious eigenfrequencies [16-20]. The 
generalized multipole techniques [21-23] are computationally very demanding because the band 
structure can only be obtained from the time domain using the Fast Fourier Transform method at 
the present. The time-domain finite difference approach [24, 25] can consider different wave 
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modes in solids and fluids but often has to neglect solid-fluid interactions at the interfaces. In 
addition, most of the existing numerical simulations deal with 2D problems of phonotic crystals 
only, with a few 3D exceptions such as [26, 27]. Therefore, accurate and efficient numerical 
methods are still needed to compute the band structures of phononic crystals, especially for 3D 
cases.  
 
The radial basis function collocation method (RBFCM) implemented in the meshless framework 
has been under development since 1990s [28-29]. Due to the full matrix formulation in the 
RBFCM, the local collocation approach, also known as the RBF-FD method or local RBFCM 
(LRBFCM), was introduced in 2000s [30-35]. The LRBFCM method is dimensional free and is 
easy to implement. However, the instability problem caused by the Neumann boundary conditions 
still limits its wider applications considerably [36-37]. Special treatments such as the direct 
method [36], the least square method [39], and the fictitious node method [40-42] were 
subsequently introduced to calculate the derivatives of primary field quantities (e.g., sound wave 
pressure), allowing for more stable computation of the band structures of phononic crystals. 
However, the LRBFCM has been applied to 2D phononic crystals only. 
 
In our previous study [43], an LRBFCM-based approach was proposed for calculating band 
structures of 2D phononic crystals. The approach is unique in that only one fictitious node is used 
for computation of derivatives so that the continuity condition between material interfaces is 
satisfied with high numerical stability and efficiency. In this work, we further extend the 
LRBFCM in [43] from 2D to 3D phononic crystals by re-formulating the computing algorithm for 
derivatives in 3D. The method is validated by simulation of benchmark examples with sound 
pressure wave propagation and result comparisons with finite element modelling. The paper is 
organized as follows. The problem of 3D phononic crystals is briefly introduced in section 2, 
followed by a detailed presentation of the general formulation and solutions of LRBFCM in 
section 3. Numerical results of examples with different materials and scatterers are then presented 
and discussed in section 4, with main conclusions given in the last section. 
 
2. The problem of 3D phononic crystals 

 
In this section, the governing equations, interface continuity conditions, and periodic boundary 
conditions of 3D phononic crystals under sound pressure waves are briefly presented for the 
convenience of discussion as follows. A unit cell composed of a cube scatterers embedded in a 
cube matrix with the lattice constant a is illustrated in Fig. 1a, where Γ1 to Γ6 represent the six 
faces of the cube, with Γ1 and Γ2 perpendicular to x axis, Γ3 and Γ4 to y axis, and Γ5 and Γ6 to z 
axis, respectively. Γ0 denotes the interface between the matrix and scatterer. The first Brillouin 
zone is shown in Fig. 1b. 
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(a) A cube unit cell  (b) The first Brillouin zone 
Fig. 1 A cubic phononic crystal 

2.1 Governing equations 
The governing equations of the sound pressure waves in a homogeneous, isotropic and linear 
elastic solid are 

 
2

2( ) ( )p p
c
ω

∆ = −x x ,  (1) 

where ω is the rotation frequency, /c K ρ=  the wave speed, ρ the mass density, p the pressure, 

and K the bulk modulus. The operator ∆ is Laplace operator. 
 
2.2 Interface continuity conditions  
The continuity conditions on the interface Γ0 are expressed as 

1 2( ) ( )p p=x x ,             0∈Γx ,              (2) 

1 2( ) ( )p p∂ ∂
=

∂ ∂
x x

n n
,        0∈Γx ,          (3) 

where ( ), ,
T

x y zn n n=n is the outward unit normal vector of the interface, and the supersc

ript 1 denotes the matrix domain D1 and 2 the scatterer domain D2. 
 
2.3 Periodic boundary conditions 
The periodic boundary conditions are given as 

 ( ) ( )ip e p+ = �k ax a x ,       (4) 

   
( )( ) ip pe∂ ∂

+ =
∂ ∂

�k a xx a
n n

,                             (5) 

where ( , , )T
x y zk k k=k  is the Bloch wave vector, 1i = − , 

 
and 1 1 2 2 3 3l l l= + +a a a a  with  

(l1, l2, l3)∈Z2
 , where a1 , a2 and a3 are fundamental translation vectors of the lattices. For the 

cubic lattice we have 

1 2
( ) ( )xik ap e pΓ Γ+ =x a x ,  

3 4
( ) ( )yik ap e pΓ Γ+ =x a x

, 5 6
( ) ( )zik ap e pΓ Γ+ =x a x

,     (6) 

and    
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x x
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Γ

∂∂
+ =

∂ ∂

x
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,   
4

3

( )
( ) yik a pp e

y y
Γ

Γ

∂∂
+ =

∂ ∂

x
x a ,  6

5

( )
( ) zik a pp e

z z
Γ

Γ

∂∂
+ =

∂ ∂

x
x a ,     (7) 

where 
iΓx (i=1~6) are the nodes on the boundaries Γi.  

 
3. Numerical discretization of LRBFCM  
In this section, the details of the LRBFCM formulation, derivative calculation, and numerical 
discretization for 3D phononic crystals are fully presented. 
 
3.1 General formulation of LRBFCM 
The general solution of the wave pressure p can be approximated by  

 ( )
1

( )
sN

m m
m

p ϕ α
=

= −∑x x x , (8)  

where Ns is the total number of local nodes, ᵠ the radial basis functions (RBF), and mα  the 

unknown coefficient related to ( )mu x  of the local node at mx , which can be calculated by 

 1
m

−= pα ϕ ,                  (9) 

where 1[ ( ),..., ( )]T
m= p pp x x  is the vector of the pressure of the local nodes, the subscript m 

denotes the mth element of a vector, namely, at the mth node mx = x .
1 2[ , ,..., ]T

m m= α α αα  is 

the vector of unknown coefficients, and ( )
1 , s

j l
l j N≤ ≤

 = − x xϕ ϕ  is the RBF interpolation 

matrix with the size of Ns×Ns. Considering Eq. (9), Eq. (8) can be expressed as  

 ( ) 1

1
( )

sN

m m
m

p ϕ α −

=

= − =∑ �x x x pΘ ϕ ,    (10) 

where 

( ) ( )1 ,...,
sNϕ ϕ = − − Θ x x x x .                     (11)

 

In Eq. (10), 1−ϕΘ  is the vector with the size of Ns related to local nodes. For convenience, the 

following definition is introduced 

1( ) ( ) −=ϕ ϕx xΘ .                            (12) 

The wave pressure given in Eq. (10) becomes  

 ( ) ( )p = �x x pϕ .                           (13) 

From Eq. (13), it is easy to reformulate the vector ( )xϕ  to a global vector by inserting zeros at 
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proper positions. For simplicity, two global vectors ( ) xϕ and p  with the size of N (the number 

of global nodes) are defined by mapping the local ones with the size of Ns as 

 
local ( )     global ( ),
local       global ,

⇒
⇒





x x
p p
ϕ ϕ

 (14) 

where [ ]1( ),..., ( ) T
Np p=p x x  is the vector of field quantities in the global domain. The global 

vector 1( ) [ ( ),..., ( )]Nϕ ϕ=  x x xϕ is a sparse vector related to the local vector. Using the 

relationships (14), Eq. (13) can be expressed as  

        ( ) ( ) ( )p = =  � �x x p x pϕ ϕ ,                           (15) 

where the unknown wave pressure vector p  can be determined from the governing partial 

differential equations and boundary conditions. ( )ϕ x  is related to the the partial differentiation 

of ( )Θ x  while 1−ϕ  is a constant matrix, i.e., 

1( ) ( ) ( ) ( )   ,   
i i i i

p
x x x x

−∂ ∂ ∂ ∂
= ⇒ =

∂ ∂ ∂ ∂



x x x xp p pΘϕ ϕ  ϕ                 (16) 

It is clear that 

1 1
( ) ( ) ( ) ( ) ( ) ( )

N N
m m k m k km k m

k k
p x p p pϕ δ

= =
= = = =∑ ∑  �x p x x x xϕ ,            (17) 

therefore the functions ( )xϕ  obey the Kronecker-delta property, namely, ( )k m kmϕ δ= x  or 

[ ]1( ) ( ) 0,..., ( ) 1,..., ( ) 0m m m m N mϕ ϕ ϕ= = = =   ϕ x x x x . 

  
3.2 Calculation of derivatives 

nds

kx

Real nodes
Fictitious nodes

 

Fig. 2 The improved fictitious node method 
 
The derivative calculation is one of the main reasons for the instability of the LRBFCM. The 
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derivative form of the RBF is not only related to the Euclidean distance but also to the direction of 
local nodes. Herein only one fictitious node is interpolated using the local nodes within a certain 
distance, as shown in Fig. 2. Then the derivative can be formulated using a finite difference form 
by subtracting the field quantity of the closest node xk. The derivative of the field quantity can be 
expressed as   
 

( ) ( ) ( )=u u u
ds

∂ −
∂

x x x
n

,                           (18) 

where ds is the distance between the closest node and the fictitious node, as shown in Fig. 2. 
Considering Eq. (15), Eq. (18) can be rewritten as 

( ) ( ) ( ) ( ) ( )=
sN

u u u
ds ds

∂ − −
=

∂
   x x x x x u

n
ϕ ϕ

.               (19) 

As ( ) xϕ has the Kronecker-delta property ( )k m kmϕ δ= x , Eq. (19) can be modified as 

[ ]1( ),..., ( ) 1,..., ( )( ) ( ) k N

ds ds
ϕ ϕ ϕ−−

=
       x x xx xϕ ϕ ,            (20) 

where k denotes the node xk as shown in Fig. 3. In Eq. (20), the field quantity of the only fictitious 
node is interpolated using the local nodes in the small domain. The field quantity at the boundary 
node is given analytically in the derivative calculation, whose accuracy is only dependent on the 
interpolation of the field quantity at the fictitious node. The above method has proven to be highly 
accurate and stable for 2D phonotic crystal problems [43], and it will be further tested for 
modelling 3D problems as below. 
 
3.3 Band structure computation of phononic crystals 
Eq. (1), Eq. (3), and Eq. (7) can be written in the following matrix form 
 

1 2

3 4

5 6

0 0

2

1
22

2

11

12

0 1

( )
( )

( )
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )

x

y

z

ik a

ik a

ik a

K
e

x x
K

e
y y

e
z z

ρ

ρ

ω

Γ Γ −

−Γ Γ

Γ Γ −

Γ Γ

 ∆
 ∆   

  ∂ ∂   −  ∂ ∂ 
  ∂ ∂    = −−   ∂ ∂
  

∂ ∂   −   ∂ ∂  
 ∂ ∂ 

− ∂ ∂ 

0
0

0

0
0

0 0 0
0 0

0 0 0
0 0

p x
p x

p x
p x p x

p x
p x p x

p x p x

p x p x
n n



，   (21) 

 

where 1
1D∈x , 2

2D∈x  and 
i iΓ ∈Γx (i=0,1,...,6). The following generalized eigenvalue 

matrix can be formulated by substituting Eq. (15) into Eq. (21) 
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 −

∂ ∂ 
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 ∂ ∂  
 

∂ ∂ − ∂ ∂
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0
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0
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x
x

x
x x

x
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p

x x

p x p x
n n

ϕ
ϕ

ϕ
ϕ ϕ

ϕ
ϕ ϕ

ϕ ϕ

2

1


 
 
 
          
 
 
 
 




，

p
p

 (22) 

where 2p  and 1p  are the pressure vectors in D1 and D2, respectively.  

Eq. (19) can be re-written as 

 2ω= −AP BP , (23) 

By re-ordering the nodes, the matrix A, B and P can be expressed in terms of columns 

corresponding to the domain D1, D2 and the boundary ( 0,1...6)i iΓ = as, respectively 

1 2 3 4 5 6 0 0

0 0 1 1, , , , , , , , ,Γ Γ Γ Γ Γ Γ Γ Γ =  A A A A A A A A A A A , 

1 2 3 4 5 6 0 0

0 0 1 1, , , , , , , , ,Γ Γ Γ Γ Γ Γ Γ Γ =  B B B B B B B B B B B , 

1 2 3 4 5 6 0 0

0 0 1 1, , , , , , , , ,
T

Γ Γ Γ Γ Γ Γ Γ Γ =  P P P P P P P P P P P . 

The interface condition Eq. (2) and the periodic boundary condition Eq. (6) are considered 
analytically in the generalized eigenvalue matrix form by adding or subtracting the relevant 
columns, which leads to 

2ω= −AP BP                                (24) 

where 

1 2 3 4 5 6 0 0

0 1 0 1, , + , + , ,yx zik aik a ik ae e eΓ Γ Γ Γ Γ Γ Γ Γ
 = + + A A A A A A A A A A A

, 

1 2 3 4 5 6 0 0

0 1 0 1, , + , + , ,yx zik aik a ik ae e eΓ Γ Γ Γ Γ Γ Γ Γ
 = + + B B B B B B B B B B B

, 

1 2 3 0

0 1 0, , , , ,
T

Γ Γ Γ Γ =  P P P P P P P . 

The formulated matrices in Eq. (24) are sparse and symmetric. Then eigenvalues are obtained by 
solving Eq. (24) with corresponding wave vectors [kx, ky , kz] varing from R→M→Γ→X→M in 
the first Brillouin zone, as shown in Fig.1(b). The band structure can then be plotted by putting all 
these eigenfrequencies together, to describe the passing ability of the pressure wave with respect 
to different directions [kx, ky , kz] in the periodical structures.  
The main steps of calculating the band structure using the above method is briefly summarized in 
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Fig. 3. 

Buliding the discretized matrix of the governing equation (1), the 
boundary condition (3) and interface conditions (5)

Trim the matrix to satisify the displacement continuity (2) and (4) 

Solve the eigenvalues by considering different wave vectors in (24)

Draw the band structure by using the eigenvalues and the wave vectors

 Fig. 3 The main steps of calculating the band structure using the developed method 
 
 
4. Examples, results and discussion 
The 3D phonotic crystals of cube matrix / cube scatterer (Fig. 1) and cube matrix / sphere scatterer 
with different material properties under sound wave pressure are simulated as benchmark 
problems to validate the above developed LRBFCM method, which is implemented in an in-house 
Matlab code. They are also modelled by FEM using COMSOLTM Multiphysics for comparison of 
accuracy and efficiency. All the simulations are run on a desktop PC with Intel(R) Core(TM) 
i9-7940X, 3.10 GHz CPU and 128 GB RAM. In the LRBFCM simulations, the multi-quadric 
(MQ) RBF [41] is used, 

2 2
sr cϕ = +                                  (25) 

where nr = −x x  is the Euclidean distance and sc  is a chosen shape parameter. The optimal 

value of shape parameter is dependent on the form of RBF and the nodal distance or the number of 
local nodes. In the present work, cs =1 with 9 local nodes is found by trial and error to result in a 
smooth error distribution in the analyzed domain. A uniform nodal distribution is used as it often 
has better convergence rates than a random one of equal distance [39-43]. The generalized 
eigenvalue equation Eq. (24) is solved directly using the function eigs in Matlab. The simulation 
of FEM is carried out by using commercial software COMSOL 5.0.   
 
4.1 Example of a special case 
In order to validate the accuracy of the proposed method, a 0.4×0.4×0.4 scatterer embedded in a 
1×1×1 cubic unit cell is modelled first, but with the same material for the scatterer and the 
inclusion. For this special case, there exists an analytical dispersion relation [44]:   

 ( ) 2 2 2( )k k m n qω = − + + , (26) 

where m = 0, ±1, ±2, …; n and q = 1, 2, 3, ….  
Fig. 4 compares the band structures calculated from the RBF( in red line) and Eq. 26 (in blue dot). 
The relative error is defined as  

/r f fErrors E E E= −∑ ∑ ,                      (27) 
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where Ef is the result from the FEM or exact solutions, and Er from the LRBFCM. The relative 
error for this example is only 0.0042, demonstrating high accuracy of the developed method.  
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Fig. 4 A comparison between the RBF and exact solutions 

4.2 Cube/Cube examples  
A 0.4×0.4×0.4 scatterer embedded in a 1×1×1 cubic unit cell is modeled first, and 41 wave vector 
nodes are employed from R→M→Γ→X→M to obtain the band structure, as shown in Fig. 1b. 
21×21×21=9261 nodes with 9261 degrees of freedoms (DOFs) are uniformly distributed in the 
whole domain for the LRBFCM, and a very fine mesh with 15,426 triangle elements and 22,199 
DOFs is used in FEM as the “accurate” reference for comparison. 
 
In order to demonstrate the robustness of the proposed method, iron scatterers embedded in 
mercury, water and air matrix are modelled, respectively. The material constants are 
ρ1=13600kg/m3 and c1=1450m/s for mercury, ρ1=1000kg/m3 and c1=1499m/s for water, 
ρ1=1.21kg/m3 and c1=340m/s for air, and ρ2=7870kg/m3 and c2=5000m/s for iron.  
 
The modelled band structures for different matrix materials are shown in Figs 5-7. It is clear that 
the present results agree very well with the FEM results. The differences are negligible for low 
frequencies and appear to increase at higher frequencies as the differences in material properties of 
scatterer and matrix increase (from Fig. 5 to Fig. 7).  
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Fig. 5 Band structures of iron scatterer embedded in mercury matrix 
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Fig. 6 Band structures of iron scatterer embedded in water matrix 
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Fig. 7 Band structures of iron scatterer embedded in air matrix 

 
The CPU times and errors of the results from the FEM and the LRBFCM for the above examples 
are compared in Table 1.  

 
It can be seen that the LRBFCM performs much more efficiently than the FEM but with negligible 
differences. The computing time is much less than that required by the FEM, with more than 35% 
savings in all the cases considered. The time saving would be even more significant if more wave 
vectors are considered. The high efficiency of the present LRBFCM is attributed to the fact that it 
is based on a strong-form formulation of partial differential equations and does not need any 
numerical integration for computing the system matrices. It can also be noted that the errors 
become higher as the difference between two materials the properties increases. As there is no 
exact solution, the error is just a relative indicator showing which mesh or method is more 
accurate. 
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Table 1 Comparisons of computing time and accuracy for cube/cube examples 

Materials  Iron/Air Iron/Water Iron/Mercury 

RBF Degrees of freedom 9262 

CPU time (s) 143.6 142.9 140.6 

 

FEM 

Degrees of freedom 9293 

CPU time (s) 221 220 217 

Comparison 
Errors 3.25% 0.21% 0.20% 

Time saving 35.02% 35.03% 35.21% 

 
4.3 Cube/Sphere examples 
A 0.3 radial sphere scatterer embedded in a 1×1×1 cubic unit cell is considered in this part, and the 
same wave vector nodes are employed from R→M→Γ→X→M to obtain the band structure, as 
shown in Fig. 1b. In total, 9639 nodes with the same number of DOFs are distributed in the whole 
domain for the LRBFCM, and a mesh with 16,008 triangle elements and 22979 DOFs are used in 
FEM for comparison. 
 
The band structures of phononic crystals with the same materials for the above cube/cube 
examples are shown in the Appendix. Again the results from the developed method and the FEM 
match each other very well, even for high frequencies and very different scatter/matrix materials.  
 
The computational performances are compared in Table 2. Again the new LRBFCM is more 
efficient than the FEM with more than 30% savings in the CPU times. However the errors in Table 
2 are higher than those in Table 1. This is due to the different interfaces in the two examples. In 
the cubic/cubic example, the interface is a cubic surface, which the FEM can deal with as well as 
the developed method. However, in the cubic/sphere example, the interface is a sphere, and the 
FEM struggles to model the curved geometry accurately due to the difficulty in mesh generation. 
On the contrary, the developed meshless method can simulate both interfaces easily and accurately. 
The errors become lower when finer meshes are used, for example, the error in the case of Iron 
embedded in Mercury is 1.72% when 44459 DOFs are used in FEM for the Cube/Sphere example.  
 
5. Conclusions  
In this paper, the new LRBFCM developed for 2D phononic crystals [43] has been further 
extended to calculate the band structure of 3D cases. Numerical results from modelling a number 
of benchmark examples show that the method is capable of efficiently and accurately computing 
the band structure of 3D phononic crystals, due to its advantages in dealing with complicated 
boundary or interface shapes and calculating derivatives of field quantities. The improved 
LRBFCM can be extended to simulate other problems such as acoustics, solid-fluid interaction, 
crack propagation and hydrodynamics with moving boundaries. 
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Table 2 Comparisons of computing time and accuracy for Cube/Sphere examples 

Materials  Air/Iron Water/Iron Mercury/Iron 

RBF Degrees of freedom 9639 

Time spent [s] 148.3 147.5 149.5 

 

FEM 

Degrees of freedom 9538 

Time spent [s] 212 225 219 

Comparison 
Errors 4.49% 3.36% 3.25% 

Time saving 30.05% 34.44% 31.47% 
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