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Abstract

It is necessary to introduce an external forcing to induce turbulence in a stably stratified fluid. The Heisenberg
eddy viscosity technique should in this case suffice to calculate a space-time averaged quantity like the global
anisotropy parameter as a function of the Richardson number. We find analytically that the anisotropy increases
linearly with the Richardson number, with a small quadratic correction. A numerical simulation of the complete
equations shows the linear behaviour.

1 Introduction
For the study of homogeneous isotropic turbulence, the velocity structure factors play a very important role since
they probe the probability distribution function of the turbulent velocity field. While experiments and numerical
simulations can study the probability distribution directly, it is far more difficult to calculate it. Hence analytic
calculations generally deal with the structure factors, and among them, the two-point correlation function is of
particular importance since it leads to the energy spectrum. In the case of turbulence in a stratified fluid, besides
the structure factor, there is the anisotropy which is an essential characteristic. In this article, we consider a stably
stratified fluid and the global anisotropy parameter which is a ratio of the kinetic energy in the plane perpendicular
to the stratification direction to the kinetic energy in the vertical direction. We will restrict ourselves to the
case of weak turbulence where the Fourier space structure factors are still determined by the magnitude of
the wavenumber k, where k2 = k2

⊥ + k2
‖. The subscripts ⊥ and ‖ refers to the horizontal plane and the

vertical direction respectively. It is our contention that for the stably stratified fluid where an external forcing
is necessary to induce turbulence, the equivalent linearization will be useful to calculate a global quantity. We
will consequently use this technique to calculate the anisotropy in perturbation theory and compare it with a
numerical simulation.

One of the cornerstones of the theory of homogeneous isotropic turbulence is Kolmogorov’s −5/3 law [16].
If the total kinetic energy per unit mass is E, then its distribution E(k) over the different wavenumbers (k is the
inverse of the length scale l) is defined by

E =

∫
E(k)dk. (1)

In the inertial range, i.e., a range of wavenumbers much smaller than the viscous dissipation wavenumber and
at the same time much larger than the wavenumber corresponding to the macroscopic energy input scale, Kol-
mogorov motivated a dimensional analysis to write

E(k) = Cε2/3k−5/3, (2)

where ε is the rate at which energy is dissipated by viscosity, and C is the Kolmogorov’s constant. In the
stationary state, which is the case being considered, ε equals the rate at which the energy is injected into the
system. Behind Kolmogorov’s analysis lies the idea of a constant energy cascade from large length scales (small
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wavenumbers) to short length scales (large wavenumbers) brought about by the nonlinear terms in the Navier–
Stokes equation. The rate of the cascade is the same as ε that has been introduced earlier.

Turbulence in a stratified fluid offers additional possibilities. The isotropy is now broken by a density gradient
in a particular direction (we will take this as the z-direction which is also the direction in which gravity acts).
For our analysis, we consider a thermal gradient produced by a constant temperature difference maintained
across two parallel plates separated by a distance d in the z-direction. The density gradient produced creates
buoyancy forces which play a strong role. The problem now has two coupled fields—the velocity field v(r, t),
and the temperature (scalar) field T (r, t). It was argued by Bolgiano [4] and independently by Obukhov [22]
that under these circumstance, there would be two fluxes—one for the usual kinetic energy, and the other for the
temperature fluctuation δT (r, t) which is the deviation of temperature T (r, t) from the steady state profile of
Ts(z) = T1 + ∆Tz/d. Here T1 is the temperature of the lower plate (z = 0), T2 the temperature of the upper
plate (z = d), and ∆T = T2 − T1 > 0. The plates are perfect conductors of heat. Analogous to the kinetic
energy E, we define a thermal energy as

G =
1

2V

∫
(δT )2dr, (3)

where V is the volume of the fluid. It is a conserved quantity in the absence of external forcing, buoyancy, and
thermal diffusion that dissipates the fluctuations at short length scales. It was suggested by Bolgiano [4] and
Obukhov [22] that there would be a cascade of G in the event of a buoyancy-driven turbulence, and the rate
of dissipation of G in the steady state would equal the rate of input at large scales with the constant being the
thermal flux χ = dG/dt. Dimensional considerations similar to that of Kolmogorov yields [4, 22]

E(k) = C̃χ2/5(αg)4/5k−11/5, (4)

where C̃ is a number of O(1), α is the expansion coefficient and g the acceleration due to gravity. This is called
the Bolgiano–Obukhov scaling.

Despite several numerical and experimental efforts [2, 5, 14, 15, 21, 26, 27, 31, 32] over a decade, a clear
observation of the exponent 11/5 was not seen until the numerical work of Kumar et. al. [17]. They showed
a clear 11/5 spectrum, a corresponding flat thermal flux, and a k-dependent kinetic energy flux when the fluid
is heated from above, i.e., for a stably stratified fluid. Note however that Kumar et al. [17] observed k−11/5

kinetic-energy spectrum for the nearly isotropic regime of stably-stratified turbulence. The behaviour is quite
different for quasi two-dimensional stably-stratified turbulence [2, 5, 10, 14, 15, 21, 26, 27, 32]. The validity of
Eq. (4) clearly requires the dominance of the thermal flux and this is possible for a large Richardson number Ri,
which is defined as [3, 9, 17]

Ri =
αg|∆T |d

v2
s

, (5)

where vs is the rms of the velocity. The numerator is a measure of the square of the velocity of free fall under
gravity. If the inherent fluctuations (in the absence of buoyancy, or for weak buoyancy) dominate, then the
Richardson number will be very small, and we expect the Kolmogorov spectrum. Our interest in this work is to
look at small values of Ri and see how the anisotropy sets in as the temperature gradient is increased.

The anisotropy should be apparent from the study of the spectrum. However, the spectrum is a local quantity
and difficult to measure. A global quantity could be an alternative measure for studying the crossover between
the Kolmogorov and Bolgiano-Obukhov regimes. The global anisotropy

A =

∫
v̄2
⊥dr

2
∫
v̄2
‖dr

=

∫
(v̄2

1 + v̄2
2)dr

2
∫
v̄2

3dr
(6)

could be such a parameter. Here v‖ is the velocity component in the z-direction, i.e., parallel to the gradient,
while v1,2 are the velocity components in the x-y plane and v̄2

⊥ = v̄2
1 + v̄2

2 . The overbars indicate the time-
averaged value.

Quantification of anisotropy in the stably stratified flow has been remaining a significant topic of interest.
Kaneda and Yoshida [13] expressed the velocity correlation function using tensors and quantified the small-scale
anisotropy in stably stratified turbulence. Later, Ishida and Kaneda [12] applied the same for the quasi-static
magnetohydrodynamic turbulence [29]. Rorai et al. [25] computed the axisymmetric kinetic energy spectrum to
quantify anisotropy in the wavenumber space for the stably stratified turbulence.

The outline of the paper is as follows. In Sec. 2, we calculate the global anisotropy ratio, A, as a function
of the Richardson number using an equivalent linearization technique based on the Heisenberg picture of eddy
viscosity. In Sec. 3, we perform numerical simulations of stably stratified turbulence and test our expression for
the global anisotropy obtained in Sec. 2. Finally, we conclude in Sec. 4.

2 Theory
The governing equations are the incompressible Navier–Stokes equation and heat conduction equation with
random forces. We consider a stable stratification, i.e., the temperature at the top plate is larger than that of
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We now turn to the strategy for calculating the anisotropy factorA. We adopt a familiar technique of nonlinear
dynamics, equivalent linearization. This is precisely what is meant by Heisenberg’s eddy viscosity [6,11]. It was
argued by Heisenberg [11] and later amplified by Chandrasekhar [6] that the effect of the nonlinear term in the
inertial range is to transfer energy from small-k to large-k exactly as molecular viscosity would do. However,
this effective viscosity is scale dependent and proportional to l4/3 and dominates the contribution from molecular
viscosity. Consequently, we replace the nonlinear term by an effective viscous term νeff(k)k

2 and drop the
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the bottom plate, T2 > T1 with ΔT positive. Since this system is stable, we need external forcing to maintain a 
steady-state turbulence. We will use a Boussinesq approximation [7] where the density fluctuation appears only 
in the buoyancy, and will treat the fluid as incompressible. Consequently, the Navier–Stokes equation reads (as 
used in fluctuating hydrodynamics) 

∂v Vδp '+ (v · V)v = − + νV2 v + αgδT δi3 + f , (7)
∂t ρ0 

V · v = 0, (8) 

with V · f ' = 0. In Eq. (7), δp is the pressure fluctuation about the steady conduction state, ν is the kinematic 
viscosity, ρ0 is the background density, and f ' the fluctuating force. The heat conduction equation reads, 

∂ ΔT 
δT + (v · V)δT = λV2δT − v3 + h' , (9)

∂t d 

where δT is the temperature fluctuation form the conduction state, λ is the thermal diffusion coefficient, and h' is 
the fluctuating force. Usually one does not consider a fluctuating source term in Eq. (9). For generality, however, 
we include a random source term h' in Eq. (9) as well. 

We now carry out the rescaling of Eqs. (7)-(9), using d as the length scale, the rms value of the fluctuating 
turbulent velocity field vs as the velocity scale, d/vs as the time scale, ΔT as the temperature scale, which leads 
to: 

• v = uvs; 

• δT = θΔT ; 

• t = τd/vs; 

f ' 2• = f vs /d; h' = hvs 
2/d. 

This unconventional rescaling will make the crossover with changing Ri apparent. The pressure fluctuations and 
density are then appropriately scaled to make the resulting system appear as follows: 

∂u Vδp ν 
+ (u · V)u = − + Riθẑ+ V2 u + f , (10)

∂τ ρ0 vsd 
V · u = 0, (11) 

∂θ λ V2+ (u · V)θ = θ − u3 + h. (12)
∂τ vsd 

The recast has made the crossover apparent. For Ri → 0, the velocity dynamics is independent of the temper­
ature fluctuations, and the temperature slaves to the velocity field. This is the Kolmogorov limit. The thermal 
fluctuations begin to affect the system as Ri increases, and the crossover takes place. The fluctuating force f and 
current h are Gaussian random fields and are specified by the correlations 

' ' ' '(fi(k, τ )fj (k , τ )) = Pij (k)δ(k + k )δ(τ − τ )F (k), (13) 
' ' ' '(h(k, τ )h(k , τ )) = δ(k + k )δ(τ − τ )H(k), (14) 

where Pij (k) is the projection operator, k is the wave-vector, and F (k) and H(k) are functions which need to be 
compatible with the scale invariance of Eqs. (10)-(12). Scale invariant forces F (k) and H(k) to be proportional 
to k−D , where D is the dimensionality of space. It is easily seen from Eqs. (10)-(12) that energy and entropy 
conservations have the form 

∂ u 2   
dr = Riθu3 + fiui + ν'(∂iui)

2 dr, (15)
∂τ 2 

∂ θ2  ' 2 dr = −θu3 + θh + λ (∂iθ) dr, (16)
∂τ 2 

which leads to   
∂ u 2 Riθ2  ' 2 2  

+ dr = ν (∂iui) + λRi(∂iθ) + fiui + Rihθ dr (17)
∂τ 2 2

showing clearly that the conserved quantity in the “no-forcing”, “no-dissipation” limit is (u 2 + Riθ2)/2, consis­
tent with the crossover picture. 



molecular viscosity contribution (the technical details are in A). Since νeff (k) ∝ k−4/3, the relaxation rate is 
νeff (k)k

2 = Γ1k
2/3. Since the θ-dynamics slaves to the velocity field, there is identical scaling for the thermal 

diffusivity which makes the associated relaxation rate λeff (k)k
2 = Γ2k

2/3 . However, before implementing the 
procedure, we need to eliminate δp from Eq. (10). This is done by taking the divergence of Eq. (10) to obtain 
formally  	  

δp	 ∂θ −V2 = V · [(u · V)u] − Ri .	 (18)
ρ0	 ∂z 

Using Eq. (18) in Eqs. (10)-(12) along with the above equivalent relaxations, we have in wave-vector space 

∂uα(k) 
=	 −Γ1k

s uα(k)
∂τ   

kαk3 
+	 Ri δα3 − θ(k) + fα(k), (19)

k2

∂θ(k) 
=	 −Γ2k

sθ(k) − u3(k) + h(k). (20)
∂τ 

In the above s is an exponent which will later be set equal to 2/3 in D = 3. The horizontal component of k 
form a continuum, while the vertical component is discrete (due to boundary conditions at z = 0 and z = d) 
and the allowed values are nπ, where n is a positive integer. In the above calculation, we have assumed in 
Eqs.(19) and (20) that the effective relaxation rate Γ1,2k

s depend only on the magnitude of the wavevector 1 
k = k1

2 + k2
2 + n2π2/d2. This is allowed for small Richardsons number where the flow is nearly isotropic. 

Here we study the onset of anisotropy. Note that the flow becomes strongly anisotropic only at large Richardson 
number [24]. 

Working in frequency space with the Fourier transform defined as  
−iωtφ(t) =

dω
e φ(ω)	 (21)

2π 

for any function φ(t), we find [where ξ = cos −1(k3/k)] 

f3 (−iω + Γ2k
s) + hRi sin2 ξ 

u3	 = , (22)
Δ 

fα f3Rikαk3 
uα = + −iω + ks k2 (−iω + Γ1ks)Δ 

Rikαk3h − ; α = 1 or 2,	 (23)
k2Δ 

with 

Δ	 = (−iω + Γ1k
s) (−iω + Γ2k

s) + Ri sin2 ξ. (24) 

It should be noted that in the absence of the external current ‘h’, the vertical velocity goes to zero as Ri → ∞. 
This means that the flow will become two-dimensional at large Richardson number. The time averaged values m m  n 
are obtained as |u3|2dω/2π and |u1|2 + |u2|2 dω/2π. After performing relevant contour integrals, we 
obtain  

1 
ū3

2 = |u3|2dω 
2π 	 n 

Γ2 (Γ1 + Γ2) k2s + Ri sin2 ξ (f3f3) + 2Ri2 sin4 ξ(hh) 
=	  n . (25)

2 (Γ1 + Γ2) ks Γ1Γ2k2s + Ri sin2 ξ 

Similarly we have   n1 
ū1

2 + ū2
2 = |u1|2 + |u2|2 dω 

2π

(f1f1) + (f2f2
) 

= 
2Γ1ks 

Ri2 cos 2 ξ sin2 ξ (2Γ1 + Γ2) ks(f3f3) 
+	  n  n 

2Γ1 (Γ1 + Γ2) k2s Ri sin2 ξ + Γ1Γ2k2s 2 (Γ1 + Γ2) Γ1k2s + Ri sin2 ξ 

Ri2 cos 2 ξ sin2 ξ(hh)
+  n .	 (26)

(Γ1 + Γ2) ks Γ1Γ2k2s + Ri sin2 ξ 

Since Eq. (13) implies 
(f1f1) = (f2f2) = (f3f3) = (ff),	 (27) 

we see from Eqs. [(25), (26)], that A = 1 if Ri = 0. 
Having written out the general structure of the time averaged kinetic energies in the vertical and horizontal 

directions, we will drop the forcing in the temperature dynamics to compare with the numerical work where a 
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forcing was used only in the velocity dynamics. To calculate the anisotropy factor explicitly, we need to do an 
integration over the wave-vectors in the horizontal direction and a sum over the discrete wavenumbers in the 
vertical direction. 

The first correction to the isotropic limit (i.e., Ri = 0) is linear in Ri :   
2 2 

2 (ff) k1 + k2 22 ¯ = 1 − Ri + O(Ri ) (28)u3 
Γ1ks k2+2sΓ1 (Γ1 + Γ2) 

2 2 (ff)  2  ū1 + ū2 = 1 + O(Ri ) . (29)
Γ1ks

Here we employ sin2 ξ = (k1
2 + k2

2)/k2 . The anisotropy factor works out following an integration over the 
wavenumbers (with (ff) = F0/k

D , where F0 is constant). In B, we have calculated 

A = 1 + 0.067X + 0.016X2 , (30) 

where 
X = 

Ri 
. (31)

Γ1Γ2π4/3 

Numerical Simulation 

To verify our approximate analytic results, we performed numerical simulations of stably stratified turbulence in 
both square and cubical geometries. We solve Eqs. (7)-(9) using a pseudo-spectral code Tarang [8] with h ' = 0. 
We employ periodic boundary conditions on all sides of the box for both the velocity field v and the thermal 
fluctuations δT . We employ a fourth-order Runge–Kutta method for time stepping, the Courant–Friedrichs– 
Lewy condition to determine the time step Δt, and 2/3 rule for dealiasing. For the two-dimensional (D = 2) 
simulation, the dimension of the square box is (2π)2, while for the three-dimensional (D = 3) simulation, the 
size of the cubical box is (2π)3 . 

For the numerical simulation, we turn off the fluctuating force h ', and in order to obtain a steady stably-
stratified turbulent flow, we apply a random force f(k) in the wavenumber band 2 ≤ k ≤ 4 to the velocity field 
using the following scheme: ⎛ ⎞ ⎛ ⎞ 

sin φ cos ϑ cos φ 
f(k) = Λ1 ⎝ − cos φ ⎠ + Λ2 ⎝ cos ϑ sin φ ⎠ , 

0 − sin ϑ 

where ϑ and φ are usual polar and azimuthal angles, respectively. Λ1 and Λ2 are the product of random phase 
and the forcing amplitude A given by following formula: 

Λ1 = A exp(iΦ1) cos Φ3, (32) 

Λ2 = A exp(iΦ2) sin Φ3, (33) 

and  
A =

2ε
. (34) 

nf Δt 

Here Φj ’s (j = 1, 2, 3) follow uniform distribution in [0, 2π] with zero mean, ε is the constant energy supply 
rate to the system, and nf is the total number of modes inside the forcing wavenumber band. 

We nondimensionalize Eqs. (7)-(9) such that the Rayleigh number Ra, the Prandtl number Pr, and the total 
energy supply rate ε of the external forcing are the control parameters. The Rayleigh number Ra is the ratio of 
the buoyancy and the viscous force, defined as 

αgΔTd3 

Ra = , (35)
νλ 

√ 
and the Prandtl number Pr = ν/λ. Note that the Richardson number Ri, the Froude number Fr ≈ 1/ Ri [28], 
and the Reynolds number Re are the response parameters. We fix Pr = 1, and vary ε and Ra to obtain adequate 
Richardson number. Note that, the Rayleigh number controls the buoyancy force, while ε regulates the external 
forcing. For further details of the numerical simulation, we refer Kumar et al. [17,18] and Verma et al. [30]. We 
list all our parameters for the D = 3 and D = 2 simulations in Table 1 and Table 2 respectively. 

In Fig. 1(a, b), we plot A − 1 versus Ri for D = 3 and D = 2 respectively. We observe that 

A − 1 ∝ Ri, (36) 

consistent with Eq. (30) up to first order. We compute the slope of the curves for D = 2 and D = 3 using 
linear regression and observe that the best fits yields slope 0.09 ± 0.05 for D = 3, and 0.4 ± 0.1 for D = 
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Table 1: Parameters of our direct numerical simulations (DNS) for three-dimensional stably stratified turbu­
lence: Richardson number Ri; grid resolution; Rayleigh number Ra; energy supply rate ε; anisotropy ratio 

2 2 2 2 2A = (u )/(2(un)) = (u1 + u )/(2(u )); Reynolds number Re; Froude number Fr; the kinetic energy dissi­⊥ 2 3

pation rate E, the potential energy dissipation rate Eχ; and kmaxη, where kmax is the maximum wavenumber and η 
is the Kolmogorov length. For all our runs the Prandtl number Pr = 1. 

Ri Grid Ra ε A Re Fr E Eχ kmaxη 

2.7 5123 106 0.1 1.3 1.4 × 103 0.6 0.02 0.02 2.0 
0.5 5123 105 5 1.2 467 1.4 0.47 60.7 4.2 
0.01 10243 5 × 103 103 1.0 649 10 114 150 6.4 

Table 2: Parameters of our direct numerical simulations (DNS) for two-dimensional stably stratified turbulence 
(D = 2): Richardson number Ri; grid resolution; Rayleigh number Ra; energy supply rate ε; anisotropy ratio 

2 2 2 2A = (u⊥)/(un) = (u1)/(u3); Reynolds number Re; Froude number Fr; the kinetic energy dissipation rate E, the 
potential energy dissipation rate Eχ; and kmaxη. For all our runs the Prandtl number Pr = 1. 

Ri Grid Ra ε A Re Fr E Eχ kmaxη 

0.5 20482 108 0.6 1.1 1.5 × 104 1.5 1.3 × 10−2 0.3 3.0 
0.8 20482 108 0.3 1.4 1.1 × 104 1.1 9.2 × 10−3 7.7 × 10−2 3.3 
1.9 20482 108 0.1 1.6 7.3 × 103 0.73 5.3 × 10−3 2.7 × 10−2 3.8 
3.0 20482 108 0.05 1.7 5.8 × 103 0.6 3.2 × 10−3 1.2 × 10−2 4.3 
4.9 5122 108 0.01 4.2 4.5 × 103 0.45 1.2 × 10−3 2.9 × 10−3 1.4 
7.3 81922 1010 0.01 3.4 3.7 × 104 0.37 4.9 × 10−4 2.8 × 10−3 4.9 

0 1 2 3
Ri

−0.2

0.0

0.2

0.4

0.6

A
−

1

(a)D = 3

A− 1 = (0.09± 0.05)Ri + (0.07± 0.09)

0 2 4 6 8
Ri

0

2

4

6

A
−

1

(b)D = 2

A− 1 = (0.4± 0.1)Ri + (−0.03± 0.48)

Figure 1: Plot of A − 1 versus the Richardson number Ri for: (a) three-dimensional (D = 3) stably stratified 
2 2 2turbulence and (b) two-dimensional (D = 2) stably stratified turbulence. Here A = (u1 + u )/(2(u )) in 3D, and 2 3

2 2A = (u )/(u ) in 2D. 1 3

6 
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2 with significant error-bar. Yet, we can argue that our computational estimate is in general agreement with 
the theoretical prediction. The difference could be attributed to various assumptions made in our theoretical 
formulation. It is important to remark that we cannot compare the computational and analytical A’s explicitly 
due to uncertainties in Γ1 and σt. 

Note that for D = 3, we have only performed three sets of simulations because the three-dimensional 
computations are very expensive. For D = 2, we observe a near saturation for A − 1 for the Richardson 
number above 10, as shown in Fig. 1. As discussed by Kumar et al. [18], the two-dimensional stably stratified 
turbulence above Ri > 10 corresponds to the strongly stratified regime and yields vertically sheared horizontal 
flow (VSHF). 

Conclusions 

We investigated the anisotropy of turbulence in a stably stratified fluid in a regime where the energy spectrum 
is still Kolmogorov-like. Although the Kolmogorov −5/3 law is associated with homogeneous isotropic turbu­
lence, it does not imply that the turbulence in the stratified fluid is isotropic. It simply means that if the horizontal 
components of the velocity are v1 and v2, and the vertical component is v3, then the energy spectrum E⊥(k)e e e

2 2 2 2corresponding to v⊥dr = (v1 +v2 )dr scales as k−5/3 and the spectrum E1(k) corresponding to v3 dr also 
scales as k−5/3 but the coefficients of E⊥(k) and 2E1(k) are different. This is what is seen by our calculation e 

2 
e 

2of A = ( v⊥dr)/(2 v1dr). Theoretical computations using equivalent linearization technique reveals that 
A − 1 increases linearly with the Richardson number. This is a calculational technique that can be effectively 
employed in other areas of fluid dynamics and plasma physics, where additionally frictional forces proportional 
to velocity may be present [19, 20, 23]. 

We also employ numerical simulations to verify the aforementioned predictions. It is not possible to compare 
the computational and analytical A’s explicitly due to uncertainties in Γ1 and σt. We observed linear dependence 
of A − 1 with Ri for two-dimensional and three-dimensional direct numerical simulations in the low Richardson 
number limit. 

As the Richardson number is increased, the anisotropy increases very strongly in the equivalent linearization 
technique due to the increase in the energy content in the horizontal plane. This is quantitatively correct, but the 
full nonlinear model shows a saturation at a much lower Richardson number. In this regime, the flow becomes 
almost two dimensional. A similar phenomenon happens in two dimensions, where A − 1 increases linearly 
with the Richardson number initially for weak to moderate stratification. As Richardson number increases, the 
full model shows quite complex behaviour, which, unfortunately, is not captured in the equivalent linearization 
approximation. 
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A Scale invariance of the equations of motion and the form of the 
effective viscosity 

In this appendix we discuss the conditions under which the equations of motion (Eqs. (10)-(12)) will be scale 
invariant. We start with Eq. (10) under the constraint of Eq. (11) and with Ri = 0—the usual Navier–Stokes 

'equation. We scale all distances by l, time by ls, and the external random force by lβ . Thus we have r = lr , 
l1−sτ = lsτ ', u = u', and f = lβ f '. Using these relations in Eq. (10), in terms of the primed variables, 

Navier–Stokes equation reads (note that the dimensions of the nonlinear term and the pressure gradient term are 
identical because of the solenoidal constraint of Eq. (11))   '

1−2s ∂u ' V'δp' ' −1−sV'2 ' β 'l + (u' · V')u + = ν l u + l f . (37)
∂τ ' ρ0

To ensure that we have scale invariance, i.e., the above equation in primed variables look exactly like the original 
Navier–Stokes equation we need 

' 2−sν ∝ l and β = 1 − 2s. (38) 
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The above equation implies that the viscosity acquires scale (wave-vector) dependence (Heisenberg’s eddy vis­
cosity) and that the correlator F (k) of the random force (see Eq. (13)) will have a special form. From Eq. (13), 
we see that the scaling dimension of F (k) is given by l2β lD+s, which on using Eq. (38) becomes lD+2−3s and 
hence 

−(D+2−3s)F (k) ∝ k .	 (39) 

It remains to find the value of ‘s’. This is done by requiring that the energy transfer rate is scale independent. 
In the steady state, the rate at which energy is pumped into the system by the stirring force at large length scales 
equals the rate at which it is transferred to lower scales and finally equal to the rate at which it is dissipated at the 
smallest scales. This rate E is equal to the rate at which the space averaged kinetic average changes and is given 
by  

2E =
1 d

u (r, τ)dr.	 (40)
V dτ

The scale dependence of the right hand side of the above equation is l2−3s and since Kolmogorov requires this 
rate to be dimensionless, we see that 

s = 2/3.	 (41) 

This tells us that the scale dependent viscosity increases with scale as l4/3 and the energy spectrum E(k) defined 
by (in a D-dimensional space) 

E(k) = (u(k) · u(k'))δ(k + k')/CD k
D−1 ,	 (42) 

where CD = 2πD/2/Γ(D/2) is the surface area of the D-dimensional unit sphere, and Γ(x) is the gamma 
function [1]. Using the above results for the scaling dimensions, that of E(k) is easily seen to be 

E(k) ∝ l3−2s .	 (43) 

Using the value of ‘s’ from Eq. (41), we get the Kolmogorov result E(k) ∝ k−5/3. Turning to Eq. (41) now, we 
see that for s = 2/3 the random force correlator F (k) scales as k−D . This particular variety of stirring force has 
been used in all analytical results for the Kolmogorov spectrum starting from a randomly forced Naiver–Stokes 
equation. What the above analysis demonstrates that it is a requirement of the scale invariance of the equation of 
motion. 

We now include the buoyancy term in the equation of motion which is to say that we work with the full 
Eq. (10). Consequently we have an additional field θ(r, τ ), the temperature fluctuation, and an additional pa­
rameter which is the Richardson number Ri. The scaling dimension of this field is taken to be lγ and the scaling 
dimension of Ri to be lη . Performing these scalings in addition to the scalings carried out in arriving at Eq. (37), 
we get  	  '

1−2s ∂u ' V'δp' γ+η ' ' −1−sV'2 ' β 'l + (u' · V')u + = Ril θ + ν l u + l f . (44)
∂τ '	 ρ0

For scale invariance, we now need in addition to the conditions of Eq. (38), 

γ + η = 1 − 2s,	 (45) 

which reflects the equal status of inertial and buoyancy forces. The real difference comes in the discussion of the 
fluxes. For the kinetic energy flux, as before, the scale factor is l2−3s while for the thermal flux which is the time 
derivative of the thermal energy G (see Eq. (3)), the scale factor is l2γ−s. We now have three possibilities: 

1. Both kinetic energy and thermal fluxes are scale invariant. 

2. Only the thermal flux is scale invariant. 

3. Only the kinetic energy is scale invariant. This occurs at such short length scales as to be unphysical. 

We will now discuss the first two cases separately. 

•	 Case i): Both kinetic energy and thermal fluxes are scale invariant leading to s = 2/3 and γ = s/2 = 1/3. 
This leads as before to the energy spectrum E(k) ∝ k−5/3 and is the Kolmogorov regime. In this case 
the exponent η is seen to be −2/3 and that implies that the Richardson number is going to be irrelevant 
(scales down to zero) as should be for a Kolmogorov like situation. 

•	 Case ii): In this case only the thermal flux is scale invariant which leads to s = 2γ. The Richardson 
number is expected to behave as a dimensionless number and we set η = 0. From Eq. (45), we now 
get γ = 1/5 leading to s = 2/5. The kinetic energy flux now falls off as k−4/5 . From Eq. (45), the 
scaling dimension of the kinetic energy is now 11/5 and hence one has the Bolgiano–Obukhov scaling 
of E(k) ∝ k−11/5 . It should be noted that in this Bolgiano–Obukhov regime, the scale invariance of 
Eq. (12) leads to a scale dependence of the thermal diffusivity in the same fashion as “eddy” viscosity 
and the external driving current h(r, τ ) has the same scaling dimension as the external driving in the 
velocity equation. The relevance of the z-component of the velocity in this equation is the indicator of the 
anisotropy associated with the convective fixed point. 
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To conclude this appendix, we show how the effective viscosity arises from the nonlinear term in Navier– 
Stokes equation and lays the basis of Eq. (19). Without the external force f in Eq. (10), which is not necessary for 
the discussion here, we write the Navier–Stokes equation in momentum space as (defining the Fourier transform:  
ψ(k) of a function ψ(r) as ψ(k) = V −1/2 dre ik·rψ(r) where V is the volume in which ψ(r) is defined)  √∂ui(k) 2 = −νk ui(k) − V Mijl(k) dpuj (p)ui(k − p), (46)

∂t 

where 

Mijl = kiPjl(k) + kj Pil(k) (47) 
kαkβ

Pαβ (k) = δαβ − (48)
k2 

At the scale k, the energy is E(k) = (ui(k)ui(−k)), where the angular bracket indicates the averaging required  
for a turbulent flow and the total energy E = E(k)4πk2dk. The rate of change of energy as scale k is obtained 
from Eq. (10) as    √∂E(k) 

= −νk2E(k) − V Mijl dpui(−k)uj (p)ul(k − p) . (49)
∂t 

The energy transfer rate across a given wavenumber κ is κ ∂E(k) 2 (κ) = 4πk dk (50)
∂t 0 

and is found from Eq. (55) to be  κ ∂E(k)
 (κ) = −ν 4πk4dk − T (κ), (51)

∂t 0 

where     √ κ 

T (κ) = V dkMijl(k)ui(−k) dpui(−k)uj (p)ul(k − p) (52) 
0 

is the energy transfer across the wavenumber κ by the nonlinear term. Making this transfer term look similar to 
the first term on the right hand side requires us to cast T (κ) in the form  κ 

T (κ) − νef f (κ) E(k)4πk4dk (53) 
0 

If we look at the RHS of Eq. (57) then two factors of velocity, dp, and a factor of k2 from dk constitute κdimensionally the part
0 E(k)4πk4dk. The remaining factors, a factor of k from Mijl, another from dk,√ 

k−3/2 k−3/2from V and k−1/3 from ν(k) give the dimensions of νef f (κ). Since s = 2/3, we have after 
converting this coordinate scale to wavenumber space and hence νef f (κ) ∝ κ−4/3 . An identical argument 
shows that the effective heat diffusion coefficient has a similar κ−4/3 dependence. 

B A calculation of the anisotropy 

In this appendix, we provide the details behind the result quoted in Eq. (30). We begin by dropping the external 
random “heat current” h(r, τ) in Eqs. (25) and (26) since we want to compare with simulations that have been 
carried out with only the random forcing present in the velocity equation. Our starting point then becomes   

Γ2 (Γ1 + Γ2) k2s + Ri sin2 ξ )2 (f3f3
ū3 =   , (54)

2 (Γ1 + Γ2) ks Γ1Γ2k2s + Ri sin2 ξ

(f1f1) + (f2f2) 
ū1

2 + ū2
2 = + 

2Γ1ks 

Ri2 cos 2 ξ sin2 ξ (2Γ1 + Γ2) ks(f3f3)    . (55)
2Γ1 (Γ1 + Γ2) k2s Ri sin2 ξ + Γ1Γ2k2s 2 (Γ1 + Γ2) Γ1k2s + Ri sin2 ξ

Note that k2 = k1
2 + k2

2 + k3
2 in three dimensions (D = 3). The third direction is along gravity and k3 is 

2 2π2discrete—the allowed values in units of ‘d’ are nπ. In general we will write k2 = p + n where p is the 
wave-vector in the horizontal D-1 dimensional space. 

We see from Eq. (13) that (fifi) is the same for all ‘i’ and will be denoted by (ff). For Ri = 0 and for all k, 

2 (ff) ū1
2 + ū2

2 

ū3 = = , (56)
2Γ1ks 2 
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and hence A = 1 as expected. Expanding the right hand side of Eq. (54) in powers of Ri   
Ri sin2 ξ 

2 (ff) 1 + 
Γ2 (Γ1+Γ2)k2s

u3  
Γ1ks Ri sin2 ξ 

2 ¯ =  
1 + 

Γ1Γ2k2s

(ff) 
= 

Γ1ks       
Ri sin2 ξ Γ2 Ri2 sin4 ξ Γ2 3× 1 − + + O(Ri ) . (57)
Γ1Γ2k2s Γ1 + Γ2 Γ1

2Γ2
2k4s Γ1 + Γ2

Similarly for the transverse components we have   
2 2 (ff) Ri2 cos 2 ξ sin2 ξ(2Γ1 + Γ2) 3ū1 + ū2 = 1 + + O(Ri ) . (58)

Γ1ks 4Γ2
1Γ2k4s(Γ1 + Γ2)2 

To evaluate the global anisotropy factor, the velocity fields have to be integrated over all space. For a D­ 
2dDdimensional space what is needed is ū r. By Parseval’s theorem this integral can be written as  ∞  

dD  dD−1k p2 D 2 2 ū (r)d r = ū (k) = ū(n, p) . (59)
(2π)D (2π)D−1 

n=1

The scaling requirement that F (k) ∝ k−D means (ff) = F0k
−D , where F0 is a constant, now leads to    

2 D F0 Ri Γ2 Ri2 Γ2 32 ū3(r)d r = I1 − I2 + I3 + O(Ri ) . (60)
Γ1 Γ1Γ2 Γ1 + Γ2 Γ2

1Γ
2
2 Γ1 + Γ2 

The integrals I1, I2, and I3 are defined as follows: 

∞   dD−1 p 1 
I1 = D+s(2π)D−1 2 + n2π2) 2 n=1 (p

∞   dD−11 p 1 
= D+s , (61)

(nπ)1+s (2π)D−1 
n=1 (1 + p2) 2 

∞   dD−1 p sin2 ξ 
I2 = D+3s 

n=1
(2π)D−1 

(p2 + n2π2) 2 

∞  2 dD−11 p p 
= , (62)

(nπ)1+3s D+2+3s(2π)D−1 
2 n=1 (1 + p2) 

∞  4 dD−11 p p
I3 = . (63)

(nπ)1+5s D+4+5s(2π)D−1 
n=1 (1 + p2) 2 

In evaluating the integrals, we note that each of them carry the factor 

π(D−1)/2 ¥ 
D−1 

f , (64)
2Γ 

2 (2π)D−1 

which we will denote by C. We find ¥ f ¥ f 
1+s D−1

ζ(1 + s) Γ 
2 Γ 

2I1 = C ¥ f , (65)
π1+s D+sΓ ¥ 2f ¥ f 

1+3s D+1
ζ(1 + 3s) Γ 

2 Γ 
2I2 = C ¥ f , (66)

π1+3s D+3s+2Γ ¥ f 2 ¥ f 
1+5s D+3

ζ(1 + 5s) Γ 
2 Γ 

2I3 = C ¥ f . (67)
π1+5s D+5s+4Γ 

2 

In the above ζ(x) is the usual Riemann zeta function. As for the horizontal component, as seen from Eq. (58), 
( ¯ 2 + u2

2)dD ru1 ¯  
F0 Ri2Γ2(2Γ1 + Γ2) 

= I1 + I4 . (68)
Γ1 4Γ1

2Γ2
2(Γ1 + Γ2)2 
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The integral I4 is seen to be 

∞ � ∞� D−1 2 p sin2 ξ cos ξ 
= C	 dpI4 D+5s 

n=1 (p0 2 + n2π2) 2 ¥ f ¥ f 
D+1 3+5s

ζ(1 + 5s) Γ 
2 Γ 

2 =	 C ¥ f . (69)
π1+5s D+4+5sΓ 

2 

We define X = Ri/Γ1Γ2π
2s and in terms of this parameter, the anisotropy is found to be 

π4s Γ2(2Γ1+Γ2) I41 + X2 + O(X3)
4(Γ1+Γ2)2 I1A	 = 

Γ2	 I2 Γ2 I31 − Xπ2s + X2π4s + O(X3)
Γ1+Γ2 I1 Γ1+Γ2 I1 

Γ2 I2π
2s 

=	 1 + X 
Γ1 + Γ2 I1  	   2

Γ2 I2
2π4s Γ2 I3π

4s Γ2(2Γ1 + Γ2) I4π4s 

+	 X2 − + 
Γ1 + Γ2 I1

2 Γ1 + Γ2 I1 (Γ1 + Γ2)2 I1

+	 O(X3), (70) 

with ¥ f ¥ f ¥ f 
D+1 D+s 1+3s

I2π
2s ζ(1 + 3s) Γ 

2 Γ 
2 Γ 

2 = ¥ f ¥ f ¥ f ,	 (71)
D−1 D+2+3s 1+sI1 ζ(1 + s) Γ Γ Γ
2 2 2¥ f ¥ f ¥ f 
D+3 D+s 1+5s 
2 2 2I3π

4s ζ(1 + 5s) Γ Γ Γ 
= ¥ f ¥ f ¥ f ,	 (72)

D−1 D+4+5s 1+sI1 ζ(1 + s) Γ Γ Γ
2 2 2¥ f ¥ f ¥ f 
D+1 D+s 3+5s

I4π
4s ζ(1 + 5s) Γ 

2 Γ 
2 Γ 

2 = ¥ f ¥ f ¥ f .	 (73)
D−1 D+4+5s 1+sI1 ζ(1 + s) Γ Γ Γ
2 2 2 

In D = 3, we get 

I2 2ζ(1 + 3s)
π2s = ,	 (74)

I1 3(1 + 3s)ζ(1 + s) 

I3 8ζ(1 + 5s)
π4s =	 , (75)

I1 5(3 + 5s)(1 + 5s)ζ(1 + s) 

I4 2ζ(1 + 5s)
π4s = .	 (76)

I1 5(3 + 5s)ζ(1 + s) 

We will now calculate the anisotropy using Eq. (69) in D = 3. The isotropic situation in D = 3 (i.e., the 
∼Kolmogorov limit) corresponds to s = 2/3. In the turbulent state Γ1 = Γ2 and we get  	   	  2

π4/3I2 2 8/3 3I4 1 I2 I3
A = 1 + X + X π + − .	 (77)

2I1 4I1 4 I1 2I1

Numerical tables provide ζ(5/3) ∼ = 1.20, and ζ(13/3) ∼= 2, ζ(3) ∼ = 1.07. Thus the coefficient of X in Eq. (77) 
is 0.067 and the coefficient of X2 works out to be 0.016. We find the anisotropy in three dimensions to be given 
by 

A = 1 + 0.067X + 0.016X2 + O(X3),	 (78) 

where X = Ri/Γ1Γ2π
4/3. The relaxation rates will be largest at the smallest wavenumber and for the geometry 

considered the smallest wavenumber has the magnitude π in units of 1/d. The denominator of X is the product 
of the largest viscous and thermal relaxation rates and can be of O(1) but certainly less than unity since the bare 
values are much smaller than unity. 
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