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Abstract 

In the present work, a numerical analysis on the performance of a seven-stage metal hydride 

hydrogen compression (MHHC) system is introduced, presented and discussed. The operation 

efficiency and cost along with the reliability of hydrogen compression is of great importance 

for the future commercial availability of Hydrogen Refuelling Stations (HRS); thus, significant 

improvements in hydrogen compression must be achieved and novel methods and approaches 

are being investigated in that respect. MHHC’s offer distinct advantages over conventional 

mechanical compressors and the present paper aims at contributing to the efficient design and 

upscaling of such devices via advanced numerical simulations of a seven-stage MHHC. The 

numerical model was supported by and validated with solid experimental data. Furthermore, 

several different operational temperature ranges for the compressor were examined and the 

importance of the proper operation conditions is discussed in terms of temperature evolution, 

pressure profile, cycle duration, compression ratio, thermal energy demand and efficiency.  

Keywords: Metal hydride hydrogen compressor; Multi-stage compression; Hydrogen storage, Metal Hydrides, 

Numerical Analysis; 
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1. Introduction 

Over the past 5 years, there has been a significant reduction in the price of Fuel Cell Electric 

Vehicles (FCEVs) from more than $ 100,000 to almost half ($ 55,000) [1]. In addition, all the 

major Original Equipment Manufacturers (OEMs), such as Toyota, Hyundai, Daimler, 

Vauxhall and Nissan have plans to reduce the cost and increase the efficiency in order to fully 

commercialise the FCEVs by 2025 [2]. More specifically, Toyota aims to improve the driving 

range of the next Mirai to 700-750 km (435-466 miles) from the current range of 500 km (310 

miles) and hit the target of 1000 km (620 miles) by 2025 [2]. The main obstacle for the full 

implementation of the FCEVs in the market is the lack of hydrogen refuelling infrastructure [3, 

4]. It is believed that the development of hydrogen infrastructure should go in parallel with the 

efforts to commercialise and reduce the price of the FCEVs [5]. Today, there are more than 

320 Hydrogen Refuelling Stations (HRSs) in operation with more than 2/3 to be publicly 

accessible [6]. A HRS typically requires the following components: Hydrogen production and 

purification, hydrogen compressor, hydrogen storage, safety and hydrogen dispenser [7]. The 

main hydrogen compression component used within the HRSs is the conventional mechanical 

compressors, such as diaphragm and/or reciprocating compressors [8]. It has been reported that 

from a techno-economic point of view, up to 40% of the total cost of a HRS arises from the 

compression system [9-10]. The concept of the utilisation of metal hydrides, which can store 

and release hydrogen via chemisorption under a heat-driven reaction, connected in series to 

compress hydrogen is not new. It has been introduced in the 1980’s [11-13]. The technology 

of metal hydride hydrogen compression (MHHC) offers a dynamic alternative to the 

conventional compressors, as well as to other competitive technologies such as electrochemical 

compression. The advantages of the MHHCs over the competitive technologies are the 

simplicity of operation, the absence of moving parts; hence minimise the cost for maintenance 

and technical support, silent operation, reliability and compactness [14-16]. In addition, out of 

the technical point of view, is important to note that the efficiency of the MHHCs can be 

drastically improved if solar energy and waste heat from industrial sources will utilised instead 

of electricity [17-20]. Despite the advantages of the MHHC’s over the mechanical 

compressors, there is still room for further development. In a recent review study, Lototskyy 

et al. [21] highlighted the necessity for the proper material selection to build a MHHC, either 

as a single stage device, or for multi-stage operation. Some of the most important requirements 

that those materials should fulfil are: The Pressure-composition-Temperature (P-c-T) 

properties between the compression stages to be tuneable to achieve the required compression 
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ratio under the proper temperature ranges, the reversible storage capacity should be as high as 

possible, to minimise the amount of the material needed with fast kinetics; thus the compressor 

will operate on a fast cycle pace. The hysteresis and plateau slope effects should be at low 

levels, whereas cyclic stability as well as tolerance to impurities are highly recommended. A 

more extensive analysis on the MHHC materials properties and characteristics is offered in the 

review article by Lottotskyy et al. [21]. During the last three decades, there has been a 

tremendous progress in the development of materials for solid-state hydrogen storage for both 

transportation and stationary applications. Regarding the materials for MHHC applications, 

special attention has been paid to four main categories of materials; The AB5-type 

intermetallics, the AB2-type intermetallics, the BCC solid solution alloys and the AB (TiFe)-

type intermetallics. The AB5-type intermetallics have been extensively studied, as they can 

store/release hydrogen under moderate temperature and pressure conditions [22]. The most 

common AB5-type intermetallic is LaNi5 which presents attractive thermodynamic properties 

and is easy to synthesise [23-25]. To change the thermodynamic stability of LaNi5 and make it 

more convenient for MHHC applications, substitutions can take place either on the A part or 

the B part. The A part can be substituted with Cerium, that will lower the stability and will 

increase the dissociation pressure [26, 27]. For industrial-scale manufacturing, the substitution 

of the A part with Mm (mischmetal) has been suggested [28, 29]. The Ni-part has been partially 

substituted with Co, Al, M or Sn to increase the stability and decrease the hydrogen pressures 

[30-32]. However, those modifications affect the plateau slope and hysteresis, but on the other 

hand have also found to be beneficial for the life cycle and the degradation of the materials 

with cycling [33-35]. The AB2-based intermetallics are eligible to cover a wider range of 

operational pressures; some researchers are calling these intermetallics as ‘high pressure’ 

materials. The alloys of technological importance crystallize as either hexagonal C14 (MgZn2) 

and C32 (MgNi2) or cubic, C15 (MgCu2) Laves phases, and in a number of cases are allotropic 

[36]. In general, those alloys can store a relatively large amount of hydrogen (up to 2wt%), 

such as ZrV2H6 and ZrCr2H4. However, the formed hydrides are too stable for practical 

applications [37]. An effective solution is the partial substitution of the A (Zr with Ti) part 

and/or B part (mainly Ni, Mn, Cr, V, Fe) to destabilise the hydride [26]. For the operation at 

higher hydrogen pressures, in order those materials to be applicable for MHHC purposes, the 

Ti/Zr ratio on the A-part and the Fe content at the B-part [21, 38, 39]. Another type of 

intermetallics that have the potential to be used as materials for MHHC purposes are the AB-

type TiFe based intermetallics. Although, they present some drawbacks, such as the presence 

of two plateaus on the PcT isotherms, difficulties during the activation process and their 
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resistivity to impurities is limited [26, 40]. Finally, the V-based BCC solid solution alloys, are 

a type of materials suitable for MHHC applications [41, 42]. The Vanadium is able to form two 

hydrides VH1-x and VH2-x and the transition from the mono-to dihydride is able to store and 

release almost 1.8 wt% under ambient conditions [43]. By introducing a certain amount of Ti 

(≤17.5 at%) within the V-alloys can increase the plateau pressure [44, 45].  

The modern MHHCs are in general rather complex systems, which include and integrate metal 

hydride beds, pipping system and valves, as well as the heating/cooling systems [46]. In 

addition, for multi-stage MHHCs the number of the stages together with the nature and the 

properties of each stage material are defining the compression ratio, the efficiency and the 

installation/operational cost of the MHHC [47]. For the first stage of the compression, where 

the compressor is connected to the hydrogen production device, such as an electrolyser [48], 

usually a ‘conventional’ AB5-type intermetallic is used, such as LaNi5 [49], although several 

modifications can be done in the stoichiometry in both the A and B parts with Ce, Mm and Al 

[50], thus the plateau pressure will be increased and the modified intermetallics can be used for 

the upcoming stages (higher pressure stages) [51-56]. For the higher-pressure stages, the Laves 

Phase AB2-type intermetallics have been extensively used and studied, usually based on the 

Zr-Ti-Cr-Fe-V family [58-64].  

HYSTORE Technologies Ltd. has developed and demonstrated a six-stage MHHC [18]. The 

target behind the development of such a complex and potentially expensive system is that the 

MHHC was able to operate between the temperature range of 10oC (low temperature) and 80oC 

(high temperature), making the system suitable for operation under solar heating and cooling. 

The compressor showed stability during the operation with a compression ratio of 31.4. The 

compressor was tested also under various cooling temperatures, starting from 5oC up to 17oC 

and no negative effects on the compression performance were observed; indicating that a solar 

adsorption cooler can achieve the required cooling capacity. In general, HYSTORE aims for 

lower temperature levels than most of the literature reports, where the data reported from [65] 

and [66] are comparable. Table 1 presents some relative projects and outcomes reported in the 

literature the last 15 years. One of the future targets, is the extension of the MHHC to achieve 

an outlet pressure of more than 350-400 bar with the same heating and cooling temperatures. 

In summary, the experimentation with the 7-stage MHHC version (and the simulations 

described in the manuscript) were performed with a view to optimize the MHHC device and 
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eliminate at the end some of these stages (as it was actually done in the final prototype). Starting 

with 7 stages was decided based on the following: 

1) The MHC should operate at a relatively low temperature range (10-80 oC) 

2) More stages (seven) means, taking advantage of higher MH charging and discharging 

capacities and potentially, achieving higher compression flows. 

3) By studying experimentally and computationally the 7-stage MHHC, it is easier to optimize 

the efficiency of the MHHC by eliminating in the final design a few of the stages. 

Table 1. Reports and outcomes published in the literature form the last 15 years 

Report No. stages TL – TH (in oC) Pin – Pdel (in bar) 

Egenics [66] 6 25 – 85 1 - 206 

Lototskyy et al. [67] 2 25 – 180 7 - 200 

Popenciu et al. [68] 3 20 – 80 2 - 60 

Kim et al. [69] 1 20 – 90 7 - 40 

Li et al. [70] 2 25 – 150 40 – 740 

Wang et al. [71] 2 25 – 150 30 – 700 

Muthukumar et al. [72] 1 25 – 95 5 – 43 

Laurencelle et al. [73] 3 25 – 80 1 - 206 

Lototskyy et al. [74] 2 25 – 130 10 – 200 

Kelly and Girdwood [20] 1 25 – 130 140 - 410 

 

As already mentioned, the modern MHHCs are complex systems. In addition, the 

manufacturing of a large compression system needs to take into account the materials for the 

beds, the connections and the heat management of the reactors. Thus; the need for the 

development of numerical models and studies that will be able to describe the processes taking 

place during the compression is of great importance.  

The numerical description for the hydrogen uptake-release and at the same time the coupling 

between two reactors needs to consider several important parameters [75]. A detailed analysis 

on the heat and mass transfer phenomena inside the metal hydride beds is necessary to evaluate 

the temperature distribution during the reaction, hydrogen’s diffusion within the host lattice 

and the pressure evolution. In the literature, there are reliable procedures for the numerical 

description and modelling of the storage/release of hydrogen to/from the metal hydrides, based 
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on the coupled heat and mass transfer [76-82]. On the technical part, for the integration of the 

heat and mass transfer models for the numerical description of MHHCs, various empirical and 

semi-empirical approaches have been introduced [83, 84], based on experimental data. For the 

integration of a combined MHHC model with the detailed analysis of heat and mass transfer 

process within the hydrides, a hybrid model describing the free volume of the reactor has been 

suggested for a two-stage compression system [85], which has found to be able to simulate 

industrial scale compressors containing a large number of metal hydride beds operating 

asynchronously. The unsteady heat and mass transfer characteristics during the coupling 

between the metal hydride beds on a multi-scale MHHC have been utilised, where the heat, 

mass and momentum conservation equations have been solved simultaneously for the 

development of a three-stage MHHC [86]. In addition, the influence of the operating 

parameters, such as the temperature of the heat source and sink, the operational pressure range 

and cycle time in a single stage MHHC have also been studied and evaluated [87]. In some 

other cases, the implementation of various H2 equations of state in combination with realistic 

features in the hydrogen sorption properties were considered [88]. The study focused on 

evaluating the effect of the implementation of real/ideal gas models and the way that the 

equations of state can affect the P-c-T isotherms. In another study, a dynamic response during 

hydrogen discharge was introduced, where the factors that drive the hydrogen were taken into 

account; the pressure difference between the ‘free’ hydrogen and the atmosphere, as well as 

the actual desorption from the metal hydride [89]. In a previous work [90], the authors 

developed and presented a numerical approach to describe the operation of a three stage MHHC 

and made a conversation regarding the selection of the materials and the number of 

compression stages. When building and developing a MHHC, it is crucial to select the number 

of stages according to the application, the thermal and cost requirements and the customer 

needs. 

In the current work, a numerical analysis of a seven-stage compression system is introduced, 

analysed and presented. The main purpose of the current work is to investigate and evaluate 

the operational features and performance of a multiple-stage compressor that has been 

developed by HYSTORE [18]. As the development of an up-scaled MHHC is a complex 

process and very expensive, the current numerical study aims to understand and evaluate the 

performance of a seven-stage compressor in terms of compression ratio, cycle time, energy 

consumption and efficiency prior to the development of a final design for the MHHC. In 

addition, the amount of hydrogen compressed per cycle (which depends among others on the 
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amount of metal hydrides used in the various stages) is a parameter of interest. The numerical 

approach is based on the introduction of the unsteady heat and mass transfer conservation 

equations for the coupled reactors. At the same time, realistic parameters were extracted for all 

the materials, such as the plateau pressure and the hysteresis and incorporated within the model. 

In addition, as the hydrogen pressure during the compression reaches high levels, the 

compressibility has been taken into account in the model, to achieve more precise results. 

Another novelty of the current work is the introduction of an expression for the heat transfer 

coefficient, by utilizing the heat produced/consumed and the average temperature of the tank 

walls and the metal hydride. Finally, the thermal conductivity of the materials was calculated 

by incorporating the Zehner, Bauer and Schlunder method and considering the Knudsen effect.                                                                                                                                                                                                     

The numerical model was validated against solid experimental results. The seven-stage 

compression system is examined in terms of temperature, pressure and 

hydrogenation/dehydrogenation capacity during the operation of the compressor. Particularly, 

the temperature ranges at which the compression system operates is an important factor with 

dominant role for the application of the MHHC since it may allow efficient operation of the 

device based on readily available renewable heat (e.g. solar thermal or industrial waste heat). 

The target of HYSTORE is to operate the compressor between 10oC (low temperature) and 

80oC (high temperature). For the dehydrogenation, besides the target temperature (80oC), a 

sensitivity analysis has been made against higher temperatures (90-100-105-110 and 120oC), 

to compare the operation of the MHHC in terms of both cycle time and compression ratio as 

well as energy consumption and efficiency. 

2.  Model Formulation and Problem Definition 

2.1 Introduction to a seven-stage MHHC cycle 

A simplified seven-stage MHHC is presented in Fig. 1. In summary, a complete compression 

cycle takes place via the following steps: 

Step 1: Valve 1 (V1) opens and the low-pressure hydrogen supplier (electrolyser/hydrogen 

tank) is attached to the first stage tank. Hydrogen is stored during that step at a relatively low 

pressure. After the end of this process, Valve 1 closes and a sensible heating process begins. 

Step 2: A sensible heating of the first stage tank takes place at a predefined high temperature 

(TH) to increase the pressure inside the tank and prepare the system for the next step. The 

sensible heating takes place every time before the coupling process (step 3 below) between the 

tanks. 
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Step 3: Valve 2 opens between the first two hydride tanks. The temperature of the desorbing 

tank is high (TH) and the temperature of the absorbing stage is low (TL), thus, a coupling process 

between the two-stages occurs. The released hydrogen from the desorbing stage at a relatively 

high pressure is stored in the absorbing stage. This step is repeated for all seven tanks. 

Step 4: Valve 8 opens and the compressed hydrogen is released in the high-pressure storage 

tank, while reactor 1 is cooling down to be ready for the next compression cycle.   

 

 

 

Fig. 1. Simplistic schematic of a seven-stage metal hydride hydrogen compressor. 

 

Figure 2 illustrates the van’t Hoff diagram based on the properties obtained from the actual 

materials. The dashed lines correspond to the dehydrogenation process and the solid lines to 
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the hydrogenation process. After each storage process, a sensible heating of the tank occurs, to 

increase the equilibrium pressure; a necessary step to prepare the hydride for the upcoming 

dehydrogenation process at high pressure. 
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Fig. 2. van’t Hoff diagram based on the properties of the actual materials used in the study for the operation 

steps of a seven-stage metal hydride hydrogen compressor. 

 Furthermore, for a multi-stage compression system, the proper selection of the materials for 

each stage is a key factor that affects the effective and safe operation of the MHHC. The plateau 

(equilibrium) pressure for the hydrogenation of the first stage should be relatively low to allow 

the hydrogen storage from a low-pressure hydrogen supplier. One important aspect is that the 

equilibrium pressure for the dehydrogenation of every previous stage has to be higher that the 

hydrogenation plateau pressure of each next stage during the coupling, so that the late tank will 

be able to store hydrogen at high pressure.  
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2.2 Mathematical Model 

To simplify the problem of hydrogen storage into the interstitial sites of the metal lattice, which 

is a complex process containing chemical reactions, diffusion and heat transfer phenomena, it 

is essential to make some assumptions for the establishment of the numerical model. The 

following assumptions have been considered for the current numerical approach. 

a) Initially the temperature and pressure profiles are uniform inside the tanks. 

b) The specific heat of the hydrides is assumed to be constant during the compression 

cycle. 

c) The medium is in local thermal equilibrium which implies that there is no heat transfer 

between solid and gas phases 

d) Radiative heat transfer and viscous dissipation are negligible. 

2.2.1 Energy equation  

Assuming thermal equilibrium between the hydride powder and hydrogen gas, a single energy 

equation is solved instead of two separate equations for both solid and gas phases, as the 

temperature of the gas and the solid as regarded as equal throughout the metal hydride tank: 

                             
( ) ( )

( ) ( ( ))

e g g g

e g s

T
Cp Cp v T

t

k T m T Cp Cp

 


  +   


=   +   −  −

                                                                 (1) 

 Where m (kg/s/m3) represents the kinetic term. Usually, the last term on the right hand 

is referred as Heat Source term (W/m3). Eq (1) from the physical point of view, express the 

energy balance within porous media that contains a homogeneous mixture of species (hydrogen 

and the metal-hydride).  

The effective heat capacity is given by: 

                         ( ) ( ) ((1 ) )e g g s sCp Cp Cp     =   + −                                                                            (2) 

For the introduction of the effective thermal conductivity, the Zehner, Bauer and Schlunder 

method, which is a model to predict the thermal conductivity within packed beds was used 

[91]. In the current work, the data from [92] were fitted to the following equation: 
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2

2

1

0

1

C

eff
C

C p
k

p
C


=

+

                                                                                                         (3)         

Where, the C0, C1 and C2 are fitting coefficients [93]. 

2.2.2 Hydrogen and Solid (metal/hydride) Mass Balance 

The mass balance equation for hydrogen gas inside the tank is described from the continuity 

equation as follows: 

                                                      
( )

( )
g

g gdiv v m
t


 


 +  = −


                                                                              (4) 

While for the solid phase (metal/hydride) is given by the following: 

                                                 (1 − 𝜀) ∙
𝜕𝜌𝑠𝑜𝑙𝑖𝑑

𝜕𝑡
= 𝑚                                                                   (5) 

The density of hydrogen is updated from the following expression: 

                                                                    𝜌𝑔 =
𝑝∙𝑀𝑔

𝑍(𝑝,𝑇)∙𝑅∙𝑇
                                                                               (6) 

Where z(p,T) is the compressibility factor, that represents the deviation of a real gas from 

the ideal behavior. For the needs of the current study, the compressibility factor was 

interpolated from the values taken from [94]. 

2.2.3 Momentum balance 

The velocity of a gas passing through a porous medium can be expressed by Darcy’s law. 

Darcy’s law describes the flow of a fluid through a porous medium and by neglecting the 

gravitational effect, is a simple proportional relationship between the instantaneous flow rate 

through a porous medium with permeability K (m2) and the pressure drop over a given distance 

and is given by: 

                                                                        𝑣⃗ = −
𝑘

𝜇
∙ ∇𝑝                                                                                         (7) 

Where K (m2) is the permeability of the solid and μ (m2/s) is the dynamic viscosity of gas at the 

system working temperature. The pressure drop of gas, which is the driving force is the factor 

∇𝑝.  The solid permeability is given by the Kozeny–Carman’s equation 
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2 3

2180 (1 )

dp
K






=

 −
                                                                                             (8) 

Where dp is the mean particle diameter in the packed bed. 

2.2.4 Reaction Kinetics 

In the equations (1), (4) and (5), the m term represents the amount of hydrogen that is stored 

and released in the materials. The uptake and releasing rates in the current study are updated 

by the following expressions [95]:   

For the hydrogenation process:  

                                     exp[ ] ln[ ] ( )
ga

abs abs ss s

g eq

pE
m C

R T P
 =  −   −


                                                  (9) 

For the dehydrogenation process: 

                                exp[ ] ( )
eq gd

des des s

g eq

P pE
m C

R T P


−
=  −  


                                                                       (10) 

Where Ca [s-1]and Cd [s-1] are pro-exponential constants for absorption and desorption 

respectively, Ea [J/mol] and Ed [J/mol] are the absorption/desorption activation energy, ρss 

[kg/m3] is the saturation density for hydride, and ρo [kg/m3] is the initial metal hydride density. 

2.2.5 Equilibrium Pressure 

Initially, the reactors are in equilibrium with the hydrogen gas. The hydride equilibrium 

pressure is estimated by using van’t Hoff law [96]: 

0 0

max

1
ln [ ( ) tan( ( )) ]

2 2
eq s

g g

S X
P P

R T R X
  

  
= − +   −  


                                                           (11)          

Where σs and σ0 are factors referring to the plateau slope flatness and Y is the hysteresis of 

the isotherm for the materials.                                        

2.2.6 Coupled mass and energy balance 

The hydrogen content and pressure of the system during the coupling between the 

desorbing and the absorbing stage after opening the valve is important and crucial for the 

compressor operation that needs to be considered when trying to describe the compression 

cycle. When the valve between the two coupled reactors opens, the reactor 1 is in direct contact 
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with the interconnector, whereas the reactor 2 is also in direct contact with the interconnector; 

thus, the calculation of the hydrogen moles inside the interconnector with time is crucial, as it 

will play a dominant role during the coupling. The number of moles inside the interconnector 

between the two reactors is updated from the following equation: 

                                    t in des absn n n n= + −                                                                        (12) 

Where, nin is the initial moles of hydrogen of the interconnector, ndes are the hydrogen moles 

that are entering the interconnector from the desorbing reaction (positive sign) and nabs are the 

moles leaving the interconnector, as hydrogen is absorbed (negative sign). 

Then, the pressure of hydrogen inside the interconnector is updated by: 

                                                 
1 2

t g

t

n R T
p

V V

 
=

+
                                                                      (13) 

Where V1 (m3) and V2 (m3) are the volumes of the rector 1 and reactor 2 respectively and T 

(K) is the temperature of the gas inside the interconnector. Considering the pressure of 

hydrogen in the interconnector, we can use it as the driving force to drive hydrogen from the 

first stage to the second, therefore the kinetic equations for both hydrogenation and 

dehydrogenation process during the coupling are provided by the following equations. 

               exp( ) ln( ) ( )a t
abs abs ss s

g eq

E p
m C

R T P
 

−
=    −


                                                            (14) 

For hydrogenation and  

              exp( ) ( ) ( )
eq td

des des s

g eq

P pE
m C

R T P


−−
=   


                                                                  (15) 

For the dehydrogenation process. 

2. Methodology 

In the current numerical approach, the heat, mass and momentum conservation equations were 

solved simultaneously using a commercial Multiphysics package (COMSOL Multiphysics 

5.3). The proposed numerical model was validated against experimental data for the hydrogen 

storage capacity and the temperature distribution during the hydrogen storage 

(exothermic)/release (endothermic). The expansion of the packed beds during the 

hydrogenation can introduce additional stresses to the vessel walls; therefore, the hydride beds 
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are assumed to filled up to 50% with powder at the beginning of the hydrogenation. The 

expansion after the hydrogenation for all the materials was evaluated experimentally and was 

found to be between 28-33%. The seven different materials (one for each stage) were 

synthesized and tested to calculate the enthalpy and entropy change during the hydrogen 

uptake/release and to measure the hydrogen uptake/release capability. As mentioned earlier the 

main target is the operation of the MHHC between 10oC-80oC. Although, for comparison 

purposes and to get a clearer picture of the temperature effect during the compression, higher 

dehydrogenation temperatures were considered. The outcome of each simulation case was 

compared to that of the others in terms of compression ratio, compression cycle time, thermal 

energy needs and thermal efficiency per compression cycle. Table 2 summarizes the 

compression cases simulated in the current work. 

Table 2. Compression cases used in the current work 

Case Hydrogenation Temperature (oC) Dehydrogenation Temperature (oC) 

Case 1 10 80 

Case 2 10 90 

Case 3 10 100 

Case 4 10 105 

Case 5 10 110 

Case 6 10 120 

 

3.1 Material Selection 

Seven different materials have been synthesized and tested regarding their thermodynamic and 

hydrogen uptake/release properties by HYSTORE Technologies Ltd. At the first stage, an AB5-

intermetallic (Mm-based) was utilized, while for the remaining six stages, AB2-intermetallics 

(Zr-Ti-Mn-Co-Cr-Fe-V) were selected. All the above mentioned intermetallics were 

synthesized by arc-melting and characterized by means of XRD (BRUKER AXS D8-Advance 

Diffractometer) and SEM (Zeiss NEON 40 EsB Microscope), in order to identify the relevant 

microstructure while their P-c-T properties were measured by a commercial Sievert-type 

apparatus (Hidden Isochema), to estimate the thermodynamic properties needed for the 

numerical calculations. Table 3 presents the materials used for all the compression stages and 

some of their thermodynamic properties. 

Table 3. Materials used for each stage of the compressor and their thermodynamic properties 
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Material Type ΔΗ (abs)  

J/molH2 

ΔS (abs) 

J/molH2K 

ΔΗ (des) 

J/molH2 

ΔS (des) 

J/molH2K 

S1 AB5 25242 104.6 28195 106.8 

S2 AB2 21466 94.7 26133 107.1 

S3 AB2 20354 101.1 24823 108.7 

S4 AB2 19991 100.2 20252 100.8 

S5 AB2 18198 98.12 19856 101.4 

S6 AB2 16232 98.05 19125 101.5 

S7 AB2 14702 98.1 18916 106.2 

 

3.2 Geometry of the system 

The schematic of the metal hydride tanks used in the current study is shown in Fig. 3. The 

geometry of each tank is cylindrical, and each tank was filled up to 50%, to avoid any issues 

related to expansion of the metal hydride during the storage.  The target of the study was the 

compression of 0.425 kgH2 per compression cycle; thus, almost 31kg of the AB5-alloy was 

used for the first stage, while for the remaining stages, the amount of material was lower 

(almost 29.5 kg). The reason for that is the difference in the amount of hydrogen that the AB5-

alloy is able to store as compared to the AB2-alloys and the difference in density. For that 

reason, the cylinders have the following dimensions: The length of each reactor is L=12m and 

the heat management is achieved by the intermediate cylindrical shell, where the 

heating/cooling medium circulates.  The radius of the internal cylinder that the metal hydride 

is placed is R=21.4mm. The external stainless-steel wall (SS 316L) thickness is 2mm and the 

internal SS wall thickness is 8.75mm. Finally, the thickness of the cylindrical shell of the 

heating/cooling fluid is 3.85mm as presented in Fig. 3.  For computational reasons, as the 

number of the domain elements exceeded 15,000,000, in order to reduce the computational 

time, the length of the reactors was considered as L=6m. For simplicity, the porosity of all the 

materials was chosen as 0.5 (i.e. the void volume inside the material is taken to be 50%). At 

the centre of the tank, a hydrogen supply porous sintered filter is placed which delivers 

hydrogen during the hydrogenation process and removes the released hydrogen during the 

dehydrogenation process.  
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Fig. 3. Geometry of the reactors used in the current study. The reactors are of cylindrical shape with the 

length of each tube L=6m. The heating/cooling process is achieved by the intermediate cylindrical shell w 

here the medium is placed. 

3.3 Validation of the proposed numerical model  

Properties such as density and thermal conductivity of both the bulk materials and the 

powders were measured for all the samples of the metal hydride materials. Coarse samples of 

the alloys were crashed into fine powder via sensitive ball milling. The density was measured 

in a gas displacement pycnometry system (Micrometrics Accupycn1340). The thermal 

conductivities of the samples were measured using a TCI Thermal Conductivity Analyzer (C-

therm Technologies). Samples from the ball milled alloys were placed within a commercial 

Sievert-type apparatus (Hidden Isochema). Initially, the sample was degassed under high 

vacuum and the P-c-T isotherms were obtained at several temperatures (at least three) under 

the same ratio of the supply pressure to the equilibrium pressure, in order to plot the van’t Hoff 

diagram. From the van’t Hoff diagrams the reaction enthalpy and entropy changes were 

obtained. For the validation of the proposed numerical model, a comparison between 

experimental data with the results extracted from the numerical model has been considered. 

The experimental data were collected using a commercial Sievert-type apparatus (Hidden 

Isochema). An amount of 0.85g of the AB2-alloy that in the current study will be used for the 

second stage of the compression was used. A K-type thermocouple was placed inside the tank 

for the measurement and recording of the hydride’s temperature. Fig. 4 shows the temperature 

profile during the hydrogenation process (Figure 4a) and the hydrogenation profile (Figure 4b). 
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The straight lines represent the simulation results and the dots represent the experimental data. 

It is observed that the numerically predicted temperature and hydrogenation behavior are in 

very good agreement with the experimental results. 
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Fig. 4. Validation of the predicted temperature profile during the hydrogenation process with the actual 

temperature profile (Fig. 4a) and the hydrogen storage profile (Fig. 4b) 
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3. Results and Discussion 

4.1 Temperature profile of the complete seven-stage compression cycle 

In general, a multi-stage compression system based on the usage of metal hydrides utilizes 

several different materials with unique thermodynamic properties to increase the final 

compression ratio, while maximizing the hydrogenation rate from the supply pressure at each 

stage. The complete compression cycle for a seven-stage compressor consists of one 

independent hydrogenation process at the first stage with a subsequent sensible heating. The 

sensible heating is necessary for the increase of the equilibrium pressure for the upcoming 

dehydrogenation. Then, a coupling process (dehydrogenation-hydrogenation) takes place, 

where the hydrogen released from every previous stage is stored in the next stage. For the 

seven-stage compressor, there are six coupling processes, where after the end of every 

coupling, the sensible heating takes place. Finally, during the final dehydrogenation process, 

high pressure hydrogen is stored in a high-pressure storage tank. In the current work, several 

scenarios regarding the dehydrogenation temperature were investigated. The dehydrogenation 

temperatures studied were 80-90-100-105-110 and 120oC. The temperature evolution of all the 

different stages for the complete compression cycle when the dehydrogenation process is 

110oC is presented in Fig. 5.  
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Fig. 5. Bed average temperature profile for the complete seven-stage cycle with time when the 

dehydrogenation temperature is 110oC.  The seven sensible heating processes are illustrated for simplicity 

with the vertical dashed lines. 

 

During the first part of the hydrogenation, due to the exothermic nature of the reaction, a 

sudden increase of the hydride bed average temperature is observed. The temperature increase 

reaches a plateau (maximum) value and then gradually declines towards the temperature of the 

coolant. The temperature drop is not instantaneous, but a certain amount of time is necessary 

for the hydride to reach a lower temperature, as a result of the heat capacity of the reactors 

(tanks). This behavior can be explained thermodynamically and is due to the low thermal 

conductivity values that the hydride powders possess, which doesn’t allow the generated 

amount of heat to be transferred with a sufficiently fast rate from the hydride to the coolant. In 

addition, due to the considerably high values of hydrogen pressure during compression, for 

safety reasons, the thickness of the internal SS wall is large, making the heat removal/supply 

less efficient. After the proper amount of hydrogen has been stored, the tank is heated up to a 
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predefined temperature (in the case of Fig.5, 110oC), to increase the equilibrium pressure and 

to accelerate the coupling process between the adjacent stage reactors. The dehydrogenation 

process is an endothermic reaction; thus, an amount of thermal energy must be provided to the 

hydride. During the initial stage of the dehydrogenation, the necessary amount of heat has not 

yet been effectively transferred from the heating fluid to the material, especially towards the 

material core, due to the poor thermal conductivity, resulting in a sudden temperature drop, as 

the hydride allows the hydrogen release by ‘borrowing’ an amount of thermal energy from the 

hydride itself. After the necessary amount of thermal energy from the external heating fluid 

reaches the bulk hydride, the temperature gradually starts to increase. As seen in Fig. 5, the 

maximum temperature that each hydride reaches during the hydrogenation process and/or the 

minimum temperature during dehydrogenation, depends on several parameters, such as the 

thermal conductivity, the specific heat capacity, the initial pressure and the effective density. 

4.2 Pressure profile of the complete seven-stage compression system 

Initially, a low-pressure hydrogen supplier (such as a commercial electrolyser, 

hydrogen cylinder, etc.) is attached to the first stage. The initial supply pressure chosen for this 

study is 20 bar. The initial temperature of the hydride is 10oC; at that temperature the 

equilibrium pressure for the first stage hydride is 6.4 bar. When Valve 1 opens (Fig. 1) 

hydrogen flows from the hydrogen supplier to the first stage tank; the pressure difference is the 

driving force that allows hydrogen to be stored in the metal lattice. As expected, the hydrogen 

pressure during the hydrogen storage phase drops, as it is shown in Fig. 6 (First stage uptake).  

 

 

 

 

 

 

 

 

 



21 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

Coupling 6

Coupling 5

Coupling 4

Coupling 3

Coupling 2

600 700 800 900 1000 1100 1200 1300

24

26

28

30

32

34

36

38

40

42

44

46

48

50

B
e
d

 A
v
g

 P
re

s
s
u

re
 (

b
a
r)

Time (s)

 Dehydrogenation

 Hydrogenation

 

 

 Hydrogenation

 Dehydrogenation

B
e
d

 A
v
g

 P
re

s
s
u

re
 (

b
a
r)

Time (s)

First-stage 

uptake

Coupling 1

Final High-Pressure 

Release

 

Fig. 6. Bed Average Pressure profile during a complete seven-stage compression cycle for the 

dehydrogenation temperature 110oC. 

After the hydrogenation reaches an equilibrium, a sensible heating of the tank takes 

place. During the heating process, an increase in the bed’s pressure is expected as per van’t 

Hoff law. After the hydride temperature has reached the desirable value (in this case 110oC), 

the system is in the proper conditions for the first coupling process. The second stage tank, 

which is expected to store the released hydrogen from the previous stage is at a low initial 

temperature (10oC). At that point, Valve 2 between the two reactors opens and the released 

hydrogen from the first stage flows towards the second reactor. The pressure difference 

between the two tanks is the driving force for the hydrogen flow from the releasing tank to the 

hydrogen storing tank, where hydrogen is now stored at higher pressure. During the initial 

phase of this coupling process, the equilibrium pressure of the releasing tank decreases while 

the equilibrium pressure of the hydrogenated tank increases sharply due to the very fast 

temperature kinetics between the two tanks. At some point in time, this coupling process 
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reaches a maximum rate. Following this, the pressure of hydrogen inside both coupling reactors 

increases smoothly due to the presence of the driving potential. This process is depicted on the 

inset of Fig. 6. It has to be mentioned that for the operation of the current multi-stage 

compressor, during the coupling process the valve remains open between the tanks until the 

storing tank reaches 85-90% of its maximum storage capacity. The main reason for this 

decision, is that after the hydride stores around 85% of its maximum hydrogen capacity, the 

remaining amount of hydrogen is stored on a progressively slower rate, as the system reaches 

a plateau; thus, to keep the compressor operating, the valve between the reactors closes when 

the hydride reaches that plateau. The hydrogenation/dehydrogenation capacity for the complete 

compression cycle when the dehydrogenation temperature is 110oC is presented in Fig. 7.  
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Fig. 7. Bed Average hydrogenation/dehydrogenation capacity for the complete compression cycle 

when the dehydrogenation temperature is 110oC 
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The operation of the compressor has been studied under various dehydrogenation 

temperatures (80-90-100-105-110 and 120 oC) and the comparison of the pressure profiles for 

all these different dehydrogenation temperatures is presented in Fig. 8. 
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Fig. 8. Pressure profile for the complete compression cycle for all the different cases of 

dehydrogenation temperature (80-90-100-105-110 and 120 oC) 

As the dehydrogenation temperature increases, the duration of the coupling processes 

between the tanks becomes shorter and the pressure at the end of each successive coupling 

process reaches a higher value. The increase of the temperature directly affects the equilibrium 

pressure, as indicated by Eq. 11 and subsequently, the pressure difference between two adjacent 

tanks will increase. As this pressure difference is the driving force for the coupling process and 

the increase in the kinetics of the coupling depends on that difference, it is expected that the 

higher the pressure difference, the faster the coupling process. This situation is also described 

in the figure inset, where for the third coupling process, the pressure profile for all the different 
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temperature cases is compared. By increasing the dehydrogenation temperature from 80oC to 

120oC the pressure can be increased from 180 bar (at 80oC) to 365 bar at (120oC). The summary 

of all the different complete compression cases is presented in Table 4. 

Table 4. Summary for the compression cases for all the studied temperatures 

Case Initial Pressure (bar) Final Pressure 

(bar) 

Compression 

Ratio 

Time (s) 

Case 1 20 374 18.7 6625 

Case 2 20 483.2 24.16 5760 

Case 3 20 606.4 30.32 5090 

Case 4 20 682 34.06 4720 

Case 5 20 742 36.9 4530 

Case 6 20 830 41.5 3760 
 

For Case 1 (10-80oC), a compression ratio of 18.7 is achieved at the end of the 

compression process. The complete cycle lasts slightly less than two hours (6625 s). The 

compression ratio increases with the dehydrogenation temperature and the cycle time drops, as 

the kinetics of the coupling are faster. For the case of dehydrogenation temperature 100oC 

(Case 3), the time for a complete cycle is reduced by 40 min (1.41 h) while for the case of 

dehydrogenation temperature 120oC (Case 6) the cycle duration is slightly more than one hour. 

4.3 Thermal Energy Demand for the Complete Compression Cycle 

The calculations for the thermal energy demand were utilized to extract some useful 

information regarding the thermal energy needs for the compressor operation. A MHHC is 

mainly based on a thermally-driven operation, where amounts of thermal energy are necessary 

to heat and to cool the metal hydrides. For each dehydrogenation process, there are two types 

of thermal energy to be supplied to the compressor; the first is the necessary amount of energy 

to heat the compressor, including the tank material (in this case is SS 316L) and the hydride 

material. The second type of energy is related to the necessary amount of energy to release the 

stored hydrogen from the alloy. The same process is required for the hydrogenation process. 

An amount of thermal energy is required to cool the reactor and the alloy powder, whereas an 

amount of energy is required to maintain the exothermic hydrogen storage. The energy for the 

compressor heating/cooling requires sensible heat, that causes a temperature change ΔT, as 

well as latent heat, which will drive and maintain the dehydrogenation/hydrogenation reaction. 

Thus, the total amount of thermal energy is given from: 

                                                            t sens latQ Q Q= +                                                  (16) 
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Sensible heat is the thermal energy that has been exchanged between the thermodynamic 

system and its environment, that causes a temperature difference ΔΤ to the system. The sensible 

heating/cooling can be estimated by taking into account the mass of the system, the heat 

capacity and the temperature difference that is caused: 

                                                                     
1

( )
N

sens i i

i

Q m C
=

=                                                           (17) 

Eq (17) represents the case where the sensible heating/cooling applies to several components. 

The term mi (kg) represents the mass of each component, Ci (J/K) is heat capacity of the 

component and ΔΤ (K) is the temperature difference. In the current case, there are two 

components that the sensible heating applies; the stainless-steel walls of tanks (SS 316L) and 

the alloy powder. The mass of the powder is 31kg for stage 1 and 29.5 for the rest of the stages. 

Regarding the SS 316L tank walls, the part of the cylinder to be heated/cooled is the cylindrical 

shell with L=12m, Rint=21.4mm and Router=30.15mm. The volume of the cylindrical shell is 

calculated from the following equation (18) and is equal to 0.017m3 

                                                                2V r h r=                                                     (18) 

 Thus, the mass of the cylindrical shell to be heated/cooled is 136 kg. Based on these quantities, 

the total energy requirement in terms of sensible heating for the total compression cycle is 

presented on Table 5.  

Table 5. Sensible thermal energy requirements for all the studied cases 

Case Thermal Energy for SS 

316L Walls (MJ) 

Thermal Energy for 

Alloys Powder (MJ) 

Total Sensible Thermal 

Energy Requirement 

(MJ) 

    

1 63.31 8.45 71.76 

2 72.35 9.66 82.02 

3 81.41 10.87 92.27 

4 85.92 11.47 97.39 

5 90.44 12.08 102.52 

6 99.48 13.28 112.77 
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The latent heat that is necessary to remove/store hydrogen from the metal hydrides is equal to 

the heat of reaction as presented at Eq (1) and was calculated from the: 

                                                        
2lat HQ n=                                                                                     (19) 

Where, nH2 is the amount of hydrogen mole stored/released to/from the hydride. 

Table 6 presents the thermal energy required to drive the reactions. In addition, the sensible 

thermal requirements are included along with the total thermal energy requirements and the 

compression ratio for all the studied cases. Finally, a small amount of heat is necessary to be 

provided to the desorbed amount of hydrogen (425g) which also is present on Table 6. 

Table 6. Summary of the total heat thermal energy for a full compression cycle and the compression ratio 

Case Total latent 

heat (MJ) 

Total 

sensible heat 

(MJ) 

Thermal 

Energy for 

Hydrogen 

(MJ) 

Total thermal 

energy (MJ) – 

(kWh) 

Compression 

Ratio 

1 61.83 71.76 3.08 136.67 – 37.96 18.7 

2 67.34 82.02 3.52 152.88 – 42.47  24.16 

3 72.88 92.27 3.96 169.11 – 46.98  30.32 

4 75.94 97.39 4.18 177.51 – 49.31 34.06 

5 79.04 102.52 4.41 185.97 – 51.66  36.9 

6 84.17 112.77 4.84 201.78 – 56.05 41.5 

 

As expected, while the temperature for the dehydrogenation process increases, the 

thermal energy demand reaches higher values. Furthermore, an attempt is made for a 

comparison between the values taken by the ratio: Thermal Energy Demand/Compression 

Ratio for the all the studied cases. For Case 1 (10-80oC) the ratio takes the maximum value 

2.03, while for all the remaining cases this ratio reduces gradually to 1.76 – 1.55 – 1.45 – 1.38 

and 1.35. The profile of the thermal energy demand for the compressor, the compression ratio 

and the comparison ratio for all cases with the compression cycle time is presented in Fig. 9. 

For the later compression cycles, slightly lesser amounts of energy are required, as lesser 

amounts of hydrogen are compressed. Thus, the term ΔΗ×nhydr is lesser at every cycle. In 

addition, the thermal energy to heat the desorbed amount of hydrogen also is less. 
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Fig. 9. Energy Demand, Compression Ratio and Comparison Ratio over Time for all the Compression Cases 

4.4 Compressor Efficiency 

In essence, the MHHC is a heat engine that converts heat to work. In the case that the heat 

source and sink are utilised by renewables (solar thermal for the heat source and the atmosphere 

for the heat sink), the efficiency issue is not so important. Although, for the complete picture 

regarding the evaluation of the compressor’s performance, in the current study the compressor 

efficiency has been calculated. To compare the MHHC compressor to the traditional 

mechanical piston-based compressors, the work required to achieve compression ratios of 18.7 

– 24.16 – 30.32 – 34.06 – 36.9 and 41.5 was calculated. Four cases were introduced and 

compared. The first case is the isothermal compression, the second is the isentropic 

compression, whereas the last two are a polytropic approach and the isentropic by considering 

75% efficient mechanical compressor (close to real life). A similar approach was reported from 

[20]. Table 7 presents the efficiencies for all the compression cases. 
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Table 7. Theoretical calculations for the compressor efficiencies 

Case Isothermal 

Efficiency 

Isothermal 

nc 

Isentropic 

Efficiency 

Isentropic 

nc 

Polytropic 

Efficiency 

Polytropic 

nc 

Adiabatic 

Irreversible 

Isentropic 

Reversible nc 

1 2.78 14.05 4.39 22.16 3.98 20.01 3.29 16.62 

2 2.71 12.28 4.45 19.99 3.99 17.93 3.34 14.99 

3 2.62 10.87 4.48 18.59 3.98 16.5 3.36 13.94 

4 2.58 10.28 4.51 17.93 3.99 15.88 3.38 13.45 

5 2.52 9.66 4.46 17.08 3.93 15.01 3.34 12.81 

6 2.4 8.58 4.33 15.47 3.81 13.59 3.25 11.60 

 

The efficiencies for the isothermal-isentropic and polytropic approaches was calculated from: 

                                                                     𝑛𝑡ℎ =
𝑊

𝑄
∙ 100                                                         (20) 

In the present work, the term Q is the amount of electrical energy to heat and cool the 

compressor by 70oC (Case 1), 80 oC (Case 2), 90 oC (Case 3), 95 oC (Case 4), 100 oC (Case 5) 

and 110 oC (Case 6). The term nc in the columns 3, 5, 7 and 9 is the ‘second law efficiency’, 

which is the ratio of the thermal efficiency to the Carnot efficiency: 

                                                                   𝑛𝑐 =
𝑛𝑡ℎ

𝑛𝑐𝑎𝑟𝑛𝑜𝑡
                                                            (21) 

The work for the isothermal compression was calculated from the equation: 

                                                        𝑊𝑖𝑠𝑜 = 𝑃𝑙𝑜𝑤 ∙ 𝑉𝑙 ∙ 𝑙𝑛𝑟𝑝                                                         (22) 

Where Plow is the starting pressure, Vl is the specific volume of hydrogen at that pressure and 

rp is the compression ratio. The isentropic work was calculated by the following equation: 

                                                        𝑊𝑠 =
𝑘

𝑘−1
∙ 𝑃𝑙𝑜𝑤 ∙ 𝑉𝑙 ∙ (𝑟𝑝

𝑘−1

𝑘 − 1)                                         (23) 

Where k is the ratio between the specific heat capacity under constant pressure to the specific 

heat capacity under constant volume. The polytropic work is updated from the following 

equation:  

                                                    𝑊𝑝𝑜𝑙 =
𝑛𝑝

𝑛𝑝−1
∙ 𝑃𝑙𝑜𝑤 ∙ 𝑉𝑙 ∙ (𝑟𝑝

𝑘−1

𝑘 − 1)                                        (24) 
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Where np is the polytropic coefficient. According to the outcomes presented in Table 7, the 

thermal efficiency varied from 2.4 to 4.51%, based on the compression scenario considered 

and the temperature range of the compression. According to the results, the thermal efficiency 

tends to drop when the dehydrogenation temperature increases. In addition, the ‘second’ law 

efficiency also drops as the desorption temperature increases, indicating that at lower 

dehydrogenation temperatures, although the compression ratio is less, the compressor 

efficiency is closer to the theoretical maximum efficiency (Carnot efficiency). 

The operation of a MHHC is a thermally driven process; efficient heating and cooling of the 

compressor (hydride beds, hydrides and hydrogen) are necessary for the proper compression 

operation. There are several parameters and factors affecting the operation of a multi-stage 

compression system. The thermodynamic properties and the subsequent selection of the proper 

materials for the compression stages is a very important factor to increase the efficiency of a 

compressor. In addition, the operational temperature range is a very significant aspect that 

needs to be specified for the design of a MHHC. One of the outcomes of the current study is 

the impact and significance of the proper selection of the operational temperature conditions, 

with respect to the cycle duration (i.e. the hydrogen flowrate), the compression ratio, the 

thermal energy demand and the efficiency. It is important to understand and predict the 

performance of the compressor under different conditions and furthermore, to realise that the 

selection of the operational temperature range depends on the needs of the compressor end-

user. If the main purpose is the quick delivery of high-pressure hydrogen and the cost of 

operation is of secondary importance, then the operation of the compressor at higher 

dehydrogenation temperatures (120oC) is highly recommended. On the other hand, if the 

primary scope for the compressor is the delivery of relatively high-pressure hydrogen at the 

lowest possible cost, by introducing renewables for the energy demand, then a relatively lower 

dehydrogenation temperature might be the preferable solution. In addition to that, the main 

scope of the current work was the study of a seven-stage MHHC that will operate within the 

temperature range 10-80oC. The reason for the selection of this temperature range is the 

suitability of the system towards operation under solar heat and cooling. Another very 

important factor to increase the efficiency of the compressor is the development of a smart 

system for effective heat management to enhance the kinetics of the hydrogen storage/release 

processes. Contrary to the case of a heat management system for a conventional metal hydride 

tank that will be used only for hydrogen storage/release at a relatively low-pressure range and 

not for compression purposes, the heat management approach for the MHHC should be 
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designed very carefully in terms of (among others) resistance to the large stresses due to the 

high-pressure range that will be applied during the compression. In conclusion, for the proper 

design of a compressor that will be based on metal hydrides, there are several factors that can 

affect the operation and the efficiency and should be considered. Thus, the design of an MHHC 

compressor should focus on the needs of the end-user and possibly sacrifice some 

characteristics in favor of some others depending on each individual case. 

5. Conclusions  

In this work, a numerical study describing the complete operation of a seven-stage MHHC 

is presented and analysed in terms of temperature distribution, pressure profile, compression 

ratio, thermal energy demand and thermal efficiency. The numerical model was validated 

against experimental data and very good agreement for both the temperature evolution and the 

hydrogenation profile was obtained. The main target of the overall work program is to develop 

a compressor that will be able to operate between the temperature range 10-80oC and to utilise 

solar energy and/or waste heat for the operation of the compressor. In the current study, for 

comparison purposes, various temperature ranges were studied (80-90-100-105-110 and 

120oC). The main conclusions drawn from the current work are: 

• As compared with the results from [64], the introduction of an extra stage has the 

capability to increase the final hydrogen pressure from 220 bar [64] to almost 365 

bar. At the same time the introduction of an extra stage contributes to an extra 

energy addition of 4.8kWh. 

• The compression operation under the targeted temperature range presented a 

compression ratio of 18.7, total energy demand of 37.96 kWh, irreversible adiabatic 

efficiency 3.29% and second law irreversible adiabatic efficiency 16.62%. The 

increase of the dehydrogenation temperature to 120oC instead of 80oC resulted in a 

higher compression ratio (41.5), but at the same time to a higher thermal energy 

demand (56.05 kWh) with lower efficiencies (3.25% and 11.60%). In addition, for 

the dehydrogenation temperature 80oC solar energy and waste heat can be utilised, 

whereas the higher operation temperatures may bring the complexity of using 

pumps and electricity for the operation. 

• The MHHC is a technically viable alternative technology that is able to compress 

hydrogen to the required pressure for the refuelling of large-scale vehicles (buses, 

small trucks) as well as small scale vehicles (cars) if the energy needs are met by 
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renewables and the hydrogen production is based on the use of renewable energy 

sources. 

• The operation of a multi-stage metal hydride hydrogen compressor is affected by 

many parameters, among which the most important ones are: material 

thermodynamic properties, material storage/release kinetics, operation 

temperatures and heat management. Thus, several improvements are still needed 

before the commercialisation of MHHCs, from the development of more efficient 

materials, heat management techniques to automation and operation. For the design 

and development of a compression system based on metal hydrides, first the needs 

of the end-user should be defined, and the next step could be the analysis of the 

proper parameters that need to be taken into account for the development of the 

most efficient compression system. The present numerical study serves these 

purposes as it provides the model and tool for sensitivity analysis and optimization 

efforts. 
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Nomenclature                                                            Subscripts 

Ca           Absorption Reaction Constant, s-1                           a                    Absorption 

Cd           Desorption Reaction Constant, s-1                          A                    Reactor A 

Cp           Specific Heat, J/kg-K                                               B                    Reactor B 

Ea                Activation Energy for Absorption, J/molH2                     d                    Desorption 

Ed           Activation Energy for Desorption, J/molH2                    e                     Effective 

h             Heat Transfer Coefficient, W/m2K                           eq                   Equilibrium 

k             Thermal Conductivity, W/m-K                                 f                     External Heater/Cooler 

K            Permeability, m2                                                       g                     Gas 

M           Molecular Weight, kg/mol                                         i                     Initial 

m            Kinetic Expression                                                    s                     Solid 

n             Number of Hydrogen Moles                                     ss                    Saturation 

P             Pressure, bar                                                            Greek Letters 

R             Gas Global Constant, J/mol-K                                 ε                    Porosity 

t               Time (s)                                                                    μ                    Dynamic Viscosity, kg/ms 

T             Temperature (K)                                                       ρ                    Density, kg/m3 

v              Gas Velocity, m/s                                                    ΔΗ                  Reaction Enthalpy, J/mol 

V             Volume, m3                                                              ΔS                  Reaction Entropy, J/mol-K 
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