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Life Cycle-based Environmental Performance Indicator for the Coal-to-energy Supply 

Chain: A Chinese Case Application 

 

Abstract: 

Coal consumption and energy production (CCEP) has received increasing attention since 

coal-fired power plants play a dominant role in the power sector worldwide. In China, coal is 

expected to retain its primary energy position over the next few decades. However, a large 

share of CO2 emissions and other environmental hazards, such as SO2 and NOx, are attributed 

to coal consumption. Therefore, understanding the environmental implications of the life cycle 

of coal from its production in coal mines to its consumption at coal-fired power plants is an 

essential task. Evaluation of such environmental burdens can be conducted using the life cycle 

assessment (LCA) tool. The main issues with the traditional LCA results are the lack of a 

numerical magnitude associated with the performance level of the obtained environmental 

burden values and the inherent uncertainty associated with the output results. This issue was 

addressed in this research by integrating the traditional LCA methodology with a weighted 

fuzzy inference system model, which is applied to a Chinese coal-to-energy supply chain 

system to demonstrate its applicability and effectiveness. Regarding the coal-to-energy supply 

chain under investigation, the CCEP environmental performance has been determined as 

“medium performance”, with an indicator score of 39.15%. Accordingly, the decision makers 

suggested additional scenarios (redesign, equipment replacement, etc.) to improve the 

performance. A scenario-based analysis was designed to identify alternative paths to mitigate 

the environmental impact of the coal-to-energy supply chain. Finally, limitations and possible 

future work are discussed, and the conclusions are presented. 

 

Keywords: coal consumption and energy production, coal-to-energy supply chain, 

environmental performance indicator, life cycle analysis, fuzzy inference system 
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1. Introduction 

The use of fossil fuels has been linked to climate change and environmental vulnerability. 

The World Wildlife Fund (WWF) has estimated that the current production and consumption 

patterns in the United States (US), if replicated across the globe, would require the equivalent 

resources of three Earths (WWF, 2016). Scientific communities realize that the pursuit of 

greener production and consumption practices is necessary (Govindan, 2018; Tseng et al., 

2018) and are devoting efforts to promote and implement green practices in production and 

consumption in various industries (Wang et al., 2018). 

Globally, coal consumption accounts for approximately 30% of primary energy 

requirements. This amount of coal generates approximately 40% of the world’s electricity 

needs (He et al., 2017; Su et al., 2017) and is expected to retain its primary energy position 

over the next two decades (Şengül et al., 2016). Moreover, industrial countries are likely to rely 

more on their own produced energy sources such as coal. These types of strategies are 

undertaken mainly because of the volatility of oil prices of the major oil/gas producing regions 

such as the Middle East (Apergis and Payne, 2010). However, this reliance increases the 

amount of environmental hazards generated in such industrial countries. Such concerns over 

the past decades have resulted in numerous studies to estimate the environmental impact of 

coal using a life cycle analysis approach (Cui et al., 2012; Ding et al., 2017; Vujić et al., 2012; 

Zhou et al., 2019), which is a method also recommended in the U.N. sustainable development 

goals (SDGs) (United Nations, 2015).  

In spite of the foregoing comments, valuable environmental impact assessment results 

should enable decision makers (DMs) inside an organization to understand, comprehend and 

compare them with other environmental indicators (Schneider et al., 2011). This highlights the 

importance of an easily understandable environmental performance indicator for coal 

consumption and energy production (CCEP). To our knowledge, such an environmental 

performance indicator has yet to be developed for CCEP. Such an indicator would act as a 

reliable tool for increasing the understanding and facilitating the interpretation of life cycle 

assessment (LCA) results by industrial practitioners. This lack forms the motivation for this 

paper, which will propose an integrated LCA and fuzzy inference system (FIS) framework to 
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produce an environmental performance indicator. The developed indicator will serve as a 

practical way to evaluate the effects of changes to the CCEP processes and can enhance 

corporate-level decision-making. To illustrate the utility of the indicator, a Chinese coal-to-

energy supply chain (SC) will be evaluated. 

This article is organized as follows. A comprehensive review of relevant literature is 

presented in Section 2, which summarizes work related to LCA applied to CCEP and LCA 

combined with FIS. The theoretical underpinning of this study and the developed CCEP 

environmental performance indicator framework are detailed in Section 3. Moreover, Section 

4 presents the application results based on a coal-to-energy SC case study. An alternative 

scenario-based analysis is reported in Section 5. The theoretical and managerial insights related 

to this research work are discussed in Section 6. Finally, some remarks, directions for future 

research, and conclusions are offered in Section 7. 

 

2. Literature review 

In this section, LCA applied to coal consumption and energy production and LCA 

combined with fuzzy inference systems are reviewed. In addition, identified research 

contributions and gaps are highlighted. 

2.1 LCA applied to coal consumption and energy production 

Effective evaluation of the environmental burdens can be conducted using the LCA tool 

(Hellweg and i Canals, 2014). A vast array of literature has studied the influences of coal 

production or coal consumption on the environment using LCA (Aguirre-Villegas and Benson, 

2017; Awuah-Offei and Adekpedjou, 2011; Şengül et al., 2016; Wang and Mu, 2014; Yu et 

al., 2014). The scholarly works related to the coal supply-side reported the environmental 

impact of coal mining operations and emphasized reducing the environmental issues at the coal 

extraction/production stage (Bian et al., 2010; Burchart-Korol et al., 2016; Cheng et al., 2011; 

Pell et al., 2019; Si et al., 2010). The works related to the coal demand-side analyzed the 

environmental impact of coal consumption, such as its use in chemical plants, power plants, 

steel mills, and cement factories (Guo et al., 2018; Hossain et al., 2017; Luo et al., 2017; Morais 

et al., 2011; Singh et al., 2015; Yang et al., 2017). Following the work by Spath et al. (1999) 
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focusing on coal-fired power plants (CFPPs), many scholars have investigated the 

environmental impacts of generating electricity using coal (Babbitt and Lindner, 2005; 

Rakotoson and Praene, 2017; Whitaker et al., 2012).  

Influenced by Goal #12 of the U.N. SDGs, several studies have combined coal production 

(extraction) and coal consumption (e.g., energy production), which fall into the realm of 

integrated assessment studies. These relatively comprehensive studies analyzed the 

environmental impacts of the entire coal life cycle. Wang and Mu (2014) calculated the amount 

of waste gas emissions in a Chinese coal-to-energy SC. Yu et al. (2014) and Xu (2013) 

estimated China’s coal-to-energy SC carbon emissions ranging from 875 g/kW h-1 to 990.72 

g/kW h-1. Considering a power plant in Turkey, Şengül et al. (2016) performed lignite life cycle 

assessment considering the entire SC from the extraction point to the delivery point. In an LCA 

work conducted by Aguirre-Villegas and Benson (2017), various stages of an Indonesian coal 

SC including coal mining and transport to various market segments were analyzed with regard 

to their environmental impacts. The environmental burdens that are obtained as a result of the 

traditional LCA methodologies applied in these reviewed studies cannot be regarded as 

informative indicator scores since they do not provide a means for practical decision-making 

in terms of performance (either negative or positive) of an analyzed CCEP system. This lack 

of informative indicator scores makes it difficult for industrial practitioners and academics to 

make sense of the environmental burdens (results of a traditional LCA study) according to the 

obtained values for each environmental category.  

 

2.2 LCA combined with fuzzy inference system 

The main issue with traditional LCA results is the lack of numerical magnitude of the 

performance level regarding the obtained environmental burden values together with the 

inherent uncertainty associated with output results (Awuah-Offei and Adekpedjou, 2011; 

Wang and Mu, 2014). As discussed by Fitzgerald et al. (2012), FIS combined with LCA 

provides a promising future research direction. A fuzzy inference system utilizes fuzzy set 

theory to map a set of real values to values from 0 to 1. In other words, it has the capability to 

facilitate the stakeholders’ decision-making process by providing a scaled environmental effect 

and addressing the uncertainty involved in the environmental burden results.  
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Within this context, few authors have examined the application of fuzzy set theory in 

conjunction with LCA methodology in various research disciplines (Afrinaldi and Zhang, 

2014; Agarski et al., 2016; Benetto et al., 2008; Bovea and Wang, 2003; Egilmez et al., 2016; 

González et al., 2002; Güereca et al., 2007; Khoshnevisan et al., 2014; Liu, F.-R. et al., 2012; 

Liu, G. et al., 2012; Mascle and Zhao, 2008; Memon et al., 2007; Weckenmann and Schwan, 

2001). Table 1 highlights the application of fuzzy set theory combined with LCA by describing 

the developed approach considering the LCA boundaries and the application domain, i.e., 

product, process, or SC.  

 

Table 1. LCA combined with fuzzy set theory 

Authors Developed methodology LCA boundary Product/Process/SC 

Weckenmann 

and Schwan 

(2001) 

Utilized fuzzy set theory to improve the 

quality of LCA output results by removing 

the uncertainty and imprecision of input data 

Cradle-to-gate Wave soldering process 

for a printed circuit 

board 

González et 

al. (2002) 

Developed a simplified method by 

combining a fuzzy logic approach with LCA 

to carry out the assessment for small and 

medium-sized enterprises (SMEs) 

Cradle-to-gate Pre-manufacture stage 

for lamp production in an 

SME 

Bovea and 

Wang (2003) 

Utilized LCA combined with fuzzy set 

theory-based Quality Function Deployment 

(QFD) to evaluate the imprecision of 

customer preferences 

Cradle-to-grave Office table product 

Güereca et al. 

(2007) 

Developed a valuation methodology based 

on LCA combined with fuzzy set theory to 

obtain an order preference indicator of 

various bio-waste management scenarios 

Cradle-to-grave Bio-waste management 

processes 

Benetto et al. 

(2008) 

Combined normalized life cycle impact 

assessment (LCIA) results with a fuzzy 

multicriteria analysis method called 

NAIADE to rank various electricity 

production scenarios. 

Cradle-to-grave Coal-based electricity 

production processes 

Liu, F.-R. et 

al. (2012) 

Combined LCA with fuzzy logic to assess 

the emission- and nonemission-related 

environmental aspects to obtain severities 

ratios of these aspects. 

Recycling stage Construction waste 

recycling processes 

Khoshnevisan 

et al. (2014) 

Utilized adaptive neuro-fuzzy inference 

system (ANFIS) combined with LCA 

methodology to predict the environmental 

indices of crop production  

Cradle-to-gate Agri-food products 

Afrinaldi and 

Zhang (2014) 

Developed a normalization and aggregation 

approach based on FIS for the LCA 

methodology. 

Cradle-to-gate Automotive engine 

Egilmez et al. 

(2016) 

Combined fuzzy data envelopment analysis 

with LCA to remove uncertainty in life cycle 

inventory data. 

Not provided US food manufacturing 

sectors 

Agarski et al. 

(2016) 

Utilized FIS for obtaining the weighting 

factors of impact categories in LCA 

Recycling stage Waste treatment 

processes 
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Based on Table 1, the incorporation of fuzzy set theory in LCA has been considered from 

various aspects, boundaries of analysis, and application perspectives. Fuzzy set theory has often 

been applied to capturing the input data uncertainty of the life cycle inventory stage of the LCA 

methodology, combined with multiple-criteria decision-making (MCDM) tools to enhance 

LCA results and used to develop an enhanced normalization step in LCA. It is also found that 

almost all the applications are focused on a single/group of product(s) or process(es). 

Accordingly, none of the reviewed research focused on considering the entire SC as the scope 

of their analysis. Furthermore, there are no applications that considered a coal-to-energy SC 

that covered both coal consumption and energy production as their case study. The current 

research work distinguishes itself from other research activities in the field and aims to fill the 

identified gaps in the literature by proposing a CCEP environmental performance indicator that 

integrates a weighted FIS model with an LCA methodology to enhance the results obtained via 

a traditional LCA application. 

 

3. Material and Methods 

In this section, the theoretical underpinning and choice of tools utilized in the proposed 

framework are discussed in more detail. 

3.1 Research Design  

The theoretical underpinning of this study is a weighted FIS model that combines the 

obtained LCIA results forming an integrated indicator framework for CCEP environmental 

performance measurement. It enhances the normalization process of the sub-category impact 

scores by utilizing target ranges for each environmental sub-category. In other words, although 

the traditional LCA approach provides a normalized environmental burden value for a process 

or product, this causes difficulties for DMs in understanding the numerical level of the 

environmental performance of such process or product. The developed combined LCA-FIS 

approach addresses such issues by providing a performance indicator framework that can be 

utilized to construct scenarios, make proper improvement decisions, and appropriately measure 

the environmental performance of these improvement scenarios. Furthermore, the developed 

FIS model contains a proposed heuristic based on a fuzzy analytic hierarchy process (FAHP) 

to consider the weights of the environmental sub-categories according to their importance. It 
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is demonstrated that the integrated LCA-FIS evaluation with weighted environmental sub-

categories makes the proposed method more accurate compared with a traditional FIS model. 

This enhanced accuracy mainly derives from the inclusion of expert knowledge related to the 

FAHP importance-weighting process. 

 

3.2 CCEP environmental performance indicator framework 

The proposed framework is formulated based on the integration of an LCA methodology 

with a developed FIS model, which is applied to a Chinese coal-to-energy SC system as a real-

world application to demonstrate its effectiveness and applicability. The developed framework 

is depicted in Figure 1. The framework encompasses two phases with the first phase 

commencing with defining the analysis objectives and scope. The second step of LCA deals 

with establishing a life cycle inventory (LCI) for the identified main SC processes. This is 

followed by the characterization process to produce an aggregated effect score with respect to 

the identified environmental sub-categories. In LCA, a product or process environmental 

impact is calculated based on the aggregation of all individual impacts related to various sub-

categories. In this framework, the identified environmental sub-categories are classified into 

two main performance categories, i.e., regional and global environmental performance. The 

raw impact assessment results of the LCA are utilized as inputs for the proposed weighted FIS 

model, which enhances the interpretation step of the LCA methodology. 

The traditional LCA encompasses the normalization and weighting steps. This results in 

a normalized environmental burden value. However, there are some deficiencies associated 

with this result. These deficiencies are the lack of a numerical magnitude of the environmental 

performance level and existence of uncertainty in the final environmental burden. In other 

words, the DMs inside a typical company or system where the LCA is implemented would face 

difficulties in understanding the relative performance of the analyzed products or processes 

within their system. Moreover, the uncertainty challenges involved in the outputs of a 

traditional LCA need to be overcome using a rigorous uncertainty analysis approach. These 

important criticisms of the traditional LCA approach were also highlighted and discussed by 
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Awuah-Offei and Adekpedjou (2011) with specific reference to the mining industry, and these 

criticisms are also addressed in the application of the current research. 

 
Figure 1. CCEP environmental performance indicator framework 
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Accordingly, in the second phase of the framework, an FIS model is designed using 

Mamdani’s inference rule (Mamdani, 1974). This model can address the discussed deficiencies 

involved with the traditional LCA results. After obtaining the input data in Phase 1 (raw impact 

assessment values), the FIS evaluation of the input variables is done in five stages. 

 Sub-category importance weighting: Before implementing the fuzzy evaluation 

mechanism, Chang (1996)’s FAHP model is utilized to weight the sub-categories involved 

in the main categories for global and regional environmental performance based on their 

importance. Owing to limitations of space, readers are encouraged to review the FAHP 

mathematical formulations in Ghadimi et al. (2012). The obtained weights are then utilized 

in the fuzzy rule base construction of the fuzzy evaluation mechanism discussed below. 

 Fuzzification: Various grades of membership functions (MFs) are assigned to the input 

data obtained from the life cycle impact assessment. For each of the impact sub-categories, 

which are the actual input variables, a minimum and maximum possible value are defined 

as a target range. The formulation of each related MF to the environmental sub-categories 

is done based on the defined target ranges. It is worth noting that devising improper target 

ranges can lead to subjective outputs. Therefore, it is recommended that these scales be 

defined based on various available sources, such as a DM’s opinion or the environmental 

regulations and standards of a region or country. The developed FIS model in the proposed 

framework encompasses three types of triangular MFs corresponding to each input 

variable. These MFs are constructed based on the defined target scales: low (L), medium 

(M), and high (H).  

 Weighted knowledge base (rule base): After constructing the MFs for each input variable 

(the environmental sub-categories), a knowledge base that mediates the internal behaviors 

of each of these MFs is defined. This knowledge base consists of several IF_THEN fuzzy 

rules. Eq. (1) provides the formula for calculating the number of these fuzzy rules related 

to each environmental main category (Cornelissen et al., 2001). 

 vR = n                                    (1) 

where  

R  - Number of potential rules for each environmental main category 

n  - Number of MF types for each environmental sub-category 
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v  - Number of sub-categories (input variables) related to each environmental main 

category 

 

As the weights of the sub-categories (input variables) are different, these importance 

weights should be considered in the FIS structure as well. However, the traditional FIS is 

unable to deal with this issue; see Ghadimi et al. (2012). Hence, this research work presents 

the following new heuristic method to resolve the abovementioned issue: 

 

Heuristic ranges for defining fuzzy rules 

a) IF 
1

1
m

i ii
W A


  THEN environmental performance is High. 

b) IF 
1

1 1.66
m

i ii
W A


   THEN environmental performance is Medium to High. 

c) IF 
1

1.66 2.33
m

i ii
W A


   THEN environmental performance is Medium. 

d) IF 
1

2.33 3
m

i ii
W A


   THEN environmental performance is Low to Medium. 

e) IF 
1

3
m

i ii
W A


  THEN environmental performance is Low. 

 

where  

iW  - the importance weight of the thi  sub-category associated with the regional and global 

environmental main categories  

iA  - the score given to each associated MF to the thi  sub-category  

Accordingly, scores 1, 2, and 3 are set for the corresponding scores for the low, medium 

and high MFs, respectively. The weighted sub-categories are aggregated within the IF 

statements. This results in a THEN statement to each corresponding main category, which 

are the regional and global environmental performances. 

 Fuzzy assessment: The aggregation and implication processes of the developed fuzzy 

inference model are performed within this step. The implication process encompasses the 

fuzzy conclusion related to each of defined fuzzy rules. This is done using known fuzzy 

operators i.e., AND, OR, and NOT. These operators are utilized to connect various 

components of a fuzzy rule and form the implication process output. In the next part, these 

output conclusions are aggregated with each other, and a single fuzzy set is constructed. 

The inputs to the aggregation process are characterized based on the implication process 
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output functions. Finally, the output of the aggregation process is utilized in the 

defuzzification step. 

 Defuzzification: In this step, five output MFs are devised that transfer the output of the 

previous step (fuzzy assessment) to a scale between 0 and 1. These output MFs are named 

low (L), low-to-medium (LM), medium (M), medium-to-high (MH), and high (H). The 

output of the defuzzification step provides a numeric crisp value that acts as a score for 

the environmental performance of any evaluated system (product, process or SC) with 

regards to the evaluated main category.  

 

After obtaining each of the main category scores, the CCEP environmental indicator score 

can be calculated. The importance weightings for both regional and global environmental 

performance main categories are set to be equal in this analysis, which is put forward by the 

DMs inside a company. 

EICCEP R Gw R w G                            (2) 

where  

Rw  – Importance weighting of regional environmental impact main category 

R  – Regional environmental impact main category score 

Gw  – Importance weighting of global environmental impact main category 

G  – Global environmental impact main category score 

EICCEP  – Coal consumption and energy production environmental indicator score 

In the final step, according to the results of the current CCEP environmental performance 

indicator score calculations, a set of thresholds must be defined that can assist the DMs in 

improving the evaluation system. These decisions are about various improvement scenarios 

that can be implemented in the current system. Afterward, these improvement and analysis 

scenarios should be re-examined/evaluated, and a new indicator should be obtained. 

 

4. Case application and results 

4.1 A Chinese coal-to-energy supply chain 
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China, as the world’s major coal producer and consumer, emits large amounts of CO2 and 

other environmental hazards (Sun et al., 2018). In recent research conducted by Yang et al. 

(2019), the drivers of coal overcapacity in China from both the supply and demand sides have 

been analyzed and some policy implications are put forward to tackle these issues. The Chinese 

coal-to-energy SC considered in the current work is shown in Figure 2 (a). Due to data 

availability, we only considered coal mine X (energy production side) and coal-fired power 

plant M (coal consumption side) in Figure 2 (a). Both plants are local state-owned enterprises 

and located in Zaozhuang, which is a mining city, belonging to the Shandong province of China.  

After coal is extracted from coal mine X, it is transported to the following: coal-fired 

power plant M (15% of yield) in Zaozhuang, steel group A (23% of yield) in Nanjing, steel 

group B (20% of yield) in Shanghai, coking plant C (15% of yield) in Rizhao, coking plant D 

(7% of yield) in Weifang, and other small enterprises (approximately 20% of yield). For the 

coal-fired power plant M, most of the coal comes from coal mines Y and Z, which account for 

80% of the coal consumption, and the remaining 20% comes from coal mine X (coal mines Y 

and Z provide most of the coal owing to the inexpensive coal prices in the Shanxi province). 

The complete coal-to-energy SC is shown in Figure 2 (b). Here, we only studied the coal-to-

energy SC from coal mine X to coal-fired power plant M due to data availability. The extracted 

coal from coal mine X is transported 64 km by heavy truck to be combusted at coal-fired power 

plant M. In part, coal mine X is used as a source for coal due to insufficient rail capacity and 

administrative factors for other sources. Three processes in the coal-to-energy SC can be 

characterized in this case study: i) the coal-mining process or coal production stage, ii) the coal 

transportation process, and iii) coal consumption at the power plant to generate electricity, as 

shown in Figure 2 (c). 
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Figure 2. A Chinese coal-to-energy SC including coal mining operations, road transport, and the coal 

combustion process. 

 

4.2 Scope and system boundary 

Life cycle assessment often utilizes a cradle-to-grave boundary for evaluating industrial 

products and systems. A cradle-to-grave life cycle commences with extracting the raw 

materials and continues with manufacturing product(s); then, the end consumers (industrial or 

individuals) consume the manufactured product(s), and the cycle is completed with the return 

of the used product(s) to the environment (Balaguera et al., 2018). The developed framework 

starts with coal production and ends with coal consumption, as shown in Figure 3. The 

boundary of the analysis is defined based on this cradle-to-grave perspective. The main reason 

for this boundary is the nature of the case system, which represents a “Mining-to-Product 

(MTP)” system. This indicates that the end-of-life stage of the coal life cycle (recycling stage) 

is not considered in the current application. The coal-to-energy SC processes under study 

consist of the coal-mining process, coal washing and selection process, coal transportation 

process and coal combustion process. The functional unit (FU) is denoted as 1 kW-hour of 

energy produced. In this research, an FU is defined as 1 kWh. 
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Figure 3. Cradle-to-grave system boundary of the coal-to-energy SC 

 

4.3 Life cycle inventory analysis 

Inventory analysis plays a central role in an LCA (Ding et al., 2017). According to the 

system boundary described in Figure 3, a brief description of the three principal processes is 

provided. For a detailed introduction to material inventory and energy inventory in each 

process, please refer to the studies of Wang (2011) and Wang and Mu (2014). 

The coal-mining process in coal “mine X” is an underground mining operation. This 

operation includes drilling, loading, hauling and more. Ventilation, lighting, and 

communications are some of the secondary operations in this coal mine. Mine X generated 3.4 

million tonnes of raw coal in 2012. In addition, it used 521.22 thousand cubic meters of fresh 

water, 147.90 tonnes of diesel oil, 37.16 tonnes of petrol, 434.52 tonnes of steel, 19.7 thousand 

tonnes of cement, 155.41 cubic meters of timber, and 15.54 tonnes of ANFO (ammonium 

nitrate AN and fuel oil). For internal use, 7.23 million kWh of electricity and 13.2 thousand 

tonnes of coal were consumed. 

Along with the abovementioned operations, the coal-mining process of mine X also 

encompasses coal preparation/cleaning. The reduction of the extracted coal size and removal 
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of rocks and fines from the extracted coal are performed during the coal preparation activity. 

Mine X uses a gravity method to clean the coal. In this task, harmful impurities settle to the 

bottom after a coal flotation process on the surface. Finally, the purified coal is transported to 

the locations of the coal-fired power plants. 

In China, the coal transport process is typically completed via railways, highways, or 

waterways. In this study, the transported ammonium nitrate, ammonia (NH3), hydrogen 

chloride (HCl), sodium hydroxide (NaOH), and calcium carbonate (CaCO3) are not included 

while constructing the life cycle inventory. According to the investigation, from mine X to 

power plant M, the coal is shipped by FAW Jiefang Hanwei heavy trucks with a capacity of 40 

tonnes. These trucks usually carry approximately 50 tonnes. The distance from mine to the 

power plant is 64 km, and the diesel fuel consumption for a round trip is 36.5 L. 

The coal combustion process constitutes the burning process occurring at a coal-fired 

power plant. The total installed capacity of the power plant is 1225 MW, and the power 

generation is 8.39 billion kWh. In 2012, plant M consumed  

(1) 1.91 million tonnes of raw coal,  

(2) 1.62 million tonnes of coal gangue,  

(3) 2.76 million tonnes of coal slurry, and  

(4) 58.30 million tonnes of fresh water. 

 

4.4 Life cycle impact assessment 

All results are based on the reference FU of 1 kWh of electricity. Five sub-categories have 

been selected, and Gabi 4’s CML 2001 is adapted to calculate the environmental impacts 

related to these sub-categories, i.e., acidification potential (AP), ozone depletion potential 

(ODP), global warming potential (GWP), eutrophication potential (EP), and photochemical 

oxidants creation potential (POCP). When estimating environmental impacts, GWP and ODP 

are classified within the global environmental performance main category. EP, AP, and POCP 

are categorized as regional environmental performance main categories (Kim et al., 2016).  

AP is defined by acid deposition (H+) measurement of HF, NOx, NH3, SO2, and HCl. ODP 

measures the ozone layer depletion potential mostly concerned with chlorofluorocarbon (CFC) 

compounds and other halogenated hydrocarbons emissions. GWP is derived by considering an 
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aggregated amount of greenhouse gas (GHG) emissions and their GWP factors, respectively. 

The gases that contribute to GWP are mainly CO, CO2, CH4, and N2O. EP is described as the 

potential of nutrients to cause toxin production and eutrophication. POCP is described as the 

potential to generate summer smog and photochemical oxidants from volatile organic 

compounds (VOCs) and oxides of nitrogen. This value is articulated relative to the POCP 

classification factor for ethylene. The GWP, EP, POCP, AP and ODP raw impact assessment 

values with respect to the three considered processes in the coal-to-energy SC are shown in 

Table 2. 

 

Table 2. Environmental impact of coal-to-energy SC based on 1 kWh of electricity generated. 

Category Coal 

extraction 

process 

Transportation 

process 

Combustion 

process 

Coal-to-energy 

SC  

Target range Unit 

GWP 130.4742  17.5391  1169.7123 1317.7256  [872-1628] g CO2-Equiv. 

EP 0.0368  0.0084  0.3120  0.3572  [0.103-0.460] g PO4
3-Equiv. 

POCP 0.0401  0.0072  0.4673  0.5147  [0.017-0.625] g C2H4-Equiv. 

AP 0.2494  0.0981  4.9119  5.2594  [1.78-12.5] g SO2-Equiv. 

ODP 6.8785  0.6946  6.7809  14.3539  [0.072-17.5] µg R11-Equiv. 

Note: Target ranges required for the FIS model are extracted and refined from related literature (Atilgan and 

Azapagic, 2015, 2016; Dones et al., 2007; Korre et al., 2010; Rakotoson and Praene, 2017; Şengül et al., 2016; 

Skone and James, 2010; Stamford and Azapagic, 2012; Widder et al., 2011). 

 

4.5 Weighted fuzzy inference system model implementation 

4.5.1 Sub-category importance weight calculations 

In this phase, Chang’s FAHP (Chang, 1996) was used to weight the global and regional 

sub-categories. Hence, the experts (the production manager and scheduling manager in coal 

mine X and the production manager and materials manager in power plant M) were asked to 

make the pairwise comparisons based on the scale shown in Table 3. Then, using the FAHP 

steps, the final weights of the environmental sub-categories were calculated. These calculation 

steps are not shown in this article owing to limitations on space.  

Table 4 tabulates the derived weights separately for global and regional main categories.  
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Table 3. The linguistic variables and triangular fuzzy numbers (TFNs) 

Linguistic variable TFN Reverse TFN 

Equal importance (1, 1, 1) (1, 1, 1) 

A little more important (0.5, 1, 1.5) (0.66, 1, 2) 

More important (1, 1.5, 2) (0.5, 0.66, 1) 

Much more important (1.5, 2, 2.5) (0.4, 0.5, 0.66) 

Absolute importance (2, 2.5, 3) (0.33, 0.4, 0.5) 

 

Table 4. Environmental sub-category importance weights 

Main category Sub-category Importance weights 

Global environmental performance 
GWP 0.7036 

ODP 0.2964 

Regional environmental performance 

EP 0.454 

PCOP 0.321 

AP 0.225 

 

4.5.2 Fuzzy evaluation mechanism 

The crisp values of the environmental sub-categories (input variables) are transformed 

into MF grades. Then, a target range is configured for each of these input linguistic variables, 

as shown in Table 5. For each of the linguistic variables, the constructed linguistic MFs 

allocated to the formulated fuzzy sets are displayed in Table 5. In this paper, a TFN is utilized 

in the developed FIS model for the environmental impact sub-categories (input variables). The 

numerical inputs for this fuzzy mechanism are then fuzzified based on a comprehensive 

knowledge consisting of various weighted fuzzy rules. As explained in Sub-section 3.2, the 

importance weights of each sub-category (shown in Table 4) cannot be incorporated in the 

fuzzy evaluation mechanism using the traditional FIS model. Therefore, a heuristic approach 

was developed in this research work to resolve this issue (see Sub-section 3.2). Applying the 

importance weights directly to the input variables would result in alteration of the crisp input 

values which is not desirable. Instead, using the proposed heuristic, these weights are 

incorporated in defining the fuzzy rules. Some realistic rules have been constructed based on 

the four DMs’ knowledge. Table 6 tabulates some sample fuzzy rules for illustration purposes. 
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Table 5. Fuzzy sets and their linguistic MFs 

Linguistics MF Fuzzy set Linguistics MF Fuzzy set 

Regional environmental performance Global environmental performance 

Linguistics variable: AP Linguistics variable: GWP 

Low  [-3.58 1.78 7.14] Low  [492 872 1250] 

Medium [1.78 7.14 12.5] Medium [872 1250 1628] 

High [7.14 12.5 17.86] High [1250 1628 2010] 

Linguistics MF Fuzzy set Linguistics MF Fuzzy set 

Regional environmental performance Global environmental performance 

Linguistics variable: EP Linguistics variable: ODP 

Low  [-0.0755 0.103 0.2815] Low  [-8.642 0.072 8.786] 

Medium [0.103 0.2815 0.46] Medium [0.072 8.786 17.5] 

High [0.2815 0.46 0.6385] High [8.786 17.5 26.21] 

Linguistics MF Fuzzy set   

Regional environmental performance   

Linguistics variable: POCP   

Low  [-0.287 0.017 0.321]   

Medium [0.017 0.321 0.625]   

High [0.321 0.625 0.929]   

 

Table 6. The knowledge rule base for the two main categories. 

Rule No. Regional and Global environmental performance rules 

1 IF GWP is L AND ODP is L THEN Global environmental performance is H. 

2 IF GWP is L AND ODP is H THEN Global environmental performance is MH. 

3 IF GWP is H AND ODP is M THEN Global environmental performance is LM. 

4 IF EP is H AND PCOP is M AND AP is low THEN Regional environmental performance 

is M. 

5 IF EP is L AND PCOP is L AND AP is H THEN Regional environmental performance is 

MH. 

6 IF EP is H AND PCOP is L AND AP is H THEN Regional environmental performance is 

LM. 

7 IF EP is M AND PCOP is L AND AP is M THEN Regional environmental performance is 

MH. 

 

The following calculations demonstrate the applicability of the developed heuristic in 

constructing the fuzzy rule base while incorporating the importance weights of each input 

variable (sub-categories). Consider rule number 5 in Table 6, which reads “IF EP is L AND 

PCOP is L AND AP is H THEN Regional environmental performance is MH”. According to 

the proposed heuristic, the corresponding MF numbers in the assessment process would be 1, 

1 and 3. Based on the proposed heuristic in Sub-section 3.2, the calculation process was 

performed and is shown in Table 7. The obtained aggregated value of 1.45 means that the 
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output MF for regional environmental performance main-category should be medium to high 

as the value of 1.45 is located in the 1 to 1.66 range. 

 

Table 7. A sample calculation procedure for fuzzy rule definition 

 EP PCOP AP Output value 

MF score, 
iA  1 1 3  

Importance weight, 
iW  0.454 0.321 0.225 

i iW A  0.454 0.321 0.675 
1

m

i ii
W A

 = 1.45 

 

Following the developed heuristic procedure, the experts’ knowledge was translated into 

weighted linguistic fuzzy rules for each sub-category. Eq. (1) calculates the number of 

constructed rules for each main category. The global environmental performance main 

category has nine rules while the regional environmental performance main category requires 

27 rules. 

The computed fuzzified outputs are then defuzzified into a crisp number using the 

constructed MF scaling from zero to one. The computed output values that are closer to zero 

indicate a low regional or global environmental performance. In contrast, the output values 

closer to one are considered as a high regional or global environmental performance. The 

output variables (regional and global environmental performance) are transformed into MFs, 

as shown in Table 8. The final calculated score serves as an indicator reflecting the 

environmental performance state of the evaluated CCEP process. This score was calculated 

using Eq. (2) and the results are presented in Table 9. 

 

Table 8. Regional and global fuzzy sets and their linguistic MFs 

Linguistics MF Fuzzy set Linguistics MF Fuzzy set 

Linguistics variable: Regional 

environmental performance 

Linguistics variable: Global 

environmental performance 

L [-0.25 0 0.25] L [-0.25 0 0.25] 

LM [0 0.25 0.5] LM [0 0.25 0.5] 

M [0.25 0.5 0.75] M [0.25 0.5 0.75] 

MH [0.5 0.75 1] MH [0.5 0.75 1] 

H [0.75 1 1.25] H [0.75 1 1.25] 
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Table 9. Results of the base scenario and three improvement scenarios. 

Score 
Coal-to-

energy SC 

30% 

(utilization 

rate of coal 

mine methane) 

37.5% 

(current 

efficiency of 

CFPP +0.5%) 

36.5% 

(current 

efficiency of 

CFPP -0.5%) 

Global environmental 

performance  
0.432 0.450 0.444 0.418 

Regional 

environmental 

performance 

0.351 0.363 0.352 0.349 

CCEP environmental 

performance indicator 

score 

0.391 0.406 0.398 0.383 

 

The proposed FIS model was implemented utilizing the MATLAB fuzzy logic package. 

Two threshold values (0.33 and 0.66) were devised to facilitate decision making about various 

improvement scenarios in the current coal-to-energy SC processes. These thresholds were 

defined based on the decision makers’ expert opinions and as a result of discussions with the 

current authors of this research article. Based on these discussions, if the obtained CCEP 

environmental performance indicator score ranges from 0 to 0.33, the current environmental 

performance is not satisfactory and requires a comprehensive redesign of the production and 

consumption stages of the coal-to-energy SC process. A CCEP environmental performance 

indicator score between 0.33 and 0.66 is considered to be performing normally, but some minor 

improvements should still be investigated to improve the performance. If the indicator score is 

calculated between values of 0.66 and 1, it will be considered as an environmentally high-

performing SC. For each of these ranges, the experts’ advice was expressed based on focus 

group meetings with DMs inside the case organization to devise appropriate improvement 

scenarios. 

In the base scenario for the coal-to-energy SC under investigation, the CCEP 

environmental performance has been determined as “medium performance” with an indicator 

score of 39.15%. Based on this indicator score, the DMs suggested additional scenarios 

(redesign, equipment replacement, etc.) to improve the performance. These scenarios and their 

outcomes are provided in the next section. 
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5. Analysis and comparison of alternative scenarios 

In this section, a scenario-based analysis is performed to identify alternative paths to 

mitigate the environmental impact of the studied coal-to-energy SC. Various possible scenarios 

were discussed among the experts and the most important ones were chosen for further 

consideration. The amount of coal required at a CFPP is highly dependent on the current 

efficiency of the plan. Therefore, one important analysis was discussed that would test the 

sensitivity of environmental performance when experiencing lower or higher plant efficiency. 

This analysis is particularly important, as the CFPP efficiency level has direct impacts on coal 

mining and transportation processes. On the other hand, scenarios such as improving the 

transportation modes and traveled distance were seen as trivial in the current round of 

improvements, as they impact only the coal transportation process emissions. Finally, three 

alternative scenarios were put forward by the DMs. They were interested in finding the extent 

to which these modifications can change the environmental performance of the entire coal-to-

energy SC. 

 

5.1 Scenario-based analysis 

- Alternative scenario 1: capture and use coal mine methane (CMM) 

Based on the Chinese safety code: specification for identification and classification of 

gassy mines (State Administration of Coal Mine Safety of China, 2006), mine X is categorized 

as a slightly gassy mine. Due to the low concentration of CMM, it is discharged to the 

atmosphere under the current situation. Hence, the utilization of CMM as an energy source is 

close to zero. The main reason for this low utilization rate is that mine X has not yet invested 

in the required technology to utilize the CMM emitted in the various processes associated with 

coal mining. Although the goal of the 11th China five-year plan (FYP) is to utilize 60% of 

CMM, the utilization efficiency was approximately 30% for 2004-2009 (Cheng et al., 2011). 

Hence, as the first alternative scenario, this paper considers the assumption that the capture and 

usage of CMM as a source of energy for heating can reach 30%. The raw impact assessment 

results are shown in Table 10. These results are utilized as the input data to implement the FIS 

model. The obtained CCEP performance indicator score for this scenario is presented in Table 

10. Under the assumption that the capture and use of CMM as an energy source in the coal-
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mining process is 30%, the global, regional, and CCEP environmental performance indicators 

in the coal-to-energy SC have changed by 1.8%, 1.2%, and 1.5%, respectively.  

 

Table 10. Life cycle impact assessment results for alternative scenario 1. 

Category Coal-to-energy SC Capture and use of CMM  

as an energy source is 30% 

Unit 

GWP 1317.7256  1298.3847  g CO2-Equiv. 

EP 0.3572  0.3586  g PO4
-3-Equiv. 

POCP 0.5147  0.4905  g C2H4-Equiv. 

AP 5.2594  5.2813  g SO2-Equiv. 

ODP 14.3539  14.3857  µg R11-Equiv. 

 

- Alternative scenarios 2 and 3 

The DMs inside the power plant wanted to determine how a modification in the 

combustion process at the CFPP would affect the environmental performance of the whole 

coal-to-energy SC. Therefore, this was investigated in more detail by increasing and decreasing 

the overall efficiency of the CFPP. The CFPP efficiency for plant M was 37% in the base case 

scenario. The efficiency of the CFPP was changed by plus or minus 0.5%, i.e., 37.5% and 

36.5% for the system. The developed LCA-FIS was implemented to simulate the extent to 

which these modifications affect the overall CCEP indicator. The raw impact assessment 

results of these two alternative scenarios are shown in Table 11 with the recalculated CCEP 

environmental indicators tabulated in Table 9. It is found that a 0.5% increase in efficiency of 

the CFPP yields 1.2% improvement in global environmental performance but only 0.1% 

improvement in regional environmental performance. These improvements would lead to a 

0.65% increase in overall CCEP environmental performance indicator score compared with the 

base case. 

Alternatively, a 0.5% decrease in efficiency of the CFPP would yield a 0.8% lower overall 

CCEP environmental performance score compared with the base case. Consequently, these 

findings show the magnitude of the changes that a decrease in the efficiency of the CFPP can 

have on the CCEP environmental performance compared with an increase in this efficiency. 

By comparing the results of alternatives 1 and 2, it can be concluded that realizing a 30% 

utilization of CMM is more effective than a 0.5% change in the CFPP efficiency in improving 

the environmental performance of the coal-to-energy SC.  
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Table 11. Life cycle impact assessment results for alternative scenarios 2 and 3. 

Category 37.5% (+0.5%) 36.5% (-0.5%) Unit 

GWP 1300.8823  1338.5394  g CO2-Equiv. 

EP 0.3524  0.3626  g PO4
-3-Equiv. 

PCOP 0.5086  0.5234  g C2H4-Equiv. 

AP 5.2034  5.3540  g SO2-Equiv. 

ODP 13.8956  14.7697  µgR11-Equiv. 

 

Despite a Chinese government proposal on Administrative Provisions on Projects of Clean 

Development Mechanism, and regulatory tactics with regards to taxation and compensation that 

seek to promote environmental improvement, these regulatory approaches have not yet 

achieved their desired goal (Cheng et al., 2011). The low-concentration methane and other 

constraints limit local state-owned coal mines, such as mine X, from purchasing a methane 

drainage system. Other solutions would need improvements in technologies relating to the 

drainage and exploitation of low-concentration methane. 

Regarding the overall efficiency of CFPPs, several possibilities would be expected to 

increase the CFPPs efficiency such as equipment overhaul and upgrades, and enhanced 

maintenance operations scheduling. The U.S. National Energy Technology Laboratory (NETL) 

presented a list of potential approaches to improve and recover the overall efficiency of CFPPs 

(DOE—National Energy Technology Laboratory, 2008). One possible approach can be 

replacing old equipment with new equipment within a CFPP (Campbell, 2013). However, this 

approach is deemed not to be practical due to the expected high investments that could not be 

justified by the marginal amount of calculated environmental performance improvement in this 

case study. Instead, for plant M a financially viable option to increase thermal efficiency was 

discussed, i.e., to retire low-efficiency equipment together with more generation from high-

efficiency overhauled equipment. Moreover, an advanced prognostic maintenance operation 

must be investigated in more detail to optimize the scheduling of equipment refurbishing 

processes.  

 

5.2 Comparison 

The developed CCEP environmental indicator was compared to the traditional unweighted 

LCA-FIS approach (Table 12) using the base case study. The main purpose of performing this 

comparison was to demonstrate the effect of assigning importance weightings on the input 
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variables (environmental sub-categories) using the proposed heuristic model (weighted LCA-

FIS approach). The results show that there is a meaningful difference in the CCEP scores, 

especially in those for global and regional environmental performance. When applying the 

DMs’ weights for GWP and ODP, the global environmental performance score decreased 

substantially compared to the traditional unweighted LCA-FIS result (5.4%). Conversely, the 

regional environmental performance score slightly increased when the EP, PCOP, and AP 

weightings were applied using the weighted LCA-FIS model (0.9%). From this analysis, it is 

found that the proposed LCA-FIS environmental performance framework is a useful tool for 

considering the sub-category weightings.  

Table 12. Comparison results 

 Weighted LCA-FIS 

score 

Traditional unweighted LCA-FIS 

score 

Global Environmental performance  0.432 0.486 

Regional Environmental performance 0.351 0.342 

CCEP environmental performance 

indicator score 
0.3915 0.414 

 

6. Theoretical and managerial implications 

This study seeks to contribute to reducing the environmental impact of consumption and 

production practices in a coal-to-energy SC by creating a performance indicator and exploring 

system changes. In the integrated consumption and production practices literature, Wang et al. 

(2018) highlighted that the investigation of integrated consumption and production practices 

performance measurement is still at its early stages. They found only a few activities that 

focused on developing mathematical and life cycle-based approaches for integrated 

consumption and production environmental performance assessment and recommended that 

future research should be cultivated in this domain. In a recent review of LCA methodology by 

Onat et al. (2017), it was highlighted that broadening the scope of the assessment from the 

product level to the system level, development of the uncertainty analysis mechanisms and 

involvement of key stakeholders in the assessment procedure would add to the reliability of the 

LCA results. Similarly, Awuah-Offei and Adekpedjou (2011) emphasized the challenges 

associated with risk and uncertainty associated with the mining industry and highlighted the 

inclusive need for rigorous uncertainty analysis to be overcome in an LCA framework.  
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Within these contexts, the current research work narrows these theoretical gaps by 

proposing an integrated weighted LCA-FIS framework to measure the environmental 

performance of a coal-to-energy SC. Unlike the traditional LCA methodology which only 

provides the environmental burdens of a considered process or product, the proposed 

framework in this study utilizes the main steps of the LCA method but replaces its 

normalization and weighting stages with a proposed weighted FIS model. The integrated 

framework overcomes the deficiencies of the traditional LCA methodology by providing an 

environmental indicator score that can be utilized to enhance decision-making for the 

evaluation of improvement opportunities.  

The proposed framework addresses a deficiency in the traditional LCA methodology. 

Although the LCIA results of the traditional LCA methodology provide insights into the 

amount of environmental burdens, the DMs inside the case organizations often face difficulties 

in using the results to devise improvement scenarios. The main reason for this difficulty has 

been the lack of a quantitative measure of the extent of how well or poorly their coal-to-energy 

SC processes are performing. From a managerial point of view, these shortcomings of the LCA 

framework can increase the uncertainty in utilizing the results from the traditional LCA 

methodology. Toward this end, an integrated LCA-FIS framework was proposed in this 

research work to measure the environmental performance of the various coal-to-energy SC 

processes with less uncertainty and the inclusive involvement of the key stakeholders inside 

the case organization. 

 

7. Conclusion 

In recent years, CCEP has received increasing attention owing to airborne emissions from 

CFPPs. CFPPs play a dominant role in the power sector worldwide. In China, coal is expected 

to retain its primary energy position (70%) over the next few decades. This is mainly because 

of its stable supply and abundant reserves in China. However, CCEP also accounts for a huge 

share of CO2 emissions and other environmental hazards, such as SO2 and NOx. Therefore, 

understanding the environmental implications of the coal life cycle from its production in coal 

mines to its consumption at CFPPs is an essential task.  
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The continued role of coal in the power sector highlights the importance of an accurate 

environmental indicator for coal-to-energy SC processes to enhance decision and policy-

making processes. The need for such an indicator was identified upon reviewing the literature 

related to LCA approaches to CCEP. This gap in the literature was reinforced in the initial steps 

of performing a traditional LCA study at the case company site. The company DMs highlighted 

that the resulting environmental burdens of a traditional LCA would not provide proper 

decision-making assistance. In other words, although the traditional LCA approach provides a 

normalized environmental burden value for a process or product, the DMs experience 

difficulties in understanding the numerical level of the environmental performance of such a 

process or product.  

In this paper, an environmental performance assessment framework was proposed to serve 

as a practical decision-making system in evaluating the impacts of CCEP practices on the 

environment. The framework encompasses two phases, with the first phase commencing by 

defining the analysis objectives and scope together with establishing a life cycle inventory for 

the identified main processes. This is followed by the characterization process to produce an 

aggregated impact score with respect to the five identified environmental sub-categories. Then, 

the calculated raw impact results are processed using a proposed weighted FIS model, forming 

the second phase. 

The main contribution of the developed integrated framework is its ability to provide a 

definitive environmental indicator score for a typical coal-to-energy SC. Based on the proposed 

weighted FIS model, the normalization process of the sub-categories impact scores in LCA is 

enhanced by using a set of target ranges for each environmental sub-category. Furthermore, the 

application of the proposed framework to an actual coal-to-energy SC is another contribution 

of this paper. One of the advantages of the developed weighted FIS model is its ability to deal 

with the importance weighting of the sub-categories (input variables). 

One of the limitations of this study is related to the boundary of analysis, which does not 

specifically deal with the end-of-life phase of the coal life cycle. One possible future research 

direction would be to extend the boundary of the analysis to include the management and 

treatment of coal combustion by-products. Moreover, further research needs to be conducted 
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to develop a life cycle sustainability assessment framework that incorporates other dimensions 

of sustainability, such as economic and social aspects. Possible integration of the developed 

framework with perpetual LCA software is currently under investigation. This integration 

would yield a huge advantage to industrial practitioners in terms of usability and effectiveness. 

Other future works in the field of LCA can consider the SCs as complex adaptive systems and 

can account for time and other dynamics variances by using technologies such as agent-based 

modeling and analysis. 
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