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Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models
for multiphase flows have seen rapid development in recent years, and are becoming increasingly useful as pre-
dictive tools in both academic and industrial applications. However, quantitative comparisons between different
pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective
comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation
dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison,
we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability
conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 par-
ticipating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension,
finger width, and displacement efficiency. We find that no single method excels across all conditions, and that
thin films and corner flow present substantial modelling and computational challenges.

I. INTRODUCTION

Multiphase flows in porous media are central to a wide
range of natural and industrial processes, including geologic
CO2 sequestration, enhanced oil recovery, and water infiltra-
tion into soil. Predictive modelling of these processes re-
quires a clear understanding of the pore-scale mechanisms
of fluid-fluid displacement. These pore-scale processes can
be simulated using a variety of different approaches, includ-
ing lattice/particle-based methods such as the lattice Boltz-
mann method, upscaled continuum methods such as phase-
field models, and topological methods such as pore-network
models [1]. All of these models must confront a variety of
fundamental challenges related to resolving the combined ef-
fects of capillarity, wetting, and viscous instability within a
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complex geometry, including thin films, moving contact lines,
and the pinch-off and merging of interfaces. These mecha-
nisms combine to produce macroscopic displacement patterns
that are strongly dependent on the relative affinity of the solid
for the different fluids (i.e., wettability), the importance of vis-
cous forces relative to capillary forces (i.e., capillary number),
and the pore geometry. As a result, pore-scale modelling of
multiphase flow in porous media, even for relatively simple
pore geometries, remains an open challenge and a very active
area of research.

Historically, comparisons between pore-scale models and
experimental data have been hampered by limitations on both
fronts. The vast majority of existing experimental observa-
tions have been limited to macroscopic features and a narrow
range of wettability conditions (strong drainage), and do not
include a precise description of the associated pore geometry.
In addition, most pore-scale models are very computation-
ally expensive; only recently have these methods been able
to simulate flow through a sufficiently large number of pores
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to reproduce macroscopic observables thanks to advances in
both modelling methods and computing power. At the same
time, modern experimental techniques now allow for high-
resolution experimental observations and detailed character-
ization of pore geometry [1]. One recent dataset, in particular,
provides high-resolution observations across a wide range of
wettabilities and capillary numbers in a well-defined and rel-
atively simple pore geometry [2]. These observations offer an
unprecedented benchmarking opportunity for pore-scale mod-
els. The goal of this benchmark is to compare a wide variety of
state-of-the-art pore-scale modelling approaches with experi-
mental observations in terms of both pore-scale mechanisms
and macroscopic displacement patterns.

II. RESULTS

A. Dataset

The benchmark study is based on the experiments of
Zhao et al. [2] (Fig. 1). In the experiments, water was in-
jected (ηwater = 0.99 mPa · s) into a viscous silicone oil
(ηoil = 340 mPa · s) in quasi-2D microfluidic flow cells pat-
terned with vertical posts. This is a strongly viscously un-
stable displacement with viscosity ratioM = ηoil/ηwater ≈
340. The large unfavorable viscosity ratio of the experimen-
tal dataset was motivated by several considerations: it allows
for direct comparison with previous wettability-related exper-
imental studies [3, 4], it helps to highlight the impact of wet-
tability on viscous instabilities, and it is directly relevant to
applications like waterflooding of heavy crude oil [5].

The importance of viscous forces relative to capillary forces
in the experiments was characterized using the classical capil-
lary number Ca = ηoilvinj/γ, where γ = 13± 2mN/m is the
interfacial tension between the fluids and vinj = Q/(bd) is
the characteristic injection velocity as constrained by the gap
thickness b = 100 µm and the median pore-throat size d =
300 µm. The experiments were conducted at three distinct
values of Ca spanning two orders of magnitude: Ca = 0.029
(“low Ca”), 0.29 (“intermediate Ca”), and 2.9 (“high Ca”).1

Note that these values of Ca provide a nominal macroscopic
characterisation of the flow, but the actual strength of viscous
to capillary forces varies locally due pore-scale heterogene-
ity, preferential pathways, and the radial flow geometry. Note
also that the lowest value of Ca considered here is still mod-
erate relative to a truly quasi-static displacement. The wetta-
bility of the flow cell was characterized using the static ad-
vancing contact angle θ of water immersed in silicone oil.
The experiments were conducted at five distinct values of θ
spanning the full range of wettability conditions: θ = 150◦

(“strong drainage”), 120◦ (“weak drainage”), 90◦ (“neutral”),
60◦ (“weak imbibition”), and 7◦ (“strong imbibition”). The
participating teams were given the exact geometry of the post

1 Note that the Ca values reported in [2] are incorrect—They are too small
by one order of magnitude.

pattern and, for each experimental condition, a series of data
files describing the time evolution of the gap-averaged water
saturation S at high spatial resolution. To allow for qualitative
and quantitative comparisons between methods without im-
posing an excessive computational burden on participants, we
identified four “priority cases” that best represent the diversity
of patterns and physical mechanisms that emerge from fluid-
fluid displacement under different Ca and wettability condi-
tions:

1. Strong drainage at high Ca (SD-HC): Canonical viscous
fingering pattern with incomplete pore-scale displace-
ment due to formation of trailing films of the defending
fluid.

2. Weak imbibition at low Ca (WI-LC): Compact dis-
placement pattern due to cooperative pore filling.

3. Strong imbibition at intermediate Ca (SI-IC): Thin-
film flow of the invading fluid along the top and bot-
tom walls, accompanied by a ramified fingering pattern
formed by corner flow.

4. Strong imbibition at low Ca (SI-LC): Corner-flow-
driven “chaining” of posts.

B. Participating teams and methods

A total of 14 teams contributed modelling results to the
benchmark study (Table I). Together, they applied many
different pore-scale modelling methods (Table I and SI Ap-
pendix Note 1). The methods can be categorized into three
major classes: lattice/particle-based models, continuum mod-
els, and pore-network models. Lattice/particle-based models
simulate the motion and interaction of a large number of mi-
croscopic particles that collectively give rise to macroscopic
behavior satisfying the relevant continuum equations (e.g.,
Navier-Stokes). The fluid-fluid interface is captured implic-
itly as the boundary between the multi-colored particles that
represent the different fluid phases. These models include the
lattice Boltzmann (LB) methods [6] and stochastic rotation
dynamics (SR) models [7]. Continuum models solve macro-
scopic equations for fluid flow while tracking the interface im-
plicitly via the evolution of an indicator variable. These mod-
els include volume-of-fluid (VF) methods [8], level-set (LS)
methods [9], and phase-field (PF) models [10]. Pore-network
(PN) models simulate fluid flow through an idealized network
of pores connected by throats [11]. The macroscopic interface
is represented explicitly as the boundary between invaded and
non-invaded pores. It speaks to the physical complexity of this
problem that only one of the contributions (VF1) attempted
direct simulation of the Navier-Stokes (or Stokes) equations
with evolving fluid-fluid interfaces. Note also that only LB1,
LB3, and SR1 conducted truly 3D simulations.

C. Qualitative performance measures

The interplay between wettability and Ca generates a wide
spectrum of 2D displacement patterns that range from rami-



3

strong imbibitionweak imbibitionneutralweak drainagestrong drainage

0

Ca

1

SD
-HC

W
I-L

C

SI
-LC

SI
-IC

FIG. 1: Experimental phase diagram showing the displacement pattern at breakthrough for different wettability conditions (left
to right: θ = 150◦, 120◦, 90◦, 60◦, 7◦) and capillary numbers (bottom to top: Ca = 0.029, 0.29, 2.9). The colormap shows

the gap-averaged saturation of the invading fluid. The four “priority cases” for the benchmark study are outlined in dashed blue:
Strong drainage at high Ca (SD-HC), weak imbibition at low Ca (WI-LC), strong imbibition at intermediate Ca (SI-IC), and

strong imbibition at low Ca (SI-LC). Adapted from [2].

fied fingers to compact fronts (Fig. 1). Additional 3D infor-
mation is provided by the local gap-averaged saturation of the
invading fluid (Fig. 1). The displacement pattern and satura-
tion distribution at the end of the simulation, when the invad-
ing fluid reaches the outer edge of the computational domain,
serve as a good basis for qualitative and quantitative compar-
isons (e.g., Fig. 3 & SI Appendix).

D. Quantitative performance measures

For quantitative comparison, we calculate four performance
measures from the displacement pattern at the end of each
simulation, when the invading fluid reaches the outer edge of
the domain:

1. Fractal dimension Df , as calculated via the box-
counting method. This is a classical measure of the de-
gree to which a pattern fills space in 2D [40].

2. Average dimensionless finger width Wf , as measured at
half the radius of the computational domain and scaled
by the median post diameter. Note that this measure
is very sensitive to domain size for compact displace-
ments, and that not all groups used the same domain

size.
3. Gap-averaged saturation S of the invading fluid, as rep-

resented by its median value as well as the first and
third quartiles. Note that many methods ignore films
and therefore assume S = 1 in invaded regions.

4. Displacement efficiencyEd, which is the fraction of the
defending fluid that has been displaced from the do-
main.

Details on how we calculated the quantitative performance
measures can be found in SI Appendix Note 2.

E. Submission of simulation results

While some teams submitted results for many of the condi-
tions in the experimental phase diagram (Fig. 1), most teams
only contributed results for a relevant subset of the priority
cases (Table I, SI Appendix). For example, some methods
were developed for quasi-static displacement (i.e., small Ca;
LS1, PN5), and therefore could not be applied to intermedi-
ate or high Ca conditions. Other methods were developed for
drainage only (PN4, PN5), and therefore could not be applied
to imbibition scenarios. Additionally, some teams simulated a
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FIG. 2: Comparison between (A) the experimental
displacement pattern and (B–D) selected simulated

displacement patterns for the case of strong drainage at high
Ca (SD-HC). The simulations capture the slender, ramified
fingering patterns of SD-HC well, though they are produced

by three distinctly different classes of modeling methods.
The three methods differ most strongly in how well they
reproduce the residual wetting films, as illustrated by the

colormap.

subset of the experimental domain (i.e. truncated at a smaller
outer radius; LB1, LB3, SR1, VF1) due to computational con-
straints.

F. Performance of the methods

SD-HC: The experimental displacement pattern for SD-
HC displays classical viscous fingering, known for the slen-
der, ramified fingers mimicked by diffusion-limited aggrega-
tion (Fig. 1) [41, 42]. Remarkably, all three classes of meth-
ods are able to capture these patterns (Fig. S1). Quantita-
tive analysis of the simulated patterns reveals that while most
methods reproduce Wf to within a factor of 60%, most meth-
ods overpredict Df , and all methods overpredict Ed, often by
several-fold (Fig. 4A). The latter discrepancy is a consequence
of incomplete pore-scale displacement due to the well-known
formation of thin trailing films of the defending fluid at high
Ca [43, 44]. Most methods ignore these films, and those that
capture them tend to under-predict their thickness, which cor-
responds to over-predicting S (Fig. 4A). The PF methods ap-
pear to do a reasonable job of capturing this incomplete dis-
placement without simulating the full 3D problem. Note that
LB1, LB3, SR1, and VF1 simulate a subset of the full domain,

PF1 

SD
-H

C

SI
-IC

W
I-L

C

SI
-L

C

A B

C D

LB1

PN3PN2

0 1

FIG. 3: Selection of simulated displacement patterns for the
priority cases. (A) Strong drainage at high Ca (SD-HC) as
simulated by a phase-field model. (B) Strong imbibition at

intermediate Ca (SI-IC) as simulated by a lattice Boltzmann
model at a reduced viscosity ratio (M = 40). (C) Weak

imbibition at low Ca (WI-LC) as simulated by a
pore-network model. (D) Strong imbibition at low Ca

(SI-LC) as simulated by a pore-network model.

and that LB1, LB3, and SR1 simulate at a reducedM. Dis-
placement at high Ca is very sensitive to viscosity ratio, and
the predictions of the latter methods are affected accordingly.

WI-LC: The experimental displacement pattern for WI-LC
shows compact displacement as a result of cooperative pore
filling [33, 45]. Qualitatively, all three classes of methods are
again able to capture these patterns (Fig. S2). Most methods
capture Df to within a few percent, suggesting that the meth-
ods reproduce the 2D features of the pattern (Fig. 4B). This
case does not feature thin films, so S is nearly 1; as a result,
those methods that capture Df well also capture Ed. Note
that LB1, SR1, and VF1 simulate a subset of the full domain,
and LB1 and SR1 simulate at a reducedM. Displacement at
low Ca is not very sensitive to viscosity ratio, so the latter two
methods still perform well in this scenario.

SI-IC: The experimental displacement pattern for SI-IC
shows a highly ramified, yet roughly axisymmetric fingering
pattern, the backbone of which is formed by the successive
“chaining” of posts by preferential flow along the post-wall
corners [2]. The resulting pattern has low values of S be-
cause the strongly wetting invading fluid propagates primar-
ily by corner flow and in thin films along the top and bottom
walls, bypassing pore bodies [2, 46, 47]. Qualitatively, none
of the methods reproduce the ramified backbone of linked
posts (Fig. S3). Most methods fail to capture the emergence
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FIG. 4: Quantitative performance results for (A) SD-HC, (B) WI-LC, (C) SI-IC, and (D) SI-LC. First row: Fractal dimension
Df . Second row: Average dimensionless finger width Wf . Third row: Displacement efficiency Ed. Fourth row: Gap-averaged
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in addition to the median value. Italic labels on the horizontal axis denote contributions that simulate a subset of the
experimental domain, while bold labels denote contributions that simulate at a reducedM relative to the experiments.

of corner flow, typically overestimating Wf and greatly over- estimating Ed (Fig. 4C). Fully 3D methods should be able to
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capture corner flow and film flow, and images from the 3D
simulations (LB1, LB3, SR1) suggest that they do, at least to
some extent (Fig. 5). However, because of the high compu-
tational demands, all three of these methods simulate subsets
of the full domain at greatly reducedM; the latter suppresses
the strong preferential flow through thin films that should oc-
cur for largeM. Quasi-3D (gap-averaged) phase-field meth-
ods (PF1, PF2) can capture film flow through their upscaled
representation of the affinity of the invading fluid for both the
walls and the posts, but cannot capture corner flow without an
explicit sub-model for the presence of corners. Pore-network
models would require explicit sub-models for both film flow
and corner flow.

SI-LC: The experimental displacement pattern for SI-LC is
completely controlled by nearly quasi-static invasion through
corner flow. Corner films link groups of posts via bursts, and
then surrounded pores fill slowly and almost completely. Un-
like SI-IC, these patterns have a relatively large value of S
and no axial symmetry or well-defined fingers or branches.
Relatively few participants attempted this case because it in-
volves both low Ca (computationally demanding for 3D meth-
ods) and corner flow (absent from most methods). Qualita-
tively, the simulation results are quite variable (Fig. S4). PN3
captures post-chaining via corner flow with a dedicated sub-
model for corner flow, but does not capture the subsequent
filling-in (Fig 3); PF1 captures the rough shape, but with-
out clear post-chains. Quantitatively, all methods over-predict
Df , but all methods are relatively close to the experimental
value (Fig. 4D). All methods except for PF1 also over-predict
Wf by a factor of 2 or more. Only PF1 and PF2 are able to
make quantitative predictions of S (SR1, PN2, and PN3 as-
sume S = 1); PF1 reproduces the experimental value of S
very closely, whereas PF2 significantly over-predicts S. PF1
and PN3 both capture Ed relatively well; PF1 is arguably the
best match overall.

G. Thin films and corner flow

The complex nature of interfacial flows in the presence of
solid surfaces lends an inherently 3D nature to fluid-fluid dis-
placement processes, even in quasi-1D geometries such as
capillary tubes [48] and quasi-2D geometries such as Hele-
Shaw cells [46]. In a patterned micromodel, these 3D effects
include the propagation of thin films along the top and bot-
tom walls and the surfaces of the posts, and in the corners
where the walls and posts meet [2, 47]. While both fully 3D
methods (LB1, LB3) and quasi-3D (gap-averaged) methods
(PF1, PF2) predict the formation of trailing films in SD-HC,
only fully 3D methods (LB1, LB3) capture films in SI-IC. The
color-gradient wetting model used in LB1 leads to an artificial
film (∼14 µm) that slowly permeates the entire simulation do-
main. This film accumulates on the posts to form corner films
and pendular rings that resemble those observed in the ex-
periments (Fig. 5B). However, this film also uniformly coats
the top and bottom walls, and the resulting mass transport ap-
pears to suppress the strong preferential flows observed in the
experiment. LB3 uses a similar wetting model, and should

A B0 1

C

1 mm

FIG. 5: (A) Experimental snapshot of SI-IC at the pore scale,
which is characterized by the co-existence of thin films and

corner flow. (B) Simulation results of LB1 for SI-IC
(M = 40). Top: Cross-sectional view showing the leading

thin films along the top and bottom walls. Bottom: Plan view
showing the co-existence of thin films and corner flow, as

well as pendular rings that link neighboring posts.
(C) Isometric projection of the 3D simulation results of LB3
for SI-IC (M = 100), showing the propagation of thin films

ahead of the main invasion front.

therefore have the same feature (Fig. 5C). Both of these meth-
ods are very computationally demanding due to the very large
number of particles needed to resolve a 3D flow. For a given
scenario, the computational cost also scales with the number
of timesteps and the timestep size. The timestep size is con-
strained byM for numerical stability, whereas the number of
timesteps to breakthrough scales with the domain size. As a
result, LB1 and LB3 simulate a subset of the full domain, and
at a reducedM.

III. DISCUSSION

The goal of this benchmark study was to assess the de-
gree to which different state-of-the-art modeling strategies
could reproduce the correct macroscopic features (and some
pore-scale features) of fluid–fluid displacement in a porous
medium under different wetting conditions. These pore-scale
models have become widely-used tools in extracting macro-
scopic properties of geologic porous media (e.g., relative per-
meability) [49–52], and in designing synthetic porous materi-
als with desirable transport properties in electrochemical de-
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vices [53, 54]. In all these cases, the accuracy of the model
output hinges upon its ability to correctly account for the im-
pact of wettability at different capillary numbers.

Most methods were able to capture viscous instability and
fingering at high flow rates (IC and HC), and most were also
able to capture the more subtle broadening of features in WI
where the low contact angle enables cooperative pore filling.
In contrast, few methods were able to capture the thin trailing
films that form for SD-HC, the thin leading films that occur for
SI-IC, and the corner films that dominate SI-LC, all of which
are inherently 3D.

For 2D models, films present a modelling challenge. Gap-
averaged PF models were able to capture trailing films in SD-
HC, although leading films in SI-IC and corner flow in SI-LC
remain elusive. Other 2D models were unable to capture films
to any noteworthy extent. PN3 was the only model to explic-
itly account for corner flow, and was reasonably successful in
doing so for quasi-static displacement. However, extending
such a model to include viscous effects and residual films is
nontrivial because many of the underlying physical phenom-
ena, such as flow through corner networks, film bridging from
post to post, and post-chaining avalanches, are poorly under-
stood.

For 3D models, films present a serious computational chal-
lenge. Resolving films is nontrivial due to the large aspect
ratio of the problem—the flow cell has a radius of 100 mm,
the gap thickness is 100 µm, and the film thickness ranges
from tens of microns to a few microns or less. LB1, LB2,
and LB3 addressed this challenge most directly, running 3D
simulations with ∼160 million, ∼160 million, and ∼300 mil-
lion lattice sites, respectively. Even after reducing the viscos-
ity ratio and truncating the domain in order to relax time-step
restrictions, these simulations required world-class computa-
tional resources. Despite this substantial effort, these simu-
lations could only achieve a spatial resolution of 10–20 µm,
which is barely small enough to allow for films and certainly
not small enough to resolve them. All three groups agree
that this problem pushes the limits of what is currently pos-
sible. More importantly, these simulations showed both qual-
itatively and quantitatively that failure to resolve films at the
small-scale can have important consequences for the macro-
scopic flow pattern.

It is well-known that pre-existing wetting films are com-
mon in subsurface applications such as enhanced oil recov-
ery, and that their presence has a significant impact on the
macroscopic transport properties such as relative permeabil-
ity [55, 56]. These pre-existing films would be an active,
evolving component of the displacement as they swell, dis-
connect, reconnect, and pinch-off—particularly in partial wet-
ting conditions. Resolving them (and the flow within them)
would be an essential and challenging part of the problem.

This benchmark targets the “many-pore” scale (hundreds to
thousands of pores), as this is a scale large enough to manifest
the collective dynamics characteristic of fluid–fluid displace-
ments in porous media (viscous fingering, capillary fingering,
avalanches, etc.), and small enough that computational mod-
els are routinely used to make predictions. Thus, it is natu-
ral to ask whether those predictions are accurate. There is,

however, an underlying scale at which “single-pore” fluid-
mechanics details emerge (such as menisci deformation and
merging, contact-line pinning and motion, contact-angle hys-
teresis, post wetting dynamics, etc). The inclusion of these
effects will further increase the computational complexity of
the problem, which makes it impractical at the scale of hun-
dreds to thousands of pores considered in the current study,
and comparison of different methods at this single-pore scale
would require an altogether different type of benchmark study
in a simpler geometry (e.g., Verma et al., 2018 [27]). Further-
more, real rocks such as carbonates also have a wider pore
size distribution than the one from our micromodel [57], a
feature that would likely have an effect on the correlation be-
tween pore occupancy and pore size that is absent from our
experimental benchmark.

A key contribution of this benchmark is to demonstrate the
capabilities and limitations of three major classes of pore-
scale models (i.e., lattice/particle-based models, continuum
models, and pore-network models) in predicting the macro-
scopic features of unstable two-phase flows in the presence
of solid surfaces. We find that all three classes of models are
capable of predicting the transition from strong drainage to
weak imbibition. Specifically, pore-network models offer su-
perior computational efficiency, but they lack the ability to re-
solve gap-averaged saturations that the more computationally
intensive lattice/particle-based models and continuum models
offer. Only 3D lattice/particle-based models could simulate
leading films and corner flow in strong imbibition, but their
spatial and temporal resolutions are severely limited by the
prohibitive computational demand. Our results highlight the
need for further effort along multiple complementary avenues
in what is already a very active area of research.

The simulated displacement patterns for all priority cases
are presented in SI Appendix, Figs. S1–S4. Details on how we
calculated the quantitative performance measures of the pri-
ority cases can be found in SI Appendix Note 2. Descriptions
of all the models, including their derivation and numerical im-
plementation, are included in SI Appendix Note 3–5.
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[88] J. Boussinesq. Mémoire sur l’influence des frottements dans les
mouvements réguliers des fluids. J. Math. Pures Appl., 13:377–
424, 1868.

[89] T. H. Nguyen. Hausdorff box-counting fractal dimension with
multi-resolution calculation.

[90] D. Wilkinson and J. Willemsen. Invasion percolation: a new
form of percolation theory. J. Phys. A, 16:3365–3376, 1983.

[91] M. Cieplak and M. O. Robbins. Dynamical transition in
quasistatic fluid invasion in porous media. Phys. Rev. Lett.,
60:2042–2045, 1988.
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SUPPLEMENTARY NOTE 1: DISPLACEMENT PATTERNS FOR PRIORITY CASES

This benchmark study is based on the experiments of Zhao et al. [2], who studied fluid-fluid displacement in a quasi-2D
microfluidic flow cell over a wide range of wettabilities and capillary numbers. A total of 14 teams (see Table 1 of the manuscript)
contributed modelling results to the benchmark study. Together they applied many different pore-scale modelling methods.
In general, the modelling methods can be categorized into three major classes: lattice/particle-based models (Supp. Note 3),
continuum models (Supp. Note 4), and pore-network models (Supp. Note 5). Lattice/particle-based models include lattice
Boltzmann (LB) methods and stochastic rotation dynamics (SR) models. Continuum models include volume-of-fluid (VF)
methods, level-set (LS) methods, and phase-field (PF) models. Pore-network (PN) models include quasi-static and dynamic
variants. To allow for qualitative and quantitative comparisons between methods without imposing an excessive computational
burden on participants, we identified four “priority cases” that best represent the diversity of patterns and physical mechanisms
that emerge from fluid-fluid displacement under different Ca and wettability conditions. These priority cases include strong
drainage at high Ca (SD-HC), weak imbibition at low Ca (WI-LC), strong imbibition at intermediate Ca (SI-IC), and strong
imbibition at low Ca (SI-LC). We use the simulated displacement patterns at the end of the simulation, when the invading fluid
reaches the outer boundary of the computational domain, as our basis for qualitative and quantitative comparison (Fig. S1 – S4).

FIG. S1: Simulated displacement patterns for strong drainage at high Ca (SD-HC). The corresponding experimental
displacement pattern is presented in the top row. See Fig. 3A of the manuscript for corresponding quantitative performance

results.
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FIG. S2: Simulated displacement patterns for weak imbibition at low Ca (WI-LC). The corresponding experimental
displacement pattern is presented in the top row. See Fig. 3B of the manuscript for corresponding quantitative performance

results.
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FIG. S3: Simulated displacement patterns for strong imbibition at intermediate Ca (SI-IC). The corresponding experimental
displacement pattern is presented in the top row. See Fig. 3C of the manuscript for corresponding quantitative performance

results.
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FIG. S4: Simulated displacement patterns for strong imbibition at low Ca (SI-LC). The corresponding experimental
displacement pattern is presented in the top row. See Fig. 3D of the manuscript for corresponding quantitative performance

results.
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SUPPLEMENTARY NOTE 2: IMAGE ANALYSIS

We extract four performance measures from the modelling outputs for quantitative comparison.

1. Fractal dimension Df , as calculated via the box-counting method. This is a classical measure of the degree to which a
pattern fills space in 2D [40].

2. Average dimensionless finger width Wf , as measured at half the radius of the computational domain and scaled by the
median post diameter (Fig. S5 c-d). Note that this measure is very sensitive to domain size for compact displacements,
and that not all groups used the same domain size.

3. The gap-averaged saturation S of the invading fluid, as represented by its median value as well as the first and third
quartiles (Fig. S5 a-b).

4. Displacement efficiency Ed, which is the fraction of the defending fluid that has been displaced from the domain. The
total volume of the displaced defending fluid is given by the product of the gap-averaged saturation S of the invading fluid
and the gap thickness, summed over the entire domain.

FIG. S5: Sample image analysis procedure. (a) We received simulation results in the form of high-resolution images of the
displacement pattern at the end of the simulation, which is when the invading fluid reaches the edge of the simulation domain.
The images are 8-bit grayscale TIFF files, with the intensity of each pixel corresponding to the gap-averaged saturation of the

invading fluid. (b) We overlay the post structure onto the displacement pattern, here also displaying the gap-averaged saturation
of the invading fluid via a colormap. (c) We create a binary image of invaded (white) and un-invaded (black) regions by

applying a global saturation threshold. Posts that are completely surrounded by the invading fluid are treated as part of the
invaded region. Using this binary image, we measure the fractal dimension Df via the box-counting method. We measure the

finger widths Wf at a radial distance that is halfway from the injection port to the outer boundary of the simulation domain
(dashed blue circle). The fingers are defined as continuous stretches (red solid) of the invading fluid along the circle. (d) Top:

Pixel intensity of the binary image along the circle where finger widths are measured, where l/D is the dimensionless distance
along the circle with D the median post diameter. Bottom: We merge immediately adjacent fingers (i.e., those separated by a

single post) to obtain a more representative measurement of finger width.
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SUPPLEMENTARY NOTE 3: LATTICE/PARTICLE-BASED METHODS

Lattice Boltzmann Model 1 (LB1)

Authors: Yu Chen and Albert J. Valocchi
Email: yu chen@lanl.gov; valocchi@illinois.edu

Introduction
The lattice Boltzmann (LB) method [6] is particularly suitable for the numerical simulation of flow of complex fluid in complex
geometries. The LB color-fluid multiphase model [58] ensures a relatively sharp interface and completely immiscible fluids,
and the method can be relatively easily implemented on manycore processors such as Graphical Processing Units (GPUs) to
significantly increase the computing capability. Therefore, the LB color-fluid multiphase model has been widely adopted for
modelling multiphase flow in porous media.

Our in-house LBM code is based on a variant of the multiple relaxation time (MRT) [59] color-fluid multiphase lattice
Boltzmann model [12, 60]. The 3D code is optimized for massively parallel computing and can efficiently utilize many-core
processors. Thanks to the computing capability of the code, we are able to perform 3D direct numerical simulations on the
micromodel benchmark so that events like corner flow can be simulated. Benchmarking against experiments can be used to
evaluate our production code, which is designed for multiphase flow simulation in 3D rocks.

Model Description: color-fluid lattice Boltzmann multiphase model
In the color-fluid model, we label different fluids with a color index, e.g., fluid r (red) and fluid b (blue), which are represented
by their own particle distribution function (PDF), f r

i and f b
i , respectively. Here i represents the ith lattice direction of the D3Q19

lattice model. The lattice Boltzmann equations for both fluids are

f s
i (x + eiδt, t+ δt) = f s

i (x, t) + Ωs
i(x, t), s = r, b, i = 0, ..., 18, (1)

where superscript ‘s’ indicates either fluid r or fluid b, ei is the lattice velocity, and Ωs
i(x, t) is the collision operator, which is

comprised of three parts:

Ωs
i = Ωs

i
(3){Ωs

i
(1) + Ωs

i
(2)}, (2)

where Ωs
i
(1) is the regular LB MRT collision operator, Ωs

i
(2) is the perturbation operator responsible for the generation of surface

tension, and Ωs
i
(3) represents the ‘recoloring’, which mimics the phase separation mechanism. For fluids with identical density,

it is not necessary to calculate the operators Ωs
i
(1) and Ωs

i
(2) separately for each component. Then, Eq. (2) becomes,

Ωs
i = Ωs

i
(3){Ωi(1) + Ωi

(2)}, (3)

where Ωi
(1) and Ωi

(2) are the MRT collision operator and the perturbation operator for the bulk fluid mixture, respectively.
Followed the work of Tölke et al. [60], the perturbation operator is integrated in the MRT framework by adding additional
terms to the stress-related equilibrium moments. After the collision step for the bulk fluid mixture in the MRT framework, we
obtain the post-collision PDFs of the fluid mixture. The recoloring operator Ωs

i
(3) redistributes the mass distributions of fluid

r and fluid b in a way so that the inner product of the color gradient and momentum of fluid r is maximized [60]. The static
contact angle θ is modeled by assigning a constant order parameter value on the solid boundary nodes [61]. More details of the
numerical model and implementation of the code on many-core processors can be found in [12].

Simulation Setup and Procedure
The height of the circular posts b = 100 µm is comparable to the median pore-throat size d = 300 µm. Therefore, either 3D
simulation or 2D simulation with sub-models to account for the finite depth of the micromodel are required. Moreover, the
experimental study clearly shows the importance of corner flow in the strong imbibition case. Therefore, we performed 3D
simulations to avoid the approximations inherent to 2D simulations.

The details of the simulation domain and boundary conditions can be found in Fig. S6. Only the half depth of the micromodel
is simulated to reduce the overall computation cost while a symmetry boundary condition is applied on the mid-plane of the
cell. Our small domain tests show that there is negligible difference between the half depth and full depth simulation. We used
a similar simulation set up in other studies applying LBM to micromodel experiments [12].
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FIG. S6: Simulation domain and boundary conditions: a confining round plate covers the top of the micromodel; an injection
hole is located on the center of the confining plate where constant velocity boundary condition is applied to inject the fluid; at

the top of the micromodel, the rest of the areas excluding the confining plate are outflow zones, where constant pressure
boundary condition is applied; at the bottom of the micromodel, symmetry boundary condition is applied; the bounce-back

non-slip boundary condition is applied to all solid surfaces.

FIG. S7: Simulated displacement patterns for different wettability conditions and capillary number (left to right: Strong
drainage at high Ca forM = 100, Strong drainage at low Ca forM = 5, weak imbibition at low Ca forM = 5, strong

imbibition at intermediate Ca forM = 40.

Considering the computation cost and numerical accuracy, we chose a grid resolution of 14.3 µm and performed the simula-
tions on a cropped domain which covers 80 % of the diameter of the micromodel used in the experiment. The final grid for the
half-depth computational domain is 5722× 5× 5722. For WI-LC, the domain is further cropped to 50 % of the diameter of the
micromodel to reduce the computational cost since WI-LC is relatively insensitive to domain size.

The capillary number is defined by Ca = µoilvinj/γ, where vinj is the characteristic injection velocity and is fixed during the
simulation. Therefore, one would prefer a small ratio of µoil over γ to achieve a large injection rate in the simulation. However,
in the commonly used LB models, the ratio of µmin (minimum viscosity of the two fluids) over γ is constrained and typically
larger than 0.1. As a result, it is very challenging to simulate the low Ca cases with high viscosity ratioM. For instance, more
than a billion iterations are required to simulate the low Ca cases at viscosity ratio M = 340. Also, at very high viscosity
ratio (M > 100), spurious currents cause significant anisotropy of the fluid interface due to the small depth of the micromodel
(the anisotropy is less severe in real 3D rock geometries). In summary, compared to the viscosity ratio of about 340 in the
experiments, much smaller viscosity ratios are used in the simulations, particularly for the low Ca cases. In these low-Ca cases,
as the capillary force is dominant, the viscous effects could be less important and the use of smaller viscosity ratio might be
justified. The simulations were performed on the TACC Stampede 2 supercomputer provided by XSEDE [62], where the LBM
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simulations benefitted from the high memory bandwidth of the Intel Xeon Phi (KNL) processor. A typical simulation took
14 KNL processors 16 to 58 hours to complete, depending on the injection rate. Fig. S7 shows the simulated displacement
patterns.
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Lattice Boltzmann Model 2 (LB2)

Authors: Jianlin Zhao and Qinjun Kang
Email: qkang@lanl.gov

Introduction
The color-gradient lattice Boltzmann (LB) model is adopted in this simulation. In this model, two density distribution functions
are used to represent the two fluids. In addition to the regular propagation and collision steps, a perturbation operator is added
to generate the interfacial tension, and a recoloring operator is added to produce the phase segregation and maintain the phase
interface. Then the fluid-fluid interfaces can automatically form. To reduce the computational cost, 2D simulations of the
displacements under high capillary numbers (with injection rate of 0.2 mL/min) are conducted.

Model Description
In the color-gradient LB model, there are two immiscible fluids (red and blue) represented by the distribution functions fRi and
fBi , respectively. The total distribution function is defined as: fi = fRi + fBi . For each fluid, the evolution equation is:

fki (x + eiδt, t+ δt) = fki (x, t) + Ωki (fki (x, t)), (4)

where k = R or B represents the red or blue fluid; x is the spatial location of the particles; ei is the discrete velocity in the
i direction; t is time; δt is the time increment; Ωki is the collision operator and consists of three parts: Ωki = (Ωki )(3)[(Ωki )(1) +
(Ωki )(2)].

(Ωki )(1) is the single phase collision operator. The MRT collision operator is adopted here:

(Ωki )(1) = (M−1SM)ij(f
k
j − f

k,(eq)
j ) + Φi, (5)

where M is the transformation matrix which is used to map the vector f in discrete velocity space to the vector m in moment
space; S is the diagonal collision matrix; Φi is the external force term.

(Ωki )(2) is the perturbation operator which generates an interfacial tension:

(Ωki )(2) =
Ak

2

∣∣∇ρN ∣∣(wi (ei · ∇ρN )2

|∇ρN |2
−Bi

)
, (6)

where ρN is the phase field function; Ak is a function related to the interfacial tension.
(Ωki )(3) is the recoloring operator used to produce the phase segregation and maintain the phase interface:

(ΩRi )(3)(f ′i) =
ρR

ρ
f ′i + βwi

ρRρB

ρ2
cos (ϕi) f

eq
i |u=0

(ΩBi )(3)(f ′i) =
ρB

ρ
f ′i + βwi

ρRρB

ρ2
cos (ϕi) f

eq
i |u=0

(7)

where f ′i is the post-perturbation total distribution function; ϕi is the angle between the color gradient ∇ρN and the lattice
direction ei; and β is a parameter related to the interface thickness.

The no-slip halfway bounce-back boundary condition is applied at the solid walls. To generate a certain contact angle, the
solid node is assumed to be a mixture of two fluids and has a certain value of the phase field ρNs . If the contact angle of the red
fluid is θR, ρNs should be set as cos θR. More details about the model can be found in the references [14, 15].

Numerical setup
The size of the simulation domain is 4960× 4960 and the resolution is 20.18 µm/lattice. Constant pressure boundary conditions
are adopted on the four sides and constant velocity boundary conditions are adopted in the middle of the domain. All the
simulations are carried out using the high performance computer cluster Grizzly of Los Alamos National Laboratory. 80 × 80
CPU cores are adopted with the simulation domain in each core being 62× 62 lattices.

The simulation results under different wettability conditions are shown in Fig. S8. Because of the physical difference between
2D and 3D fluid flow, the simulation results show some difference from the experimental results, especially for the strong
imbibition case (the rightmost subfigure). In the experiments, the water phase mainly invades the porous media along the solid
surfaces in strong imbibition. However, this phenomenon cannot be properly accounted for in our 2D simulation, which results
in the significant difference.
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FIG. S8: Simulated fluid-fluid displacement patterns for Ca = 2.9 under different wettability conditions (left to right:
θ = 150◦, θ = 120◦, θ = 90◦, θ = 60◦, θ = 7◦).
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Lattice Boltzmann Model 3 (LB3)

Authors: Kelsey Bruning, James E. McClure, Cass T. Miller
Email: casey miller@unc.edu

Introduction
The lattice Boltzmann simulator relies on the color model with a multiple-relaxation time D3Q19 collision operator for the
momentum transport and a D3Q7 scheme for the mass transport. Information on the formulation, including validation of the
approach used to set the contact angle can be found in the literature [16, 17]. The method is implemented in parallel using MPI
and CUDA with in-situ analysis tools to track various measures of flow [63, 64]. A digitized 3D version of the microfluidic flow
cell was created based upon the custom code developed to assign the position of the posts, top and bottom plates, and the flow
inlet.

Model Description
The original experimental images have a resolution of 2048 × 2048 pixel squared with a pixel width of 54 µm. The median
pore-throat size, dexp, is 300 µm and the physical depth of the system, bexp, is 100 µm. The diameter of the sample is 10 cm. At
the original resolution, the depth of the system is less than two pixels, which is insufficient to resolve the interface profile. The
simulations are performed to resolve the physical depth of the sample to 32 voxels where dsim = 32δx. Sufficient resolution of
the vertical direction is critical to be able to resolve pendular rings that fill the corners where each post meets the top and bottom
plates. The total size of the simulation domain was 3072 × 3072 × 32 with a voxel width of δx = 13 µm. This corresponds to
a diameter of 4 cm. The aspect ratio of the experimental system will tend to privilege the role of capillary film dynamics on the
top and bottom plates due to relative thickness of these films compared to the system depth.

The total rate of flux was specified using a volumetric flux boundary condition to match the reported flow rates, determined
based upon the experimental capillary number. The capillary number was defined based upon the dynamic viscosity of the
silicone oil phase, µoil; the flow rate of the invading fluid, Q; the median pore throat length, d; the depth of the media, b; and the
interfacial tension between the water phase and silicone oil phase, γ. Each quantity can be evaluated in the relevant experimental
units as well as the units for the simulation. To match the experimental capillary number and experimental flow rate in the
simulation, simulated values are chosen to satisfy

Casim = Caexp → µoil,simQsim

bsimdsimγsim
=
µoil,expQexp

bexpdexpγexp
→ Qsim =

(
bsimdsimγsim

µoil,sim

)
Caexp. (8)

This choice establishes the basis for unit conversions between the simulated and experimental system and establishes the
relationship between the lattice time step and physical time. The flux specified in the simulation provides the change in volume
per unit time, where the unit of length is the lattice length and the unit of time is the lattice time. The relationship of the lattice
length δx to physical units is given by h. The relationship between the physical timestep, dt, and the lattice time, δt, is chosen
so that the experimental and simulated flux will match,

dt =
Qsim

Qexp

h3

δx3
δt. (9)

An attempt was made to match the mobility ratio,M = 343. This represents a challenge for this particular LBM implemen-
tation and it was only possible to achieveM = 100. Furthermore, the experimental and simulated density ratios do not match.
The parameter values for the simulation are shown in comparison to experimental values in Table II. The simulated displacement
patterns are shown in Fig. S9.
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TABLE II: Parameter values for the experiment and simulation, where m, l and t are the simulated units of mass, length and
time.

Parameter Experiment Simulation
Rinlet 1018 µm 326 l
µwater 0.99 mPa·s 1/300 m/lt
µoil 340 mPa·s 1/3 m/lt
b 300 µm 300/32 l
d 100 µm 32 l
γ 13 mN/m 0.0058 m/t2

FIG. S9: Simulated displacement patterns for strong drainage at high capillary number (left) and for strong imbibition at
intermediate capillary number (right).
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Lattice Boltzmann Model 4 (LB4)

Authors: Abbas Fakhari and Diogo Bolster
Email: afakhari@nd.edu

Introduction
The phase-field-based lattice-Boltzmann method (LBM) consists of an interface-tracking lattice Boltzmann equation (LBE)
based on the conservative phase-field model and a pressure-evolution LBE for recovering the hydrodynamic properties [18].
The implemented phase-field LBM has been shown to be capable of dealing with realistic density and viscosity ratios while
maintaining numerical stability and accuracy [19].

Model Description
All the details of the model are described in Ref. [19]. It has been shown that the phase-field LBM provides reasonably accurate
results compared with experiments in a porous micromodel at relatively low density ratios [19], which is also the case in the
present study. Please note that for dealing with multiphase flow dynamics at higher density ratios, the improved phase-field
method recently proposed in Ref. [65] provides more accurate results.

FIG. S10: Simulated fluid-fluid displacement pattern for Ca = 2.9 under two wettability conditions (left: θ = 150◦; right:
θ = 60◦).
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Stochastic Rotation Dynamics 1 (SR1)

Authors: Thomas Hiller and Martin Brinkmann
Email: thiller@eonerc.rwth-aachen.de

Introduction
For this benchmark study on immiscible fluid displacement, we use our custom-made 3D multi-color (multi-phase) stochastic
rotation dynamics (SRDmc) algorithm [20, 66, 67]. In addition to the standard 2D SRDmc algorithm of Inoue et al. [66], our
implementation also accounts for rigid walls with different surface wettability and angular momentum conservation.

SRD methods in general are particle based simulation techniques for modeling fluid flows, where the microscopic dynamics
of the fluid particles is modeled using a sequence of streaming and collision steps. Compared to Molecular Dynamics (MD) or
Dissipative Particle Dynamics (DPD) simulations, SRD requires significantly less time averaging, and allows using coarser time
steps, to represent fluid motion in the continuum limit. For an extensive overview of the SRD method, we refer the reader to
Refs. [68, 69].

So far, we successfully applied our Stochastic Rotation Dynamics multi-color model (SRDmc) code to study immiscible
displacement in a flat microfluidic cell with cylindrical posts [21] and three-dimensional bead packs exhibiting spatial wetting
heterogeneities [70].

Model Description
The algorithm used here is similar to the majority of off-lattice, particle-based, simulation methods, including the standard SRD
algorithm for single phase fluids [68, 69], in providing an effective scheme to exchange linear momentum between fluid particles.
During streaming, particles move deterministically between time t and t+ ∆t

xi(t+ ∆t) = xi + vi(t)∆t+
fext
2mi

∆t2 (10)

with xi and vi being the corresponding position and velocity of particle i and fext being a constant external force acting on
the particles. In order to exchange linear momentum (via collisions), the particles are sorted into cubic collision cells of side
length a where the number of particles per cell fluctuates around an average value 〈N〉. The particle velocities vi(t+ ∆t) after
a collision are related to the pre-collisional velocities v′i(t+ ∆t) through

vi(t+ ∆t) = u(t+ ∆t) + Ω [v′i(t+ ∆t)− u(t+ ∆t)] (11)

where u is the center of mass velocity of fluid particles in the corresponding collision cell while Ω denotes the collision
operator. By construction, the collision operator conserves mass, linear and angular momentum, which implies that averaged
local quantities such as density, stresses and flow velocity obey certain macroscopic transport equations. To ensure a constant
and uniform temperature, we apply a cell level thermostat as described in [20]. The distribution of local capillary and viscous
stresses in the fluids is directly obtained from averages of the momentum flux over a dense mesh of small control planes.

To simulate the flow of two immiscible fluids in the benchmark set-up, we adapted the SRDmc collision operator of Inoue et
al. [66] that actively drives a segregation between fluid particles with different particle species (colors). In addition, to capture
the impact of surface wettability on the fluids, we extended Inoue’s SRDmc algorithm to account for different relative adhesion
of the fluids to the surfaces of the cylindrical posts. The relative adhesion of the fluids to the surface is controlled by the color
(wetting or non-wetting) of virtual ghost or wall particles inside the posts. These wall particles initially have been proposed to
eliminate slip effects at the wall [71]. In every collision step, the fluid particles interact with wall particles in the same collision
cell. The color and density of the wall particles (i.e. the number of particles per cell), determines the equilibrium contact angle
of the fluid interface with the wall. For details of the simulation method, our implementation of surface wettability, and further
benchmark tests, we refer the reader to Hiller et al. [20].

Numerical Setup
For the technical specifications of our implementation, please see Tab. III. Because SRD is a coarse-grained particle based
method to simulate flows, we need to respect specific limitations of the simulation method. For instance, in this set-up and for
the chosen simulation parameters, the viscosity contrast is controlled by the particle mass of the corresponding fluid phase. To
keep the total number of fluid particles in the simulation domain fixed, we collect defending phase particles from the boundaries
of the domain and insert them at the central inlet as invading phase particles. With this relocation, we change their color, mass
and corresponding particle velocity. This “pump rate” stays constant over time and effectively determines the capillary number
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Ca. If the viscosity ratio is too large, this protocol would result in a strong increase of the density of low-viscous invading phase
particles in the inlet region. If, at the same time, the high-viscous defending fluid particles do not reach the domain boundaries
at the same rate as particles are inserted in the center of the cell, this would violate the necessity for a rather constant average
particle density across the whole domain.

In order to balance the need for sufficient system sizes and resolution to obtain statistically significant quantities with the
computational costs of our simulation method, we limited the domain height to 5a. Because of the small vertical dimension
of the cell, the average aspect ratio of obstacles is D/H = 3.5/5 and therefore, the vertical fluid saturation distribution (gap-
averaged saturation) is not representative. We adopt the definition of Ca described in Zhao et al. [2]: Ca= ηdefvinv/γ with
vinv = 〈Q〉/Lz〈d〉, where 〈Q〉 and 〈d〉 = 2.33a are the average volume flow rate of the invading phase and the median throat
diameter, respectively. The dynamic viscosity of the defending phase is denoted by ηdef and γ is the interfacial tension between
invading and defending phase.

TABLE III: Technical specifications of the SRDmc simulations

Property Value
Simulation domain size Lx × Ly × Lz = 300× 300× 5 (cubic cells)
Number of cells 831744 (including 2 virtual layers on each boundary –

needed for wettability implementation)
Particle density 14 particles per cell
Number of particles 4914000

Number of obstacles 1925

Porosity 0.67
Number of parallel threads 20 (OpenMP)
Memory consumption 9.5 GB
Run time per simulation 1-4 weeks depending on Ca

Ca

FIG. S11: Simulated displacement patterns for different wettability conditions (left to right: θ = 180◦, θ = 120◦, θ = 90◦,
θ = 60◦, θ = 0◦) and capillary numbers. The viscosity ratio between the defending fluid and the invading fluid was set to

M = 5.
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SUPPLEMENTARY NOTE 4: CONTINUUM METHODS

Phase-field Model 1 (PF1)

Authors: Luis Cueto-Felgueroso
Email: luis.cueto@upm.es

Introduction
We use a diffuse-interface model of two-phase flow to simulate the benchmark problem. The model builds on our previous
work on two-phase flow in a capillary tube [23] and a Hele-Shaw cell [22], incorporating the effect of wetting conditions at the
posts. This model aims at capturing the 3D viscous and capillary coupling between fluids in the cell gap via a 2D, gap-averaged
Darcy formulation. In this case, the model and its outputs are different from the classical problem of approximating the 2D
sharp-interface problem. Fluid volume fractions can be understood as phase fields, because they are used to represent the idea
that either fluid may fully occupy the cell gap. The current model is limited by the assumption of Darcy flow in the cell gap,
which may not be realistic when pore throat sizes are comparable to the cell gap width.

Model Description
Assuming constant gap width b, density-matched fluids with constant densities, and using the water saturation Sw, total pressure p
and capillary pressure potential Ψ as primary variables, the model equations read [22, 23]

∂tSw +∇ · (−λw∇p+ λw∇Ψ) = 0, (12)
Ψ = −c2F ′0 + c4∇2Sw, (13)
∇ · (−λT∇p+ λw∇Ψ) = 0, (14)

where we used the constraint Sw + So ≡ 1. The saturation-dependent phase mobilities, λα, and total mobility, λT , are defined
as:

λw =
k

µw
krw, λo =

k

µo
kro, (15)

λT = λw + λo =
k

µw

(
krw +

1

M
kro

)
, (16)

where µα is the dynamic viscosity of phase α,M = µo/µw is the viscosity ratio, and the effective permeability for Darcy flow
is k= b2

12 . The partial derivative of the dimensionless bulk free energy with respect to water saturation, F ′0, is taken as:

F ′0 = 16Sw (1− Sw)
7

(1− 5Sw) , (17)

which is derived from a simple double-well dimensionless bulk free energy that is independent from the contact angle at the
posts:

F0 = 8 (1− Sw)
8
Sw

2. (18)

The capillary pressure Ψ—equation (13)—is obtained as minus the variational derivative of a phenomenological free energy
functional, Ψ = −δF/δSw, where the free energy density F (Sw,∇Sw) is given by [72]:

F = c2F0 +
c4
2
|∇Sw|2. (19)

The parameters c2 [N/m2] and c4 [N] control the effective surface tension γ and interface thickness δ, such that c2 ∼ γ/δ
and c4 ∼ γδ. We used these parameters to match the experimental surface tension, γ = 0.013 N/m2, while ensuring an interface
thickness that can be resolved with affordable computational grids.

We employ relative permeability functions that reflect the preferential wetting as well as the large viscosity contrast:
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krw = S3
w −

3

2M
Sw(1− Sw)(1 + Sw), (20)

kro =
(1− Sw)2(2 + Sw)

2
. (21)

The model equations (12)–(14) describe the evolution of the two-dimensional, gap-averaged fields: the vector fields are
two-dimensional and the saturations, pressures and velocities should be understood as gap-averaged quantities.

Inlet and outlet boundary conditions
We impose the experimental injection rates by setting an inward volumetric water flux, VI [m/s], along the boundary of an inlet
circular injection port at the center of the domain. The radius of the injection port is rI = 1 mm, and the imposed volumetric
flux is

VI =
Qf

2πrIb
, (22)

where Qf is the experimental flow rate, Qf = 0.002, 0.02, 0.2 ml/min. We also impose a water saturation of 1 at the inlet
boundary, Sw = 1. At the outer boundary of the domain, we impose a constant reference pressure, p = 0.

Wettability condition at the posts
We enforce the static contact angle at the posts through the simplified boundary condition:

n · ∇Sw = cos θ|∇Sw| (23)

Model calibration (parameters c2 and c4)
We calibrate parameters c2 and c4 by computing the steady-state solution of a water slug in a narrow channel (Fig-
ure S12). The width of the channel corresponds to a typical pore throat of 300 µm. The capillary pressure is given
by ∆pc = γ cos θ(2/b + 2/w), where γ = 0.013 N/m, b = 100 µm is the channel gap size, and w = 300 µm is the channel
width. For θ = 45◦ we expect a capillary pressure ∆pc ≈ 245 Pa. By choosing appropriate c2 and c4, we may in principle
model the same effective surface tension with different interfacial widths, c2 ∼ γ/δ and c4 ∼ γδ. As the dynamic interface
width is smaller than that obtained for a static interface, we chose values that yield a sufficiently large interface at equilibrium,
so that moving interfaces can be adequately resolved. Thus, we set c2 = 1300 N/m2 and c4 = 3 · 10−5 N. The steady-state
saturation and pressure fields, as well as the profiles of saturation and pressure along the channel center line are shown in Fig. S12.

FIG. S12: Model calibration. We choose c2 and c4 by computing the steady-state solution of a water slug in a narrow channel,
whose width corresponds to a typical pore throat size of 300 µm. For a static contact angle θ = 45◦ we expect a capillary

pressure ∆pc ≈ 245 Pa. Here we show the steady-state saturation and pressure fields, as well as the profiles of saturation and
pressure along the channel center line.
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TABLE IV: Summary of model parameters.

rI bi VI k µw M c2 c4

1 mm 0.1 mm Qf/(2πrIb) b
2/12 10−3 Pa· s 339 1300 Pa 3·10−5 N

Summary of model parameters
A summary of the model parameters is presented in Table IV. The complete model is specified by the field equations (12)–(14),
together with the constitutive relations (15)–(16), (17) and (20)–(21).

FIG. S13: Computational grids. Zoom views of the saturation field and computational grids for two sample simulations: (a, b)
A sample simulation at high capillary number, which yields unsaturated fingers; (c, d) A sample simulation at low capillary

number, which leads to a sharp transition between fully saturated fingers and the displaced oil. (e) Detail of the computational
grid near the injection port at the center of the domain.

Implementation and grid resolution
The system of second-order PDEs (12)–(13) is discretized using standard Galerkin finite elements, with monolithic coupling
between pressure and saturation. The computational grid for the full domain involves ∼ 1 million elements, with a typical
resolution of 5-10 elements across pore throats. Fluid-fluid interfaces seem smooth with this grid resolution, although a
complete refinement study has not been performed. In short, the simulations were run using the largest affordable grid that
yields a large enough interfacial width. Figure S13 shows close-up views of the saturation fields and computational grids for
two sample simulations: a high Ca simulation that yields unsaturated fingers (Fig. S13a–b), and a low Ca that leads to sharp
transitions between fully saturated fingers and the displaced oil (Fig. S13c–d). We also show a detail of the computational grid
near the injection port at the center of the domain (Fig. S13e).

Results
The simulated phase diagram is shown in Figure S14. The model seems to captures the transitions in fractal dimension and
displacement efficiency across the different flow rates and wetting conditions. A remarkable feature is the ability to predict
significant changes in gap-averaged saturation, which follow the experimental trends reasonably well. A notable and interesting
discrepancy with experiments is the inability of the model to reproduce the patterns of compact displacement for the imbibition
cases at low capillary numbers. This is probably due to the role of wetting conditions at the top and bottom plates, which is
not considered here, to the choice of parameters c2 and c4, and to the functional form of the constitutive relationships (bulk
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FIG. S14: Simulated displacement patterns for different wettability conditions (left to right: θ = 150◦, θ = 120◦, θ = 90◦,
θ = 60◦, θ = 7◦) and flow rates (top to bottom: Qf = 0.2 ml/min, Qf = 0.02 ml/min, and Qf = 0.002 ml/min).

free energy and relative permeabilities). Another obvious discrepancy is the absence of a sharp wetting transition for the strong
imbibition case. While there is a clear morphological difference between experimental displacement patterns of θ = 60◦

and θ = 7◦, the model predicts qualitatively similar displacement patterns. Capturing the displacement processes observed
in strong imbibition would require incorporating wetting and flow processes that are not captured in the present gap-averaged
model. Among them is the assumption of Darcy flow in the gap, which probably does not represent the complex 3D flow
processes that may ensue in the case of narrow throats of a width that is comparable to the cell gap.
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Phase-field Model 2 (PF2)

Authors: Daniel A. Cogswell
Email: cogswell@alum.mit.edu

Introduction
A depth-averaged phase-field model was developed for simulating oil/water displacement through arbitrarily complex pore
structures with a controllable contact angle at the solid pore walls. Phase-field models are advantageous because they capture
the Laplace pressure jump across curved interfaces without the need to explicitly track boundaries. The model is based on the
Cahn-Hilliard-Hele-Shaw system of equations, which describes depth-averaged fluid flow between two parallel plates (i.e. a
Hele-Shaw cell). This model is an extension of a previous model for Darcy flow [24] with a variational boundary condition intro-
duced to specify the contact angle boundary condition at pore walls, and with the choice of linear relative permeability functions.

Model Description
The evolution equations for the Cahn-Hilliard-Hele-Shaw phase-field model are [73, 74]:

∂ξ

∂t
+∇ · (ξ~v) =

1

Pe
∇ ·
(
M~∇µ̂

)
+ qw (24a)

∇ · ~v = qt (24b)

~v = − b2

12η(ξ)

[
~∇p− µ∇ξ

]
(24c)

The first equation is a convective Cahn-Hilliard equation, the second is a continuity equation, and the third equation is a
generalized form of Darcy’s law, where b2

12 is the depth-averaged permeability of fluid flowing between two parallel plates
separated by a distance b. The order paramter ξ varies smoothly across the interface between the two fluids, taking the equilibrium
values of ξ = 0 in the oil phase, and ξ = 1 in the water phase. Pressure is p, ~v is the Darcy velocity of the fluid, µ̂ is a diffusion
potential, and Pe is a dimensionless Peclet number. M is mobility, taken to be M = b2

12ηw
. The injection/production rate of

water is qw, and qt = qw + qo is the total injection/production rate of both fluids. The viscosity function η(ξ) in Eq. (24c) was
chosen to the be the following mixture interpolation function:

η(ξ) = ηwe
R(1−ξ) (25a)

R = ln(ηo/ηw) (25b)

In the phase-field approach, the diffusion potential µ̂ is the variational derivative of a free energy functional that includes a
gradient term to capture interfacial energy:

F =

∫
Hf(ξ) +

1

2
κ|~∇ξ|2 dV (26a)

µ̂ =
δF

δξ
= Hf ′(ξ)− κ∇2ξ (26b)

where f(ξ) = ξ2(1 − ξ)2 is a double-well free energy function and H and κ are constants. For this choice of f(ξ), the

oil-water interfacial energy is γ =
√

κH
18 and the width of the diffuse interface is W =

√
8κ
H . The Peclet number is chosen to

be Pe = 1√
κ

based on asymptotic analysis [73, 74].
To simulate the effect of wetability alterations, the contact angle of the oil-water interface at the pore walls was specified with

a contact angle boundary condition derived elsewhere [75, 76]:

~n · ~∇ξ =

√
2∆f

κ
cos(θ) (27)
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where ~n = ~∇ξ/|~∇ξ| is the normal to the surface of the pore wall and θ is the contact angle.
To apply boundary conditions at complex pore geometries, a parameter Ψ was defined such that Ψ = 1 in the pore space (do-

main of simulation), and 0 everywhere else. Images of the pore structure were used to generate Ψ, which was then incorporated
into the evolution equations following the smooth boundary method [77]. The resulting equations are:

∂ξ

∂t
= −∇ · (Ψξ~v) +∇ ·

(
ΨM~∇µ̂

)
+ Ψqw (28a)

µ̂ = Hf ′(ξ)− κ

[
∇ ·
(

Ψ~∇ξ
)

+ |∇Ψ|
√

2∆f

κ
cos(θ)

]
(28b)

∇ · (Ψ~v) = Ψqt (28c)

This is the set of evolution equations solved to simulate the benchmark problem. For numerical efficiency the capillary stress
tensor in Eq. (24c), −µ∇ξ, was set to zero and not included in the calculations.

The numerical treatment of Eq. (28) was very similar to that presented in Ref. [24]. The equations were discretized using finite
volumes, and solved using FAS multigrid with bilinear restriction and interpolation, and semi-implicit timestepping. To maintain
numerical convergence for large timesteps, the following convex energy splitting was applied to the double-well function f(ξ) =
fc(ξ) + fe(ξ):

fc(ξ) =
1

16
(2ξ − 1)4 (29a)

fe(ξ) =
1

16
(−8x2 + 8x− 1) (29b)

This choice of splitting is symmetric about ξ = .5 and importantly maintains the convexity requirement even outside of the
rage ξ = 0..1, which helps with convergence for numerically stiff, heterogeneous simulations.

Results
Simulation results for the benchmark problem are shown in Fig. S15. The model reasonably captures the transitions in fractal
dimension, gap-averaged saturation, and displacement efficiency, across the three injection rates and over most of the contact
angles. However there is discrepancy for θ = 7◦, strong imbibition. This is likely because the displacement has become
inhomogenous in the depth direction, and the depth-averaged model is inadequate. This could best be addressed by simulating
the 3D pore structure with a Cahn-Hilliard-Brinkmann model, which would also enforce no-slip boundary conditions at the pore
walls (the present model is surprisingly successful even though no-slip boundaries are not enforced). Finally, it might also be
possible to use nonlinear relative permeability functions with a depth-averaged model to compensate for the lack of resolution
in the depth dimension.
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FIG. S15: Simulated displacement patterns for different wettability conditions (left to right: θ = 150◦, θ = 120◦, θ = 90◦,
θ = 60◦, θ = 7◦) and capillary numbers (top to bottom: Ca = 2.9, 2.9× 10−1, and 2.9× 10−2). The pore structure was

discretized at a resolution of 2048× 2048 pixels, which was enough to resolve the smallest pores.
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Level-Set Model 1 (LS1)

Authors: Rahul Verma and Maša Prodanović
Email: masha@utexas.edu

Introduction
Level set methods are a broad class of methods for modeling interface movements, first proposed by Osher and Sethian in their
seminal work [78]. The method has since been applied for a wide variety of applications: from image-processing and modeling
flames to multiphase flows, and was introduced for modeling quasi-equilibrium fluid/fluid interface movement in porous media
by Prodanović and Bryant [25], and subsequently extended for wettability modeling by Jettestuen et al. [26], and Verma et al.
[27]. Since this is a quasi-static method, it was only intended for capillary-dominated, low capillary number flow conditions.

Model Description
The level set method is based on the main level set evolution equation:

∂tφ+ (a− bκ)|∇φ|+ ~V · ∇φ = 0 (30)

The level set function φ is defined at each grid point throughout the domain of interest as the distance from the wetting/non-
wetting fluid interface, which is the zero level set. φ is defined such that it is positive “outside”, or on the side on convexity, and
negative on the concave side. For instance, in a two-phase porous media formulation, φ > 0 could denote the wetting phase,
and φ < 0 denotes the non-wetting phase and solid grain together (the choice of sign is, of course, arbitrary). As the interface
advances, the φ function is updated throughout the domain according to the level set equation. Defining the interface implicitly
means that changes in the topology of the fluid phases, such as snap-off and merging of fluid menisci, are handled automatically.

The term a is the speed of the interface normal to itself, while the curvature-dependent term bκ acts opposite to the imposed
normal speed a. b determines how strong the effect of curvature is and ~V represents the external advective field.

The level set method used here models capillary-dominated fluid flow by employing a variational technique: in the main
pore space, the sum a − bκ represents the difference between imposed capillary pressure (a) and the surface tension force (bκ)
(reproducing the Young-Laplace equation), while near the boundaries, a, b and ~V are modified to impose contact angles. In the
methodology introduced by Jettestuen et al. [26], this is achieved using a Heaviside function:

H(ψ) =


0, ψ < 0
1
2 + ψ

2ε + 1
2π sin

(
πψ
ε

)
, −ε ≤ ψ ≤ ε

1, ψ > ε

(31)

The heaviside function takes a value of 1 where the level set is positive, and 0 where the level set is negative. Near the
interface, it varies over a distance of 3∆x, so that there are no sharp changes in the values. In addition, the level set needs to be
reinitialized every few time steps to preserve the signed distance properties of the level set.

The equation proposed by Jettestuen et al. then becomes:

φt + {H(−ψ)κ0 − S(ψ)H(ψ)cosβ|∇ψ|}|∇φ|
+ S(ψ)H(ψ)∇ψ · ∇φ = H(−ψ)κφ|∇φ|

(32)

with the the individual velocities given by:

a = (H(−ψ)κ0 − S(ψ)H(ψ)cosβ|∇ψ| (33)

b = H(−ψ)κφ (34)

~V = S(ψ)H(ψ)∇ψ (35)



36

New formulation for trapping
The method described up to now does not take trapping of phases into account. Jettestuen et al. and Verma et al. only focused
on single-pore systems, and so could avoid this problem, but in modeling large systems with many pores, this cannot be ignored.
Here, we introduce the concepts of modeling trapped phases using immobile “masks”, one for the non-wetting phase, ψnw, and
one for the wetting phase, ψw. So, every time the level set is reinitialized, it is checked for connectivity of both the wetting
and the non-wetting phases. For this purpose, the level set first needs to be converted to a binary representation of 0s and 1s.
Subsequently, a connectivity algorithm yields disconnected components for both the non-wetting and wetting phases, and the
disconnected component masks are constructed. The masks need to be reconstructed from scratch each time, as merging and
snap-off would change the connectivity of the disconnected phases.

The reconstructed masks can then be used to update the normal and curvature velocities, using the heaviside functions. For
example, H(−ψw) takes value of 1 where ψw is negative, and zero where it is positive. So, in the wetting trapped phase ,
H(−ψw) is 0, and 1 in the main pore space. So we can update the normal and curvature velocities using this formulation:

a = H(−ψw)H(−ψnw)(H(−ψ)κ0 − S(ψ)H(ψ)cosβ|∇ψ| (36)

b = H(−ψw)H(−ψnw)H(−ψ)κφ (37)

Note that the advective velocity term doesn’t need to be updated, as it is only applied near the interface anyway. So inside the
trapped phase, there is no reason to apply it. For more details please refer to the PhD thesis of Verma [28].

We apply this formulation to the experimental setup used by Zhao et al. to simulate fluid displacement for varying wettabilities
in a micromodel. The original experimental geometry is provided as a set of 2D points, corresponding to disk centers, with
accompanying radii information. Using this information, we reconstruct the domain. Since the domain is described analytically,
we increased the resolution of the original experimental images to a limit where the computational costs for the level set method
would not be too prohibitive. The eventual domain size we simulate is 4439x4439 pixels, with each pixel size 24.9 µm, compared
to the experimental resolution of 54 µm. To save computational costs, we are ignoring the third dimension – in the experiment,
this corresponds to a thickness of 100 µm. The level set results are shown in Figure S16.

FIG. S16: Quasi-static simulations of the displacement patterns for different wettability conditions (left to right: θ = 150◦,
θ = 120◦, θ = 90◦, θ = 60◦).
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Volume-of-Fluid Method 1 (VF1)

Authors: Julien Maes, Sebastian Geiger
Email: j.maes@hw.ac.uk

Model Description
In the VOF method, the location of the interface is deduced from an indicator function α1, which is equal to the volume fraction
of fluid number 1 in each grid cells. For cells which are crossed by the interface, α1 lies between 0 and 1. The indicator function
for phase number 2 is defined as α2 = 1− α1. The single-field velocity, pressure, density and viscosity are defined as

u = α1u1 + α2u2,

p = α1p1 + α2p2,

ρ = α1ρ1 + α2ρ2,

µ = α1µ1 + α2µ2.

(38)

The single-field velocity and pressure solve the single-field incompressible Navier-Stokes equations

∇ · u = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + ρg + fγ ,

(39)

where τ is the global stress tensor

τ = µ
(
∇u +∇uT

)
, (40)

and fγ is the surface tension force

fγ = γκn12δ12. (41)

Here δ12 is a Dirac function located on the interface. At the fluid-fluid-solid triple point, the interface intersects the normal of
the solid surface at a contact angle θ such that

n12 = cos θns + sin θts, (42)

where ns and ts are the normal and tangent vectors to the solid surface, respectively [79].
The indicator function solves the following transport equation

∂α1

∂t
+∇ · (α1u) +∇ · (α1α2ur) = 0, (43)

where ur = u1 − u2 is the relative velocity. This advection equation is exact because its derivation does not include any
assumption. It results from the volume averaging of the continuity equations (see Graveleau et al., [80] for the derivation). Since
it involves α1α2, the second advection term has non-zero value only in the cells containing the fluid-fluid interface. However,
there is no partial differential equation that governs the relative velocity. Therefore, ur has to be modelled in order to close
Eq. (43). To maintain a sharp interface, ur is usually modelled as a compressive velocity uc normal to the interface and with an
amplitude based on the maximum of the single-field velocity [81]

ur ≡ uc = n12

[
min

(
|φ|
Af

,max
F

(
|φ|
Af

))]
, (44)

where φ is the volumetric flux and Af is the cell surface area.
The surface tension force acts only at the interface, which can be mathematically described as a surface. While using the

Finite Volume method [82], the surface tension force cannot be computed as such and it must be approximated by a body
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force. Brackbill et al., 1992 [79] developed an approximation, referred to as Continuous Surface Force (CSF), where n12δ12 is
approximated by∇α1 and κ by∇ ·

(
∇α1

‖∇α1‖

)
. The surface tension force is then given by

fCSF
γ = γ∇ ·

(
∇α1

‖∇α1‖

)
∇α1. (45)

The VOF-CSF method is attractive because of its simplicity. However, Scardovelli & Zaleski, 1999 [83] reported the presence
of spurious currents in the capillary dominated regime, which originates from errors in calculating the normal vector and the
curvature of the interface. To limit the spurious currents, we use the Sharp Surface Force (SSF) method whereby the indicator
function is smoothed by a Laplacian smoother for the computation of the curvature and sharpened by a curtail function for the
computation of the surface tension force [84, 85]

fSSF
γ = γ∇ ·

(
∇α̂1

‖∇α̂1‖

)
∇α̃1,

α̂1 = CsK

∑
α1fAf∑
Af

+ (1− CsK)α1,

α̃1 =

(
min

(
max

(
α1,

Cs

2

)
, 1− Cs

2

)
− Cs

2

)
1− Cs

,

(46)

where α1f is the value of α1 at the face centre calculated using linear interpolation, and CsK and Cs are smoothing and
sharpening constants. In this work, we use CsK = 0.1 and Cs = 0.1. In order to eliminate some of the parasitic velocities that
arise parallel to the interface, capillary forces parallel to interface are filtered [85]

fc,filt = fc − f old
filt ,

∇ · ∇pc = ∇fc,filt,

ffilt =
δpc

δpc + ε

(
f old

filt + cfc,filt 〈∇pc − (∇pc · nI)nI〉c→f nI
)
.

(47)

The constant cfc,filt is set to 0.01 to avoid capillary pressure build-ups and velocity bursts [29]. In addition, the capillary fluxes
are also filtered based on zero-net capillary force constraints

φc =

∫ ∫
(fc,filt −∇pc) · nf ,

φc,filt = φc −min (max (φc, φc,thresh) ,−φc,thresh) ,

φc,thresh = cφc,filt |fc,filt|avg |Af | .

(48)

This correction eliminates capillary fluxes when they are in the range of numerical errors [85].

Numerical implementation
The mathematical model formed by Eq. (39) and Eq. (43) is implemented in the open source Computational Fluids Dynamics
toolbox OpenFOAM (www.OpenFOAM.org) as an internal VOF solver called interFoam. interFoam solves the system on a
collocated Eulerian grid with a predictor-corrector strategy based on the Pressure Implicit Splitting Operator (PISO) algorithm
[86]. An semi-implicit formulation is used to treat the coupling between the phase distribution equation (Eq. (43)) and the
NSE equation (Eq. (39)) with a fixed number of iterations (nOuterCorrectors). The space discretization of the convection
term ∇.(α1u) and compression term ∇ · (α1α2ur) is performed using the second-order van Leer scheme [87]. The standard
interFoam solver has been modified to include the SSF formulation (Eq. (46)).

Geometry and grid
To mesh the computational domain, a 2D uniform Cartesian grid comprising 1250×1250 grid blocks is generated. Then, all

cells containing the solid posts are removed and replaced by rectangular and triangular cells that match the solid boundaries
using the OpenFoam snappyHexMesh utility (Fig. S17). The final grid contains 657694 cells. For low Ca simulations, the
geometry has been truncated from the original image and the outlet is situated at a radius of 3 cm. In this case, the final grid
contains 251542 cells. All simulations are performed with a constant time-step δt = 2×10−4 s. We use 3 iterations of the PISO
loop and 2 iterations of the semi-implicit loop (nOuterCorrectors).
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FIG. S17: Pore geometry and boundary conditions.

FIG. S18: Simulated fluid-fluid displacement pattern for strong drainage at high Ca (left) and weak imbibition at low Ca
(right).
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SUPPLEMENTARY NOTE 5: PORE-NETWORK MODELS

Pore-network Model 1 (PN1)

Authors: Morten Vassvik, Alex Hansen
Email: Alex.Hansen@ntnu.no

Introduction
Our model is a single-pressure dynamic pore-network model for incompressible two-phase flow in porous media, based on the
earlier work of Aker et al. [31] and Knudsen et al. [32].

Model Description
The network is defined as a graph of connected links and nodes. Each node corresponds to the center of a pore-body, and each
link corresponds to a pore-throat in addition to part of adjacent pore-bodies. The links carry all the pore volume, and the nodes
have no volume.

Each link can hold up to two fluids simultaneously, represented as bubbles that are spaced out along the link length. Depending
on the shape of each link and the distribution of fluids inside each link, we relate the volumetric flow rate going through the
link at a given time to the pressure gradient across the link through a traditional Hagen–Poiseuille-type relationship. For single
phase, this can be stated as

q = −k(x)A(x)

µ

dp

dx
, (49)

where k is the local permeability, A is the cross-sectional area, µ is the viscosity, and p is the pressure. Each quantity can in
principle be regarded as function of position x, so that we can account for variations along the link length. The flow rate q has
to be the same for any position along the link due to the incompressibility of the fluids.

In order to obtain an expression for the link flow rate as a a function of the pressure difference between the two nodes it
connects, we integrate Eq. (49), resulting in

p(x2)− p(x1) = −qµ
∫ x2

x1

dx

k(x)A(x)
, (50)

where x1 and x2 are two arbitrary positions along the link. We can simplify this expression by non-dimensionalizing the
integral,

∫ x2

x1

dx

k(x)A(x)
=

1

κ0

∫ x2

x1

κ0dx

k(x)A(x)
, (51)

where the factor κ0 (units m3) is defined by

κ−10 =

∫ L

0

dx

k(x)A(x)
, (52)

which encodes the effect of permeability k, the cross-sectional area A and the length L on the mobility. We can then write
Eq. (50) as

p(x2)− p(x1) = −qµ
κ0
I(x1, x2), (53)

where we have defined the integral

I(x1, x2) =

∫ x2

x1

κ0dx

k(x)A(x)
. (54)

which serves as a weighting function, with the property that I(0, L) = 1.
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If we have have two immiscible fluids inside a link, separated by an interface, we can use Eq. (53) for each phase separately
and add up their contribution to get a relationship between the flow rate q and the pressure difference across the entire link ∆p,
where ∆p is defined as the difference in pressure in the nodes that the link connects. Any jump in pressure across interfaces (due
to surface tension) is accounted for by an additional capillary pressure difference. For example, if we have a link containing a
wetting fluid followed by a non-wetting fluid whose menisci are at position x, then we would end up with,

q = − κ0
µeff

(∆p− pc) , (55)

where µeff = µnwI(0, x) + µwI(x, L) and pc = p(x+)− p(x−). This formulation allows for the wetting angle θ to vary as a
function of position along the wall, and to account for a dynamic contact angle, but in the present work we keep these constant.

It should be noted that Eq. (55) and (49) reduces to the familiar Hagen–Poiseuille relation when we assume a straight tube,
where k = r2/8, A = πr2 and r is the radius of the tube.

Mass conservation at each node (i.t. flow rate in equals flow rate out) results in a linear system of equations for the node
pressures, whose coefficients are functions of adjacent link mobilities and capillary pressures. By solving this system using the
appropriate boundary conditions we can use Eq. (55) to calculate the flow rate in each link, which in turn can be used to evolve
our system in time by displacing any menisci inside each link. Any fluid that has exited a link is immediately distributed into
neighbouring links.

Application: Microfluidic Flow Cell
The equations introduced in the previous section are generic in nature, as we made no specific comment on the exact geometric
dependencies of k, A and pc. In the following we will motivate the exact expressions used based on the experimental setup of
Zhao et al. [2].

FIG. S19: Left: The figure shows how a set of posts can be triangulated to create a pore-network. Boundary nodes (in red) are
created by mirroring a node across the boundary edge. Right: The figure shows the partitioning of the pore space into links and

nodes.

Given a microfluidic flow cell patterned with posts, our goal is to extract a pore-network representing the void space. We start
by triangulating the set of post positions, which yields a triangular partitioning of the void space, where the vertices of each
triangle corresponds to a post center. For each triplet of points in the triangulation we can fit a fourth virtual post such that it
exactly touches all three posts simultaneously. The center of this post defines the nodes in our network, corresponding to the
center of a pore-body. Adjacent nodes are then connected based on neighbouring triangles in the triangulation, giving us a set
of links. Along the boundary (inlets and outlets) we create new inlet and outlet nodes by mirroring adjacent nodes across the
boundary triangle edges. The nodes and links together make up the pore-network as illustrated in Fig. S19.

The nodes are considered as single points and they hold no volume. We partition the pore space such that a pore-body is
distributed among adjacent links as illustrated in Fig. S19.

For each link we can now calculate, or at least approximate, the constant term κ0 and the position-dependent weighting
function I(a, b) introduced in the previous section. The cross-sectional area is A(x) = hw(x), where h is the height of the cell,
and w(x) is the variable width as we move along a link. We model the local permeability k based on flow through a rectangular
pipe [88]

k =
hw

12

[
1

γ
− 6

γ2

∑
n odd

tanh(anγ)

a5n

]
, an =

nπ

2
, (56)
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where γ = w/h is the local aspect ratio. In practice we truncate the series in Eq. (56) after 10 terms, which is sufficient for
the aspect ratios in this case.

The menisci separating the two phases are modelled as circular arcs that meet the posts at a specified wetting angle. By
moving a circular arc along a link we can map out the capillary pressure difference as a function of position on a per-link bases.
This is illustrated in Fig. S20, for both an advancing and receding menisci. For completely wetting system the capillary pressure
is simply given by the inverse of the radius of curvature of such an arc. For intermediate wetting angles we use the formula

pc(x, θ) =
γ

r(x)
cos

[
θ − cos−1

(
r(x)

R(x)

)]
+
γ

h
cos θ, (57)

where r(x) = w(x)/2 is half the distance between the points where the menisci meets the post walls and R is the radius of
curvature of the fitted arc. In the special cases of θ = 0◦ and θ = 180◦, the first term reduces to pc(x) = ± γ

R(x) , as required.
Function (57) is plotted in Fig. S20 for different wetting angles.

FIG. S20: Left: The figure illustrates a non-wetting bubble inside a link (represented by the solid line). Each menisci along the
link is represented by a solid circle segments. The circular segments are placed such that the volume bounded by the circular

segments is the same as the shaded blue area. Right: The figure shows the capillary pressure as a function of position and
wetting angle.

General Comment
Using Eq. (56) we measure a single-phase (oil-filled) global pressure difference of 28816 Pa for the largest reported capillary
number. Note that the pressure is measured at the outer edges of the injection area, at a distance 3 mm away from the injection
point on average. This measurement is consistent with the measured pressure difference reported in Zhao et al. [2] when
extrapolated to the injection point where the pump sits.

For our simulations, the structures observed appear consistent with experiments for high flow rates, but the simulations do
not reproduce the same structures for low capillary numbers. In particular, the co-operative effects for the neutral and weak
imbibition cases are not reproduced. This is most likely due to the functional expression we used for the capillary pressures:
even for the neutral and weak imbibition regimes there is still a capillary barrier present, as can be seen in Fig. S20. This
together with our choice of boundary conditions results in an invasion percolation type behavior for all wettabilities, with the
main difference being that narrow cross-sections are preferred in the neutral and weak imbibition cases.

Neglecting film and corner flows might also have a big impact on this, but the displacement patterns of the experiments do
not appear to be dominated by corner flow and film transport except in the strong imbibition regime. It might be possible to
incorporate these effects into the capillary pressure term in the future.
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FIG. S21: Simulated displacement patterns for different wettability conditions (left to right: θ = 150◦, θ = 120◦, θ = 90◦, and
θ = 60◦) and capillary numbers (top to bottom: Ca = 3.2, 3.2× 10−1, and 3.2× 10−2).
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Pore-network Model 2 (PN2)

Authors: Enrico Segre, Ran Holtzman
Email: enrico.segre@weizmann.ac.il, holtzman.ran@mail.huji.ac.il

Introduction
We extended the model presented in Holtzman & Segre, 2015 [33] by including an arbitrary distribution of cylindric posts. The
resulting model combines the quasistatic approach originally proposed by Cieplak & Robbins, 1990 [45] with a single pressure,
dynamic model of flow through the pore network, in which the interface motion is not resolved below the pore scale. Each
triplet of posts (identified by Delaunay triangulation) defines a pore, which is connected to three neighbours via throats. The
throats are the gaps between each pair of the three posts associated with a given pore. The resistance to flow at a given throat is
given by its width w and filling state. The fluid-fluid interface is represented as a set of cylindric menisci, which touch the posts
at an in-plane contact angle θ. The fluid-fluid interface has a radius of curvature R = γ/∆p, where ∆p is the local pressure
jump across the meniscus. Given R and θ, the position and hence stability of each meniscus can be solved analytically. The
evolving resistances of the throats determine the pressure field. Our model is effectively 2D in the sense that we only consider
the in-plane curvature R = Rin in computing the radius of curvature. This approximation is reasonable for 3D porous media
when the in-plane curavature is much larger than the out-of-plane curvature Rin � Rout, which corresponds to the case where
post diameters are much smaller than their height d � h. Despite this being at odds with the experimental setup of Zhao et
al., 2016 [2], our numerical results matched the experiment better when curvature correction to account for the finite height
was neglected. Our model’s resolution is at the level of the pore, and its bidimensionality does not capture the effects of film or
corner flow, therefore limiting its ability to reproduce cases where these mechanisms become important, particularly in strong
imbibition. However, the simplicity of our model results in a very efficent code that is capable of full-scale simulations in CPU
times on the order of a minute. This feature allows large batch of simulations to be performed for the purposes of statistics,
parametric exploration, and sensitivity analysis.

Model Description
The sample geometry is based on the post sizes and coordinates provided in the benchmark dataset. For the fluid properties we
used the values given in Zhao et al., 2016 [2]: ηoil = 0.340 Pa · s, ηwater = 0.99 mPa · s, γ = 13 mN/m. At each simulation step,
the pressure field is computed across the whole network. Specifically, throats with stable menisci are considered impervious; a
fixed resistance proportional to ηoil or ηwater and w−3 (for a width w) is assigned to throats connecting pores occupied by the
same fluid; whereas a variable resistance proportional to the downstream filling value is given to throats leading to incipiently
invaded pores. The existing menisci are then tested for three types of instabilities [45]: (1) burst, when the curvature exceeds a
threshold set by the local geometry; (2) touch, when a meniscus intersects a third, downstream post; and (3) overlap of adjacent
menisci, destabilizing each other. The latter describes nonlocal, cooperative pore-filling, which smooths the interface. Overlaps
are strongly affected by the contact angle, and hence are crucial in capturing wettability effects.

a b

FIG. S22: (a) Model geometry. A fixed driving pressure P is assigned to the injection zone pores (in red) against zero pressure
at the boundary pores (in blue). (b) Sampling of the experimental image, to derive pore occupancies to be used as numerical
initial conditions. The greyscale image is sampled at the center (purple dot) of each pore (bounded by blue lines) confined by

three neighbouring posts (grey circles).
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Once a meniscus is destabilized, it invades the downstream pore at a rate calculated from the throat’s viscous resistance by
solving mass balance for the two incompressible immiscible fluids. Our model associates a filling value between 0 and 1 to each
pore, without resolving the spatial distribution of the fluids within the pore. Pores downstream of destabilized menisci fill in
parallel, and complete filling in different times, proportional to the pore volumes and local flow rates.

To enforce boundary conditions we added two sets of auxiliary posts to the given post distribution: (i) 21 posts along an inner
circumference of radius 2.2mm; (ii) 380 posts along an external circumference of radius 59.7mm (see Fig. S22a). A nominal
radius of 100 µm was assigned to the auxiliary posts. We enforce quasi-constant flow rate by imposing an arificially high
hydraulic resistance in the inlet zone (Fig. S22a), such that most of the pressure drop occurs in the “buffer zone”, making the flow
resistance and hence pressure gradient across the porous sample insensitive to the evolving invasion pattern. By implementing
the numerical “buffer zone”, we achieve desired fixed flow rates of 2, 20, and 200 µL/min to within 5% accuracy by setting
fixed pressures (i.e. Dirichlet boundary condition) at the inlet and outlet pores.

The experimental images show that the initial growth of the injection bubble is highly asymmetric. Since this could strongly
affect the evolution of the pattern, we test its effect by comparing simulations with (i) symmetric initial conditions (starting with
a completely water-filled inlet zone) vs. (ii) pore occupancy derived from experimental images at early stages, with different
grayscale thresholds (Fig. S22b).

The simulation achieves breakthrough (with corresponding breakthrough time tb) when a boundary pore is first invaded
(Fig. S22a). By solving the pore-network pressure-flow system, our model tracks the total amount of fluid displaced during the
simulation. We define Ed as the ratio between the amount of displaced fluid and the total pore volume. We take the mean filling
value of all partially or totally invaded pores as the average saturation S. The fractal dimension Df is computed by applying a
threshold of S = 0.01 to the simulation result at breakthrough, rasterizing it on a 1000×1000 frame, and analyzing the resulting
pattern with a box-counting algorithm [89].

FIG. S23: Simulated displacement patterns for different wettability conditions (left to right: θ = 150◦, θ = 120◦, θ = 90◦,
θ = 60◦, θ = 7◦) and capillary numbers (top to bottom: Ca = 2.9, 2.9× 10−1, and 2.9× 10−2), using initial conditions

derived from experimental images. The effective advancing angle θ is measured through the wetting fluid (i.e. θ > 90◦ for
drainage), as in Zhao et al. [2].
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a b c d

FIG. S24: Mean and standard deviation of the quantitative measures of five simulations for each wettability and capillary
number, obtained with different values of control parameters and inital conditions. (a) Fractal dimension Df . (b) Average

saturation S – the mean filling value of all partially or totally invaded pores. (c) Displacement efficiency Ed – the ratio between
the amount of displaced fluid and the total pore volume. (d) Breakthrough time tb.
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Pore-network Model 3 (PN3)

Authors: Bauyrzhan K Primkulov, Benzhong Zhao, Christopher W. MacMinn, and Ruben Juanes
Email: juanes@mit.edu

Introduction
We model fluid-fluid displacement in the flow cell with two approaches: a quasi-static model and a dynamic model. Each model
features a range of validity for capillary numbers (Ca) and contact angles (θ).

The quasi-static network model [35] was designed for 2D micromodels in the limit of very small Ca, where we take advantage
of the following conditions: (i) pressures are spatially uniform within invading and defending fluids; (ii) at a given pressure
difference between invading and defending fluids, all local fluid-fluid interfaces between posts have the same curvature. There-
fore, we can advance the invading fluid front in a manner of invasion-percolation [90], where the invading fluid always enters
pores with lowest entry pressures. In particular, we explicitly calculate the critical pressures for pore-scale invasion events of
Cieplak and Robbins [45, 91] as well as the corner-flow invasion events. As a result, the invading fluid front advances through
single-pore piston-type displacement, cooperative pore filling, or corner-flow.

The dynamic moving-capacitor network model [36] relies on establishing an analogy between electric circuits and fluid-fluid
displacement in porous media. The viscous pressure drop throughout the flow cell is captured by means of a network of
resistors, while in-plane/out-of-plane components of the Laplace pressure are represented with moving capacitors/batteries at
the invading fluid front.

Model Description – Quasi-static Model
Consider the local fluid-fluid interface between the two posts in Figure S25a. The shape of this interface is uniquely defined
by its radius of curvature rp and the contact angles at which it intersects the two posts [35]. When the pressure of the invading
fluid increases, the interface moves forward while the radius of its curvature decreases. At some point, the local fluid-fluid
interface reaches its last stable configuration. If the invading fluid pressure increases further, the interface becomes unstable and
it advances (Figure S25b). We refer to this event as “burst”. When a “burst” event takes place, the unstable local interface is
replaced by two new ones with the nearest post.

The local fluid-fluid interface may become unstable before reaching the “burst” pressure. The “touch” event takes place when
the interface touches the nearby post (Figure S25c) before reaching the “burst” pressure. The unstable interface between posts 1
and 2 is replaced by two new ones, connecting posts 1-3 and posts 3-2 in Figure S25c.

Another pore-scale event that may take place is “overlap”. The “overlap” event occurs when two neighbouring interfaces
coalesce inside the pore space (Figure S25d). Then the two interfaces between posts 1-2 and 2-3 are replaced by a single
interface between posts 1-3.

Finally, a “corner-flow” event may take place when θ < 45◦. In strong imbibition, the invading fluid preferentially wets the
corners between the posts and top/bottom plates (Figure S25e-f). As the pressure of the invading fluid increases, the corner
menisci swell until one of the neighbouring posts is touched. This results in the advance of the invading fluid through a chain
coating of the posts.

We explicitly calculate the critical pressures for all pore-scale events shown in Figure S25 [35]. Thus, we model the
quasi-static invasion of the fluid-fluid interface in a manner of invasion-percolation, where the order of pore invasion is governed
by the critical event pressures; pores with lowest critical pressures are invaded first. Different events are prevalent at different
wettability conditions: (i) “burst” events dominate in strong drainage (θ > 145◦), and the invading fluid advances through
capillary invasion; (ii) “touch” and “overlap” events dominate in weak imbibition (75◦ > θ > 45◦), where the invasion pattern
grows through cooperative pore filling; (iii) “corner-flow” events are most frequent in strong imbibition (θ < 45◦), where the
pattern grows through chain coating of the posts.

Model Description – Dynamic Model
Consider the analogy between the fluid-fluid displacement and an electric circuit. As the invading fluid is injected into the pore
structure, three components of the pressure contrast emerge: (i) pressure gradient due to viscous dissipation, (ii) out-of-plane
component (iii) and in-plane component of the Laplace pressure. This is equivalent to having an electric current through a circuit
of resistors, batteries, and capacitors. The viscous pressure drop through the network can be calculated considering Poiseuille
flow through the network of capillary tubes along with conservation of mass. This is equivalent to resolving the Ohm’s law and
Kirchhoff’s current law in the network of resistors. The out-of-plane contribution to the Laplace pressure can be represented
with batteries at the invasion front. These batteries introduce a discrete potential (pressure) increase or drop, depending on the
contact angle θ between the fluid-fluid interface and the top/bottom plates of the flow cell. Finally, the in-plane contribution
to the Laplace pressure can be represented through capacitors at the invading front. Here, electric potential (pressure) drop
across the capacitor plates builds up with current (flow) until a threshold potential (critical pressure) is reached. If the potential
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FIG. S25: Figure adapted from Primkulov et al. [35]. (a) Invasion front configuration between two posts; (b) Burst event:
unstable interface (red line) advances into the pore; (c) Touch event: interface touches the nearest post; (d) Overlap event: two

fronts (green lines) coalesce on post surface and fill the pore; (e) Corner-flow event: corner meniscus touches and coats the
neighbouring post; (f) Capillary bridge event: corner menisci coalesce mid-post before reaching the next post; (g) Invading
front configuration with post IDs: red, blue, green interfaces correspond to “burst”, “touch”, “overlap” critical interfaces.

increases above this threshold, the capacitor undergoes dielectric breakdown. In contrast, in its fluid counterpart, the capacitor
moves to a new location ahead of the invading front following the rules of Cieplak and Robbins [45, 91] and restarts building up
Laplace pressure.

Our formulation of the quasi-static invasion model gives us a-priory knowledge of these critical pressures. We use them as
thresholds of the capacitors at the interface, such that filling of the capillary tubes with the invading fluid coincides with the local
in-plane Laplace pressure thresholds. The effect of wettability in our model is captured through “burst”, “touch” and “overlap”
pore invasion events described earlier [35, 45, 91], whose relative frequency is a function of the contact angle θ.

FIG. S26: Figure adapted from Primkulov et al. [36]. (a) Schematic diagram of the fluid-fluid interface motion in the 2D pore
space. Dotted lines represent the interface at increasing pressures, where red and green stand for “burst” and “overlap” events
respectively [45, 91]. (b) Electric analog of the pore space, where resistors, batteries and capacitors are responsible for viscous

and Laplace pressure drops, respectively. Nodes 1, 2, 3 stand for pores ABC, ABD, BDE. (c) Final invasion pattern and
spatial pressure profile for Ca = 10−3 and θ = 160◦ (d) Uniform spatial pressure profile for Ca = 10−7 and θ = 160◦. (e)

Temporal pressure profiles at the injection pore bear close resemblance to experiments at low and high Ca [2, 92].

This framework allows capturing fluid-fluid displacement regimes at both high and low Ca. At high Ca, viscous forces
dominate the dynamics, and large pressure gradients build up across the more-viscous defending fluid (Figure S26c). This
results in the decreasing trend of the injection pressure with time (Figure S26e): as the fingers approach the outer boundary,
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FIG. S27: Simulated displacement patterns for different wettability and capillary number conditions. The dynamic simulations
(Ca > 0) were obtained using the dynamic moving-capacitor pore-network invasion algorithm [36]. The bottom row (Ca = 0)

was generated with the quasi-static invasion algorithm [35].

smaller pressure drop across the flow cell is needed to maintain the prescribed flow rate. At low Ca, the pressure changes
within the system come almost exclusively from the Laplace pressures at the invading front. This results in spatially uniform
distributions of pressure in the invading and defending fluids (Figure S26d), and also in an intermittent profile of injection
pressure as a function of time (Figure S26e).
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Authors: Zhibing Yang
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Introduction
The two-dimensional modelling approach described here is similar to the pore-network model of Lenormand et al., 1988 [93].
The pressure distribution is solved in both fluid phases. Fluid invasion and interface advancement are computed in discrete
steps. However, we do not extract pore bodies and throats from the post locations of the micromodel. Instead, we discretize the
pore space into smaller elements. The capillary resistance for each element is calculated based on the vertical gap between top
and bottom walls and the horizontal gap between posts. Films and corner flows are not considered. Only the strong drainage
condition (i.e. θ = 150◦) is simulated.

Model Description
The two-dimensional pressure distribution in the pore space is solved via a finite volume scheme, taking into account the
capillary pressure jump at the fluid–fluid interface. The viscosity of the invading and the defending fluids are µinv and µdef,
respectively. Darcy’s law is assumed valid locally. The flow rate q across the connection between two elements [for example,
(i, j) and (i, j+1)] is given by the conductance C of the connection and the pressure drop between two neighbouring elements if
no fluid–fluid interface or capillary pressure is involved:

qi,j+ = Ci,j+
pi,j − pi,j+1

l
, (58)

where p is the pressure. If the connection involves the fluid–fluid interface, the flow rate q is given by:

qi,j+ = Ci,j+
max(0, pinv

i,j − pdef
i,j+1 − pc

i,j+)

l
, (59)

Similarly, Eq. (58) and Eq. (59) can be written for qi,j− , qi−,j , and qi+,j . The capillary pressure pc
i,j+ (and similarly, pc

i,j− ,
pc
i−,j , and pc

i+,j) is calculated based on

pc = γ
(2 cos θ

h
+

1

r2

)
, (60)

where γ is the interfacial tension, h = 100 µm is the vertical gap, r2 is the principal radii of curvature in the planar direction
calculated based on the widths between posts, and θ is the equilibrium contact angle.

The conductance C is given by C = kA
µ̂ , where k = h2/12 is the permeability, A = h∆x is the connection area, and µ̂ is a

weighted average viscosity, which takes the value of µinv, µdef, or (µinv + µdef)/2 depending on whether the connection is inside
the invading phase, inside the defending phase, or at the fluid–fluid interface. When calculating the capillary pressure, we define
the fluid–fluid interface at the connection between a fully invaded element and a non- or partially invaded element. This means
we do not update the local interface location when an element is only partially invaded.

The volume conservation equation can be written for each element (i, j) by assuming incompressible fluids:

qi−,j + qi+,j + qi,j− + qi,j+ = si,j , (61)

where si,j is a source term for the injection elements. Writing Eq. (61) for all elements gives a system of equations which
need to be solved for pressure distribution given a certain set of boundary conditions. The nonlinear max function makes sovling
the pressure directly from Eq. (61) impossible. Instead, we apply an iterative approach to obtain the pressure solution. The
iterative solution of the volume conservation equation gives a pressure field, from which we explicitly compute the fluxes along
the fluid–fluid interface using Eq. (59). At the start of each time step, the fraction of the volume occupied by the invading fluid
fi,j at each element (i, j) is known. The time step ∆t is calculated as the time required to completely fill one element at the
interface. The invading fluid flows into all interface elements (0 < f < 1) that have at least one connection with a positive flow
rate, until one of the interface elements reaches f = 1. The change in volume fraction ∆fi,j due to invasion at each time step is
calculated as:

∆fi,j =
Σqinterf

i,j ∆t

V
, (62)
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where V = h∆x2 is the void volume of each element and Σqinterf
i,j represents the sum of the interfacial fluxes from the

invading neighbours to the local defending element (i, j).

Numerical setup and boundary condition
The computational domain is discretized into a 1000×1000 grid with elements for the posts included but inactive for the simu-
lations. Constant pressure of zero is imposed for elements with a distance from the center of injection larger than the radius of
the micromodel. The simulated displacement patterns are shown in Figure S28.

FIG. S28: Simulated displacement patterns for the strong drainage case at different injection rates (left to right: injection rate
0.2 mL/min, 0.02 ml/min, 0.002 ml/min).
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Pore-network Model 5 (PN5)
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Introduction
The model is based on a three-dimensional pore-network model named two-phase pore-scale finite volume discrete element
method (2PFV-DEM) [38, 39]. It has been modified to tackle the geometry of this benchmark to simulate strong drainage at
very small Ca. The void space is discretized in pore units with triangular prism geometry. The capillary entry pressure of each
pore throat is determined by following the Mayer-Stowe-Princen (MS-P) method [94, 95]. Each pore is filled by only fluid
phase; films and corner flows are not considered.

b

d

r

(a) (b) (c)

FIG. S29: Pore geometry. (a) A pore network created by the Regular Triangulation method. (b) A pore defined by a triangular
prism. (c) Geometry of a pore throat.

Model Description
The void space between the posts is decomposed into large pore bodies connected by narrow throats via the Regular Triangulation
method [96]. This method generalizes the classical Delaunay triangulation by including weighted points, where the weight
accounts for the size of each post. A pore-scale network is established such that a triangular prism defines a pore and the
common facet of two neighbouring pores defines a throat (Fig. S29).

The drainage of a single pore is determined by the relationship between local capillary pressure pc and entry capillary pressure
pc
e of the throat. A pore is considered completely drained if pc > pc

e, such that each pore has only one state, either filled with
wetting (W) phase or nonwetting (NW) phase.

The capillary entry pressure pc
e of each throat is computed by following the Mayer-Stowe-Princen (MS-P) method, which

employs the force balance on the multiple phases in a transient state [38]. The balance is written as:

∑
~F (pc) = ~F c(pc) + ~F t(pc) = 0, (63)

where ~F c is the capillary force acting on the pore throat section, ~F t is the total tension force along the contact line (see
Fig. S29c). When

∑ ~F (pc) = 0, pc
e equals the value of pc.

We assume the solid post is perfectly wetted by the defending fluid phase (i.e. θ = 180◦). The radius of the meniscus is
denoted by r ∈ [0,min{b, d}], and the capillary pressure can be expressed by the Young-Laplace equation:

pc =
γwn

r
. (64)

~F c and ~F t are written as follows,

~F c = pcAeff = pc(bd− 4r2 + πr2) (65)

~F t = γwnLwn + γnsLns − γwsLns (66)

where Aeff is the planar, projected area of the pore throat, Lwn, Lns and Lws are the contact line lengths between the multiple
phases. The multiphase interfacial tensions, γwn, γns, and γws are related to θ via Young’s equation:
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γns − γws = γwn cos θ (67)

Combining Eqs. 63, 66, and 67, we arrive at the expression for ~F t:

~F t = γwn[2πr + 2(b+ d− 4r)] (68)

Combining Eqs. 64, 65, and 68, we arrive at the expression for pc
e:

pc
e =

γwn ∗ 2(4− π)

2(b+ d)−
√

4(b+ d)2 − 4(4− π)bd
(69)

Overall, the drainage of the entire sample follows the invasion percolation model described by Chandler et al., 1982 [97]. The
simulation starts by increasing pc . A search is then executed on the pore throats containing the fluid-fluid interface. The throat
with the lowest pc

e corresponds to the location where interface displacement will occur, leading to the invasion of a neighbouring
pore by the NW phase. The NW phase reaches new throats when this pore is drained, which triggers a cascade of invasion events
(i.e. Haines jumps) at pore throats with the same value of pc. The invading phase thus percolates until no more pores can be
drained.

In addition, the simulation is performed by controlling pc instead of the flux rate. Although the model is designed for simu-
lating quasi-static strong drainage, the effects of viscosity can be reflected by the rate of change of pc (see Fig. S30).

a cb

FIG. S30: Simulated displacement patterns for the strong drainage case for different rates of change of pc. (a) pc is increased
from 0. The increment is locally determined by each throat, which corresponds to a purely quasi-static invasion sequence. In

(b) and (c), pc is decreased from the same initial value but with different declining speeds.
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