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Self-Organising Swarms of Firefighting Drones: Harnessing the Power of Collective
Intelligence in Decentralised Multi-Robot Systems

Mauro S. Innocentea, Paolo Grassoa

aAutonomous Vehicles & Artificial Intelligence Laboratory (AVAILab), Research Institute for Future Transport and Cities, Coventry University, Coventry, UK.

Abstract

Swarm Intelligence (SI) is concerned with the collective behaviour that emerges from decentralised self-organising systems, whilst
Swarm Robotics (SR) is an approach to the self-coordination of large numbers of simple robots which emerged as the application
of SI to multi-robot systems. Given the increasing severity and frequency of occurrence of wildfires and the hazardous nature of
fighting their propagation, the use of disposable inexpensive robots in place of humans is of special interest. This paper demon-
strates the feasibility and potential of employing SR to fight fires autonomously, with a focus on the self-coordination mechanisms
for the desired firefighting behaviour to emerge. Thus, an efficient physics-based model of fire propagation and a self-organisation
algorithm for swarms of firefighting drones are developed and coupled, with the collaborative behaviour based on a particle swarm
algorithm adapted to individuals operating within physical dynamic environments of high severity and frequency of change. Nu-
merical experiments demonstrate that the proposed self-organising system is effective, scalable and fault-tolerant, comprising a
promising approach to dealing with the suppression of wildfires – one of the world’s most pressing challenges of our time.
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1. Introduction

A wildfire is an unplanned and uncontrolled vegetation fire
which can have devastating health, social, economic and envi-
ronmental impacts. The deadliest wildfires in Portugal’s history
erupted in 2017, killing 66 and injuring 204 people. In 2018,
several major series of wildfires broke out around the world, in-
cluding in the United States (US), Canada, Australia, Greece,
Portugal and the United kingdom (UK): California saw the
largest wildfires on record; British Columbia saw the largest to-
tal burn-area during wildfire season on record; Sydney’s bush-
fire season started two months early, in winter; more than 80
people were killed in Athens; forest fires wreaked havoc in
the Algarve region; whilst a record-breaking series of wildfires
burnt across the UK. In February 2019, New Zealand saw the
worst wildfires in over 50 years, with 155 firefighters, 23 he-
licopters and three planes deployed to tackle the blaze. One
helicopter crashed fighting the Nelson wildfire, with the pilot
suffering moderate injuries. The Forestry Commission predicts
that destructive wildfires will increase in frequency due to in-
creased land-use pressure and climate change [24]. The devel-
opment of more effective and safer means to fight wildfires is
one of the world’s most pressing challenges of our time.

Unmanned Aerial Vehicle (UAV) technology has progressed
rapidly for the past two decades, extending its capabilities and
the kinds of problems it can help tackle. Modern UAVs –a.k.a.
drones– can be equipped with a range of advanced cameras and
sensors which enable them to operate in remote areas, dan-
gerous environments, and even through solid smoke. Current
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applications include aerial photography and filming, informa-
tion gathering for human decision-makers, provision of essen-
tial supplies, support for search and rescue operations, mapping
of inaccessible locations, field surveying, and crop health mon-
itoring. With regards to firefighting operations, drone technol-
ogy has been applied to forest surveillance, building fire risk
maps, forest fire detection and monitoring [15], post-fire recov-
ery monitoring [84], bushfire hotspot detection [30], and sup-
port for disaster relief operations. Compared with their use in
forest fire monitoring and detection, research and development
on UAV-based fire suppression is still scarce [89]. Yet, given
the hazardous nature of the activity, fighting fires using UAVs
in place of humans is of special interest.

Swarm Intelligence (SI) is a route to Artificial Intelligence
(AI) which stems from decentralised and self-organising be-
haviour observed in groups of social animals in nature. By way
of collaboration, a form of collective intelligence emerges en-
abling them to accomplish tasks that are far beyond the aggrega-
tion of their individual capabilities. SI is the branch of AI that
deals with the collective behaviour that emerges from decen-
tralised self-organising systems, where individuals only inter-
act locally with one another and with the environment. Swarm
Robotics (SR) is an approach to the self-coordination of large
numbers of simple robots which emerged as the application of
SI to multi-robot systems. It differs from other SI studies in that
it emphasises the physical embodiment of individuals [74], and
from distributed robotics in that it promotes scalability.

There is a limited number of UAVs which can be remotely
controlled and coordinated to operate simultaneously, therefore
restricting the achievable fire suppression capabilities. There
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are also difficulties associated with centralised communication
with ground control during wildfire events. Conversely, swarm
robotic systems allow for a high number of self-coordinating
agents with only local drone-to-drone communication and no
central control. Furthermore, the use of swarms of decen-
tralised collaborative and self-organising robots results in a ro-
bust and resilient system with collective decision-making able
to cope with uncertainty, errors, local perturbations, and the
failure or loss of a few units. While the use of drones to support
firefighting operations is fast becoming common practice, the
design of self-organising swarms of drones to directly engage
in the suppression of fires remains notably unexplored.

This paper aims to demonstrate the feasibility and potential
of employing SR to fight wildfires autonomously. The focus
is not on the design of the physical robots but on their self-
coordination mechanisms for the desired firefighting behaviour
to emerge. To this end, an efficient yet realistic physics-based
model of wildfire propagation and a self-organisation algorithm
for swarms of firefighting drones are developed and coupled,
with the collaborative behaviour based on a particle swarm al-
gorithm adapted to individuals operating in physical dynamic
environments of high severity and frequency of change.

Section 2 of this paper presents background and related work
on fire propagation models, SI, SR, and the particle swarm
algorithm. Section 3 presents the proposed efficient physics-
based model of wildfire propagation, whilst section 4 describes
the proposed system of self-organising swarms of firefighting
drones. Numerical experiments are carried out in section 5 to
calibrate the fire propagation model in terms of the area affected
against predictions obtained by a commercial simulator, to ob-
serve unchecked fire propagation, to test the proposed fire sup-
pression system in terms of expected scalability and fault toler-
ance, and to study the effect of the inertia weight as a control
coefficient. Conclusions and future work are discussed in sec-
tion 6. All figures in this article are available in [dataset] [36].

2. Background and Related Work

2.1. Fire Propagation Models
Modelling fires and their propagation is a remarkably chal-

lenging task due to the complex combination of interdependent
physical phenomena involved that take place at different scales.
Depending on the features considered and techniques used, dif-
ferent taxonomies of mathematical models can be devised.

Sullivan [80, 81, 82] proposes three broad categories, which
in fact become six: 1) physical models, which attempt to repre-
sent the physics and chemistry of fire spread; 2) quasi-physical
models, which attempt to represent only the physics; 3) empiri-
cal models, which contain no physical basis; 4) quasi-empirical
model, which use some physical framework upon which to base
the empirical model; 5) simulation models, which implement
the preceding types of models in a computer simulation envi-
ronment; and 6) mathematical analogous models, which use
mathematical precepts rather than physical ones.

In this paper, three classifications of mathematical models are
proposed in Fig. 1, which are somewhat general yet especially
suitable for fire propagation models.

Perhaps the most obvious differentiation is between mecha-
nistic and Data-Driven Models. While the latter are built so as
to fit data, mechanistic models are developed based on a set of
governing laws or mechanisms. If these laws are directly asso-
ciated with the phenomena or system being modelled, they are
referred to as Theoretical Models –which are often physics-
based. Otherwise, they are referred to as Mechanistic Surro-
gate Models, since the governing laws are seemingly unrelated
to the problem in question yet predictions appear sufficiently
accurate. It seems appropriate to quote Box et al. [12] here:
”All models are wrong, but some are useful”.

Theoretical models derived purely from first principles are
said to be white-box models whilst data-driven models which
are purely data-fitting –completely independent of theories–
are said to be black-box models (phenomenological, empiri-
cal). The combination of governing laws and empirical data
leads to grey-box models (semi-empirical). Typically, the lat-
ter are viewed as theoretical if mostly based on governing laws
with some parameters calibrated using empirical data (light-
grey-box) and as data-driven if mostly driven by data but in-
corporating some principles and laws associated with theories
(dark-grey-box, model-fitting). If a data-driven model is built
to fit data generated using another model (typically theoretical
and high-fidelity), the result is a data-driven surrogate model,
or simply surrogate model. Mechanistic surrogate models are
those designed disregarding the theories underlying the system
or phenomena being modelled, yet based on a few leading as-
sumptions which may be somewhat physics-based.

2.1.1. Data-Driven Models
Data-driven models are based on observation and experimen-

tation, either constructing a model directly from the data (em-
pirical, black-box, data-fitting) or fitting a pre-defined model to
the data (semi-empirical, dark-grey-box, model-fitting). They
may be used to simply model available data or as the basis for
theoretical developments and their subsequent testing.

In the early models of wildfire propagation, the focus was on
the determination of key characteristics identified to describe
the behaviour of wildfires such as the local rate of spread (RoS)
at the headfire, the height and angle of the flames, or the rate
of increase of the affected area. Hence they basically consist of
one-dimensional (1D) models of fire behaviour. A prominent
example is Rothermel’s model [70, 5], which predicts the RoS
of the headfire in the direction of the wind in an environment
specified by fuel, weather and topography descriptors [64]. It is
based on a heat balance model using data obtained from wind
tunnel experiments in artificial fuel beds of varying characteris-
tics and from field experiments of grassfires under varying wind
conditions [5, 81]. Thus, Rothermel’s model is a dark-grey-box
model in Fig. 1 (data-driven, model-fitting), whilst it is classi-
fied as semi-physical in [64] and as quasi-empirical in [81].

In the US, Rothermel’s model forms the basis of the National
Fire Danger Rating System [5, 81] and has been incorporated
into the fire modelling system BehavePlus [4] and the Fire Area
Simulator FARSITE [27]. In Australia, Cheney et al.’s empiri-
cal model [18] is used in the CSIRO Grassland Fire Spread Me-
ter to predict fire behaviour in grasslands [81]. In Canada, the
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Taxonomies of 
Mathematical Models 

(general, yet particularly suitable
for fire propagation models) 

Theoretical Models 
Mechanistic, possibly 

physics-based. 

Data-Driven Models 
Constructed from data, 
fitted to data, or data-

driven surrogate model. 

White-Box Models 
Derived from first principles, 
purely mechanistic models. 

Light-Grey-Box Models 
Semi-empirical, mostly based on

governing laws but with some
calibrated parameters.

Dark-Grey-Box Models 
Semi-empirical, model-fitting, mostly

driven by data yet incorporating
principles and laws from theories. 

Black-Box Models 
Empirical, data-fitting,

phenomenological, completely
independent of theories. Continuous 

Real-valued responses
of real variables. 

Discrete 
Discrete variables or 

discrete mathematical
structure. 

Cellular Automata Models 
Computational model, rules derived from
first principles or mathematical analogue. 

Lattice Boltzmann Models 
Computational model, commonly used 
to model fluid flow as emerging from

streaming and collision among particles. 

Network/Graph Models 
Represents objects and their relationships 
as a graph of nodes, edges and weighs. 

Deterministic 
Same inputs always

produce same outputs. 

Stochastic 
Predictions in terms

of probabilities, 
uncertainty modelled. 

Agent-Based Models 
Computational model, typically stochastic,

commonly used to model complex systems. 

Mechanistic 
Surrogate Models  

Mechanisms not directly
related to system or

phenomena being modelled. 
May be white-box or grey-box. 

Two-Dimensional Fire Growth Models 
e.g. perimeter representation as envelope 
of local ellipses and perimeter expansion

by Huygens wavelet propagation 
based on classical fire spread models. 

Figure 1: Proposed taxonomies of mathematical models, particularly suitable for fire propagation models. A given model may belong to more than one class; e.g. a
cellular automata model is based on difference equations (discrete), may be a mechanistic surrogate model, derived from first principles (white-box) or data-driven
(model-fitting), and may be either deterministic or stochastic (typically the latter).

quasi-empirical Fire Behaviour Prediction system [32] forms
part of the Canadian Forest Fire Danger Rating System. For a
comprehensive review of data-driven models, refer to [81].

While useful under specific conditions, data-driven models’
predictions cannot easily be extrapolated beyond the conditions
under which they were developed [64].

2.1.2. Theoretical Models
When describing physical phenomena, theoretical models

typically present mathematical formulations in terms of cou-
pled partial differential equations (PDEs). Physics-based white-
box models are often 3D, developed from first principles, and
include balances of mass, momentum and energy. In the con-
text of fire propagation modelling, they also account for chem-
ical reactions involved in combustion processes, and there-
fore involve convection-reaction-diffusion-radiation equations
with model parameters aimed to be mathematically derived.
Prominent examples are the diphasic multiscale model in [75],
FIRETEC [52], FDS [56] and WFDS [58]. Similarly, physics-
based light-grey-box models tend to be 2D, based on simple
balance laws such as energy balance (e.g. [55, 26, 31]), whilst
also requiring empirical parameters and experimental data to
calibrate them for particular conditions.

For a model to be useful, it must be validated. Even advanced
models developed from first principles make a number of as-
sumptions and simplifications such as averaging small-scale
processes, disregarding radiant heat from flames, or modelling
only gas-phase combustion. Others apply reduction techniques
to make the models numerically tractable and operationally fea-
sible (e.g. [55, 2]). Therefore, even multiphysics, multiphase

and multiscale theoretical models cannot be exclusively bottom
up from first principles, and require some degree of calibration
to be validated so as to produce reliable predictions. For ex-
ample, notice the calibrations during validation of FDS in [57].
Nonetheless, calibrated parameters in a physics-based model
should still have physical meaning and their values should re-
main within realistic intervals. For a comprehensive review of
this type of models, refer to [58, 80].

2.1.3. Mechanistic Surrogate Models
Mechanistic surrogate models do not closely follow the laws

of physics associated with the phenomena or system being
modelled. Instead, a different set of governing laws are ob-
served to predict the desired responses with sufficient precision.
While this makes them computationally efficient, the drawback
is that the use of the model is limited to making that specific
prediction. For example, a mechanistic surrogate model may be
able to predict the spatial evolution of a fire front without any
regard to the physics involved, and therefore cannot be later
used to predict temperatures, to interact with an atmosphere
model, or to study the impact of a given fire suppressant. Ex-
amples related to fire spread modelling are Cellular Automata
Models, Lattice Boltzmann Models, Network Models, Agent-
Based Models, and Two-Dimensional Fire Growth Models.

A Cellular Automata (CA) model is a decentralised spatially
extended system consisting of a large number of identical com-
ponents of simple geometry with local connectivity. Two main
components can be identified: 1) the cellular space and 2) the
transition rule. The former is a lattice of a certain number of
identical finite-state machines whereas the latter returns the new
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state based on the current state and on those of the neighbour-
ing cells. While a CA model may be physics-based, it usually
comprises a mechanistic surrogate model. Since it is a dynamic
system discrete in time and space, its computer implementa-
tion is straightforward. It also allows for the seamless introduc-
tion of stochasticity into the transition rule and of percolation
threshold analysis. Examples are [23, 61, 1, 71, 25, 60].

A Lattice Boltzmann method is a promising approach for the
simulation of fluid flow [79, 7] alternative to the conventional
approach of numerically solving the Navier-Stokes equations.
Lattice-Boltzmann models (LBMs) represent the fluid as a large
but finite number of particles undergoing propagation and col-
lision processes. The domain is represented by a lattice mesh at
which nodes a reduced number of particles are confined. This
model consists of a discretised representation of the Boltzmann
transport equation that relates the particles’ distribution to their
velocities by means of a collision operator. Examples of com-
bustion simulations using this approach are [87, 16, 19].

Some authors have attempted to model fire propagation using
small-world networks, where a square lattice is used to model
the short-range phenomena (e.g. radiation, convection, diffu-
sion) whilst long-range connections are added to model fire-
spotting processes such as firebrands transported downwind
starting spot-fires in wildlands [65] or fire transmission through
walls and ducts in fire-spread onboard naval vessels [45].

An agent-based model (ABM) is a class of computational
models that simulate the local actions and interactions of au-
tonomous agents to study the behaviour that emerges at the sys-
tem level. ABMs describe the system or phenomena of interest
using agents, an environment, and both agent-agent and agent-
environment interactions. If applied to model fire propagation,
agents may represent the fire front travelling across a raster-
based simulated environment (e.g. [22]).

Specific to fire propagation modelling, there is a family of
mechanistic surrogate models based on a two-dimensional rep-
resentation of the fire perimeter followed by some law govern-
ing its expansion. Even if they include large data-driven com-
ponents, they are classified as mechanistic surrogate models
here because they incorporate crucial mechanisms which are
not directly linked to fire dynamics. Their objective is to pre-
dict the extent of a fire rather than its quantitative behaviour
[64], involving two distinct processes: 1) representing the fire
front, and 2) propagating that perimeter. In this paper, we group
these models under the denomination of Two-Dimensional Fire
Growth Models. This class can be further subdivided into two
subclasses: 1) Level-set-based models (LSM) and 2) Marker-
based models (MMs) [11]. LSMs predict the advance of a fire
front according to some governing law that specifies the RoS
of an infinitesimal segment of fire perimeter arc normal to it-
self [54]. Instead, MMs typically estimate the fire RoS with
Rothermel’s model [70], assume a local elliptical model for
the fire shape, and then follow Huygens’ principle with ellip-
tical expansion to propagate the perimeter (e.g. [68, 29]). Each
marker along the perimeter behaves as a new ignition point for
the next time step. The basic propagation geometry is a local
ellipse with its rear focus centered on each marker, which size,
shape and orientation depend on the fuel type, wind intensity

and local slope. After one time increment, the new perime-
ter is given by the outer curve that envelopes all local ellipses.
Prominent examples of MMs are the popular Fire Area Simula-
tor (FARSITE) [27], the Canadian wildland fire growth simula-
tor Prometheus [85], and the Australian Bushfire Risk Manage-
ment Tool Phoenix [83]. Rio et al. [69] combines Rothermel’s
and Richard’s [68] models into a forward model, and an inverse
modelling approach that minimises the differences between the
predictions of the forward model and sensor observations (i.e.
a data-driven assisted mechanistic surrogate model).

2.1.4. Other Classifications
As shown in Fig. 1, other classification criteria are pos-

sible such as differentiating between continuous and discrete
or between deterministic and stochastic models irrespective of
whether it is theoretical, data-driven or a mechanistic surrogate.
Continuous models represent the system or phenomena under
study in a continuous manner, with real-valued functions (or
responses) of real variables. Conversely, discrete models make
use of discrete variables and/or discrete mathematical struc-
tures. In turn, deterministic models always return the same pre-
dictions under the same circumstances, as they are governed by
equations that describe exactly how the system or phenomena
behaves. In contrast, a stochastic model will return probabilistic
predictions, producing different results depending on the values
that random variables take in each realisation.

2.2. Swarm Intelligence

Swarm Intelligence (SI) is a paradigm of AI which stems
from decentralised and self-organising behaviour observed in
groups of simple social animals in nature such as ant, termite
and bee colonies, fish schools and bird flocks. By way of col-
laboration, a form of collective intelligence emerges enabling
these animals to accomplish tasks that are beyond the simple
aggregation of their individual capabilities. That is, the whole
is more than the sum of its parts. Thus, SI is the branch of AI
that deals with the collective behaviour that emerges from de-
centralised self-organising systems. Self-Organisation occurs
with no central control or sense of purpose, as individuals only
interact locally with one another and with the environment in-
ducing the emergence of coherent global patterns.

SI is the emergent collective intelligence of groups of simple
agents [10]. As an AI discipline, it is concerned with the design
of intelligent multi-agent systems. A SI system should satisfy
the following conditions:

a) Be composed of a number of simple agents or individuals, as
some critical mass is required for self-organisation to occur.

b) Be composed of agents or individuals who are similar to one
another, typically identical or belonging to a few typologies.

c) Have local interactions based on simple behavioural rules
that exploit information exchanged locally among individu-
als in a direct manner or indirectly through the environment.
This indirect exchange is called stigmergy, where the en-
vironment acts as state memory. Interactions are typically
probabilistic, introducing creativity into the system.
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d) Exhibit an emergent global behaviour which results from the
interactions of individuals with one another and with the en-
vironment. This self-organised intelligent behaviour at the
swarm level is not known at the individual level.

These characteristics make SI systems scalable, parallel, ro-
bust and fault-tolerant. Scalability guarantees that the system
can change size without redefining its behaviour. Since inter-
actions are local, individual behaviour is marginally affected by
changes in the swarm size. In turn, the population-based na-
ture of these systems results in a parallel search that acquires
information in a distributed manner. This makes them robust to
local perturbations whilst the exchanges of information among
agents enlarge the pool of knowledge decreasing uncertainty.
Fault tolerance is due to their decentralised, self-organised and
scalable nature as well as to the similarity among agents. If an
agent is faulty or removed, the system does not cease to func-
tion: it can either continue to work under the reduced swarm-
size, or another agent can be incorporated as a substitute.

Critical concepts underlying the field of Swarm Intelligence
are Emergence, Complexity, Self-Organisation and Stigmergy.
A detailed discussion on these topics is beyond the scope of
this paper, and the reader is referred to the excellent articles
compiled in [6] and to [10, 34, 35, 59]. It is simply mentioned
here that self-organisation is a process through which coherent
global patterns emerge from local interactions among lower-
level components of the system. For this to occur, numerous
interactions, stochasticity, and a combination of positive and
negative feedbacks are essential. Positive feedback is generated
through autocatalytic behaviours whereas negative feedback is
a counterbalancing mechanism that typically stems from a de-
pletion of resources. [10, 74]

It should be noted that there are several terms used indis-
tinctly in this section and in the literature whose definitions are
rather loose and frequently conflicting. For instance, the terms
cooperation and collaboration do not have identical mean-
ing. The same is true for cooperative and collective decision-
making, distributed and decentralised systems, and collective
and swarm intelligence. While different, it is argued that most
of these concepts apply to SI systems nonetheless, and the issue
is not discussed further in this article.

2.3. Swarm Robotics

Swarm Robotics (SR) is an approach to the self-coordination
of large numbers of simple, relatively inexpensive robots which
emerged as the application of SI to multi-robot systems. Differ-
ent from other SI studies, emphasis is on the physical embod-
iment of individuals [74]. SR systems differ from distributed
robotic ones in that the former are scalable, which means that
performance can be improved by increasing the size of the
swarm without the need to redefine or reprogram the system.

As a SI system, SR must abide by the conditions discussed
in the previous section. In addition, the agents must be au-
tonomous robots operating in the physical world with the abil-
ity to sense and actuate in a real environment. These simple
robots must possess individual capabilities that are limited rel-
ative to the task to be carried out at the system level. In other

words, they must be unable to solve the problem absent collab-
oration. This simplicity carries the added benefit that the robots
are inexpensive and less prone to failure.

SR aims to study how a large number of simple robots can
be designed so that a desired collective behaviour emerges from
the local interactions among themselves and with the environ-
ment [73]. This research is not concerned with the design of
the physical robots but of their self-coordination mechanisms
so that they self-organise to develop the ability to fight fires au-
tonomously and collaboratively. The design of the rules for the
local interactions to lead to the emergence of the desired sys-
tem’s behaviour is not a trivial task. Therefore, the observation
of desirable collective animal behaviour and the identification
of the basic underlying self-coordination mechanisms can serve
as sources of inspiration for the design of SR systems.

2.4. Particle Swarms Algorithm

Particle Swarm Optimisation (PSO) is one of the most suc-
cessful SI algorithms, originally developed as a model of so-
cial behaviour inspired by earlier bird-flock simulations framed
within the field of social psychology. In particular, Reynolds’
boids [66] and Heppner and Grenander’s artificial birds [33]
strongly influenced the early developments. It was also influ-
enced by experiments and theories in social psychology such as
Sherif’s experiments, Bandura’s no-trial learning, and Latané’s
Social Impact Theory [47]. Therefore, the method is closely re-
lated to other simulations of social processes and experimental
studies in social psychology whilst also having strong roots in
optimisation and AI as well as applications in SR.

PSO is a global optimiser in the sense that it is able to escape
poor suboptimal attractors thanks to a parallel search carried out
by a swarm of cooperative particles. Its overall behaviour re-
sults from a combination of each particle’s individual behaviour
and the social behaviour that emerges from their interactions.
The individual behaviour materialises as the trajectory of a par-
ticle pulled by an attractor. In most versions of the algorithm,
this attractor results from some stochastic weighted average of
an individual attractor (a particle’s best experience) and a so-
cial attractor (best experience of neighbouring particles). The
social behaviour is governed by how individually acquired in-
formation is propagated throughout the swarm. The individual
and social behaviours are linked by the update of the social at-
tractor in the trajectory equation. While the social behaviour
is controlled by the neighbourhood structure (i.e. the sociome-
try), the individual behaviour is controlled by the settings of the
coefficients in the trajectory equation.

2.4.1. Trajectory Difference Equation
The Classical PSO (CPSO) algorithm proposed in [76] is re-

arranged in Eq. (1) as a single 2nd order difference equation:

x(t)
i j = x(t−1)

i j + ω(t)
i j

(
x(t−1)

i j − x(t−2)
i j

)
+ iw(t)

i j U(0,1)

(
xb(t−1)

i j − x(t−1)
i j

)
+ sw(t)

i j U(0,1)

(
xb(t−1)

k j − x(t−1)
i j

) (1)
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where x(t)
i j is the coordinate j of the position of particle i at time-

step t; xb(t)
i j is the coordinate j of the best experience of particle i

by time-step t; k is the index identifying the particle whose best
experience is the best in the neighbourhood at time-step t; ω(t)

i j ,

iw(t)
i j , sw(t)

i j are the jth components of the inertia, individuality
and sociality weights, respectively, of particle i at time-step t;
and U(0,1) is a random number from a uniform distribution in
the range [0,1] resampled anew every time it is referenced.

In the original formulation [46], ω = 1 and iw = sw = 2.
This leads to an unstable system, as particles tend to diverge
from their attractor(s). The first strategy used to control this so-
called explosion consisted of bounding the size of each compo-
nent of a particle’s displacement, which helps prevent the ex-
plosion but does not ensure convergence or a fine-grain search.
For CPSO, the coefficients in Eq. (1) can be set so that they
ensure convergence and favour fine-grain search.

Alternatively, Clerc et al. [21] analysed the trajectory of a
deterministic particle in the original PSO (ω = 1) and devel-
oped so-called constriction factors (χ) that ensure convergence.
This formulation is referred to as Constricted PSO (CoPSO).

For formulations including both inertia weight (ω) and con-
striction factor (χ), refer to [90, 13, 44].

2.4.2. Neighbourhood Structure
The neighbourhood structure in the original algorithm is the

global topology, where every particle is connected to every
other in the swarm, therefore having access at any time to the
best solution found so far by any particle. This may lead to a
rapid loss of diversity (implosion), which in turn may result in
premature convergence to a poor suboptimal solution. While
this can be controlled to some extent by the settings of the co-
efficients in the trajectory equation, numerous neighbourhood
topologies have been proposed by reducing connectivity thus
delaying the propagation of information throughout the swarm.
A few neighbourhood topologies are shown in Fig. 2.

Figure 2: a) global topology; b) ring topology with two neighbours; c) ring
topology with four neighbours; d) wheel topology; e) random topology.

An alternative to traditional topological neighbourhoods is
to define the nearest neighbours based on actual Euclidean dis-
tance, or using the so-called speciation [50, 51, 62] where the
local attractor (i.e. the best experience in the neighbourhood)
is chosen as the best within adaptively generated species (clus-
ters). For further studies on neighbourhood structures and inter-
particle communication, refer to [28, 17, 53, 86].

2.4.3. Dynamic Environments
During the execution of a PSO run, the canonical algorithm

has no means to detect changes in the location of the optima
as particles are under the influence of outdated memories. Fur-
thermore, as the search progresses and the swarm converges,

diversity is progressively lost rendering the swarm unable to
explore the dynamic environment to track the moving optima.

Carlisle et al. [14] adapted the algorithm to dynamic envi-
ronments –specifically for tracking a moving beacon– by hav-
ing particles periodically replace their memories with their cur-
rently held information, thus effectively forgetting experiences
which are likely to have become obsolete.

Blackwell et al. [9] proposed using charged particles in en-
vironments where the optimum location changes randomly and
with high severity. The use of charged particles aims to main-
tain diversity, thus enabling the swarm to better respond to such
changes. The drawback is that this method requires the calcu-
lation of repulsive forces among all charged particles (n) with
complexity of O(n2). Blackwell et al. [8] proposed splitting the
population into a set of swarms that interact locally by an exclu-
sion parameter and globally through an anti-convergence oper-
ator. Each swarm maintains diversity either by using charged
or so-called quantum particles.

Parrot et al. [62] proposed a species-based PSO algorithm
with a crowding prevention mechanism to locate multiple op-
tima, coupled with the re-evaluation of each particle’s memo-
rised best location (xb) to track the changes in the dynamic en-
vironment. Yazdani et al. [88] proposed a finder-trackers multi-
swarm algorithm combined with a mechanism to increase diver-
sity based on a change in velocity vector and particle positions,
a test point to detect change, a local search algorithm to enhance
exploitation, and a so-called awakening-sleeping mechanism to
improve efficiency. Sadeghi et al. [72] incorporated a memory
of the locations of previous optima and a diversity mechanism
based on k-means clustering to track changing optima.

A comprehensive comparison of different techniques to be
incorporated to the PSO algorithm to handle dynamic environ-
ments can be found in [49, 88], including diversity-maintaining
schemes, memory-based schemes, and multi-swarm schemes.
For further reading, refer to [67, 63, 48].

3. Efficient Physics-Based Model of Wildfire Propagation

The use of aerial swarms to solve real-world problems has
been increasing steadily, underpinned by technology advance-
ments and falling prices. A key enabling technology is the
development of self organisation algorithms that allow drones
to communicate and allocate tasks amongst themselves, plan
their trajectories, and self-coordinate their flights to achieve the
swarm’s objectives [20]. The aim of this research is to demon-
strate the feasibility and potential of employing aerial swarm
robotics to fight wildfires autonomously. In order to evaluate
the collective firefighting behaviour that emerges from the pro-
posed self-coordination mechanisms, an efficient physics-based
model of fire propagation is required. A preliminary proof-of-
concept of this research was presented in [42].

The fire propagation model developed is governed by a two-
dimensional reaction-diffusion equation that describes the com-
bustion of a mono-phase medium composed of pre-mixed gas
of fuel and air. This comprises a simplified version of the model
in [26], where the slope effect and water vapour pressure are
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not considered. With this dimensionality reduction, some im-
portant phenomena in fire dynamics such as buoyancy are dis-
regarded. It is assumed that there is no atmospheric wind, and
mass transfer is neglected. In order to compensate for this, the
diffusion coefficient is augmented and two terms are added to
the energy balance equation to account for the energy losses due
to convection and radiation in the vertical direction. Horizontal
radiation is modelled to affect only neighbouring cells, since the
cell-size of the discretised domain can be set larger than the op-
tical thickness. The heat capacity at constant pressure of each
chemical species is considered to be constant and equal to an
average value within the considered temperature range, namely
from 293 K to approximately 1,100 K. The mixed gases are
confined in their original location, neither diffused nor trans-
ported, as if the pyrolysis gasses burned exactly where they had
been released. The irreversible chemical reaction in Eq. (2) rep-
resents the combustion of the pyrolysis gasses (e.g. methane) in
the air, which is considered to be composed of oxygen, carbon
dioxide, water vapour and nitrogen:

θ1CH4 + θ2O2 → θ3CO2 + θ4H2O (in air : θ5N2) (2)

The model is formulated in Eq. (3) as a system of five PDEs,
one for the enthalpy balance and four for the chemical species
formation (CO2 and H2O) or consumption (Fuel and O2).



ρcp
∂T
∂t

=

Combustion︷        ︸︸        ︷
−ρhc

M
M f uel

r

+

Thermal Diffusion︷                                            ︸︸                                            ︷
κ
∂

∂x

 1
cp

∂
(
cpT

)
∂x

 + κ
∂

∂y

 1
cp

∂
(
cpT

)
∂y


+

Enthalpy Diffusion︷                                ︸︸                                ︷
κ
∂

∂x

(
1
cp

∂hc

∂x

)
+ κ

∂

∂y

(
1
cp

∂hc

∂y

)

+

Vertical Convection︷           ︸︸           ︷
Ca (Tamb − T )

+

2D Radiation︷                                              ︸︸                                              ︷
σε

[
4
∂

∂x

(
T 3 ∂T

∂x

)
δx + 4

∂

∂y

(
T 3 ∂T

∂y

)
δy

]

+

Vertical Radiation︷             ︸︸             ︷
σε

T 4
amb − T 4

δz

 −
Transport︷                     ︸︸                     ︷

ρcpuy
∂T
∂y
− ρcpux

∂T
∂x

∂Xi

∂t
= −

θi

θ f uel

M
M f uel

r with i = 1, ..., 4

(3)

The system is closed with Eqs. (4) for the molar mass of the
mixture, (5) for the heat capacity of the mixture, (6) for the
combustion rate and (7) for the combustion enthalpy.

M =

5∑
i=1

XiMi (4)

cp =

5∑
i=1

Xi
Mi

M
cpi (5)

r (T, X1, X2) = −δ+

(T,X1,2)ArT X0.5
1 X2 exp

(
−

Ta

T

)
(6)

hc =
Hc (T )

M
= −

1
M

5∑
i=1

θiHi (T )

=
1
M

5∑
i=1

θi

(
Hi,ref + Micpi (Tref − T )

) (7)

The molar mass of the mixture (M) in Eq. (4) is the summa-
tion of each chemical species molar mass (Mi) multiplied by
the respective mass fraction (Xi). The averaged constant pres-
sure heat capacity of the mixture (cp) in Eq. (5) is obtained by
weighted summation of the partial heat capacities (cpi). The
combustion rate (r) in Eq. (6) is the rate of fuel consumption,
and follows the continuous exponential Arrhenius law. It is a
function of temperature (T ), fuel mass fraction (X1) and oxygen
mass fraction (X2). The pre-exponential coefficient (Ar) and the
activation temperature (Ta) are empirical parameters. The func-
tion δ+

(T,X1,2) in Eq. (6) is a Kronecker delta as in Eq. (8).

δ+

(T,X1,2) =

{
1 if T > Tp and X1,2 > X1,2e

0 else (8)

This represents a simple extinction model: if the temperature
is lower than the pyrolysis temperature (Tp), or if either the fuel
mass fraction or the oxidant mass fraction is lower than the re-
spective flame extinction value (X1e or X2e), combustion stops.

The combustion enthalpy in Eq. (7) consists of the summa-
tion of all formation enthalpies (Hi) at the specific local tem-
perature (T ). Hi,ref and Tref are reference values from tables.

According to our definitions and proposed classifications in
Fig. 1, the model developed here is continuous, deterministic
and theoretical. It is physics-based, with a few parameters to be
calibrated (light-grey-box). In turn, the model would be classi-
fied as physical both in [64] and [80].

4. Self-Organising Swarm of Firefighting Drones

Since the PSO algorithm was inspired by models of decen-
tralised flocks of birds, its potential to prescribe the desired be-
haviour of a swarm of self-organising drones is promising. A
detailed study of PSO is beyond the scope of this paper. It suf-
fices to say that the attractors in Eq. (1) can be combined into a
single attractor at a given time-step (t) as follows [43, 41]:

φ(t)
i j = ι(t)i j + σ(t)

i j = iw(t)
i j U(0,1) + sw(t)

i j U(0,1) (9)

p(t)
i j =

ι(t)i j xb(t)
i j + σ(t)

i j xb(t)
k j

φ(t)
i j

(10)
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Clearly, the effect of the randomness incorporated into the
coefficients in Eq. (1) is two-fold: it affects the trajectory of a
particle towards the overall attractor (p), while also affecting
the generation of this attractor as a stochastic convex combi-
nation of the individual (xbi) and the social (xbk) attractors.
Different from classical formulations, these two features of the
algorithm are decoupled here. Thus, the attractor is generated
at every time-step from a uniform distribution within the rect-
angle generated such that its edges are parallel to the coordinate
axes and it contains the current individual and social attractors
as vertices. Once the attractor p is generated, the trajectory dif-
ference equation is as in Eq. (11).

x(t+1)
i j = x(t)

i j + ω(t)
i j

(
x(t)

i j − x(t−1)
i j

)
+ φ(t)

i j

(
p(t)

i j − x(t)
i j

)
(11)

The random variable φ can be realised as in Eq. (9) so that
the probability distribution is triangular or trapezoidal as in the
classical formulation, or a different density function can be cho-
sen. Analysing the trajectory of a single particle with station-
ary attractor and constant coefficients, the settings of ω and φ
control the type of behaviour (see Fig. 3). For optimisation
purposes, convergent high-frequency harmonic oscillations are
generally preferred, as there is no cost attached to large dis-
placements. Conversely, low-frequency harmonic oscillations
and smaller displacements are favoured for swarm robotic sys-
tems. Here we adopt the settings in Eq. (12), which ensure con-
vergent low-frequency harmonic oscillations, with φ randomly
generated from a uniform distribution within this range.ω ∈ (0, 1)

φ ∈
[(√

ω − 1
)2
, (ω + 1)

] (12)

Figure 3: Regions in φ − ω plane for different types of behaviour of a deter-
ministic particle in PSO. Settings inside the white triangle ensure convergence,
whilst settings in the black region inside the rotated parabola lead to harmonic
oscillations. The superposed white subset of the black region corresponds to
Eq. (12) and leads to low-frequency oscillatory behaviour.

A study of the influence of the coefficients in the trajectory
difference equation on the types of behaviour of a particle is
beyond the scope of this paper. Nonetheless, the convergence
region and the equation of the parabola bounding the harmonic
oscillatory behaviour in Fig. 3 (black region) can be found in
[43], and the right boundary of the white region happens to be
the same as φmean for Behaviour Type 1 in Eq. (20) in [41].

While local neighbourhood topologies and other types of so-
ciometries like distance-based nearest neighbours and specia-
tion need to be investigated, the global neighbourhood topology
is adopted for the initial studies presented in this paper.

As discussed in section 2.4.3, classical PSO requires some
adaptations to cope with dynamic environments by addressing
the problems of outdated memory and diversity loss [48]. The
propagation of fire leads to a dynamic environment with mul-
tiple hotspots frequently and severely changing location and
intensity. This feature is reinforced by drones attempting to
suppress the fire and therefore modifying the environment and
adding a form of stigmergy to their direct communication.

One technique to deal with dynamic environments is to re-
evaluate the particles’ memories when a change is detected,
expected, or at regular intervals. This is not feasible in this
case, as the sensors of physical drones are unable to acquire
data from distant locations. An alternative is to replace the par-
ticles’ memories with the currently held information. However,
as the search progresses and the swarm converges, this leads
to a fast loss of diversity rendering the swarm unable to ex-
plore the new landscape. Another technique is to re-initialise
the particles’ positions in the search-space, but it is impossi-
ble for physical drones to be instantly repositioned. Therefore,
both the outdated memory and the diversity loss problems are
addressed in this paper by erasing the individual memory of
a drone when it has not been updated in the preceding 10 sec-
onds, and then randomly re-initialising the memorised position.
Thus, outdated memories are deleted and diversity is increased
smoothly by new memories pulling the drones outwards via the
trajectory equation rather than by an instant relocation. These
new memorised positions are assigned temperatures one degree
below ignition to avoid the search to continue once the fire is
believed to have been suppressed.

The firefighting strategy is rather rudimentary at this stage:
each drone simply searches for hotspots in the field, and every
time it finds a location that is hotter than the hottest one stored
in its individual memory, a third of its total water payload is
dropped. After three drops, it must go back to the water source
to replenish. Likewise, once a drone has travelled its total flying
range, it must go back to its recharging docking station.

Fig. 4 provides a high-level description of the proposed self-
organising swarm of firefighting drones coupled with the devel-
oped physics-based model of fire propagation. This flowchart
is colour-coded for clarity, identifying five main sections and
providing explanatory text-boxes that briefly describe the main
tasks performed within each.

4.1. Initialisation
The settings for the physics-based fire propagation model and

those for the agent-based model of the swarm of drones are
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Figure 4: Flowchart with a high-level description of the model implementation for the proposed self-organising swarms of firefighting drones.
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entered independently, defining both the wildfire scene and the
firefighting tool. One or more sparks are randomly generated
to initiate the fire, and the drones are placed on their recharging
docking stations fully charged and fully loaded with water at
the beginning of the simulation (t = 0).

The variables for the PSO-based self-coordination mecha-
nism are initialised for each drone. Namely, the temperature at
its current location (T ) is measured, its memory storing the lo-
cation of its best experience (xb) is generated randomly from a
uniform distribution within the field, and the temperature asso-
ciated is fictitiously set to the ignition temperature (Tb = Tig).
Every drone is set to firefighting mode, and its target location is
set the same as the individual memory (xt = xb).

4.2. Update of Fire Model
The 2D fire model is updated by numerically computing its

evolution for one time increment of the simulation, therefore
requiring the discretisation of the space and time domains (∆x,
∆y, ∆t). From the initial fire sparks until the swarm of drones is
launched, the fire propagates unchecked. In a real scenario, au-
tomated wildfire detection technology would include stationary
(ground-based) visual systems, ground-based sensors, manned
and unmanned surveying aircrafts, and/or satellite monitoring.
For the purpose of these studies, the fire is simply allowed to
propagate unchecked for a given amount of time (tlaunch) before
the drones are informed that a fire has been detected within the
region of interest (no precise location is given). Once the fire-
fighting activities start, the drones may affect the temperature
field between updates of the fire model.

4.3. First Loop through Drones
This loop is nested within the time loop simulating the evo-

lution of the whole system from t = 0 to t = tmax, with a given
time increment (∆t) between iterations.

For each drone, its current target is identified, which states
whether it must proceed to fight the fire, move towards the
docking recharging station, or move towards the water source
for replenishment. When a drone decides it must move towards
the recharging docking station, whatever water is left in the tank
is dropped at its current location. In such a case, the fire field
needs to be updated by computing the new temperatures at the
nodes affected by the drop. It is considered that a drop only af-
fects instantaneously the four nodes from the discretised space
which are closest to the coordinates of the drop. Thus, coeffi-
cients of influence are calculated for each of these four nodes
as shown in Eq. (13) and in Fig. 5.

Ai j =
∆x − |x − x j|

∆x
·

∆y − |y − yi|

∆y
(13)

The fraction of the mass of the water dropped that affects
each node is given by its coefficient of influence. The temper-
ature at each of the four nodes is updated by means of a mass-
based weighted average between the current nodal temperature
and the temperature of the water dropped, as in Eq. (14).

Ti j ←
Ai j mdrop Twater + mgas Ti j

Ai, j mdrop + mgas
(14)

Figure 5: Rectangle spanned between four (red) nodes of the discretised space,
with the green dot representing the location where a water payload is dropped.
The coefficient of influence corresponding to the bottom-left node (x j, yi) is
given by the ratio between the area of the dark-grey rectangle and that of the
whole cell (i.e. ∆x · ∆y).

The mass of the gas mixture of fuel and air (mgas) is deter-
mined by the density of the gas (ρ) multiplied by the volume
represented by a node: ∆x ·∆y · zth, where zth is the thickness of
the gas layer provided as an input to the fire model.

Note that A is a 2×2 matrix that contains the four coefficients
of influence for the nodes in question. The indices (i, j) are
meant to facilitate the identification of the nodes they apply to.
For instance, A21 applies to (x j, yi) in Fig. 5.

Whether the update of the fire field has been completed or
unnecessary, the drone then moves towards its current target,
whichever this may be, always ensuring that the maximum ve-
locity permitted is not exceeded. Evidently, this physical dis-
placement requires the update of the drone’s remaining flying
range. In this paper, the latter is simply measured in terms of the
distance that can still be travelled before requiring a recharge.
It goes without saying that the drone’s payload is fully refilled
and its flying range reset to the maximum once it reaches the
water source and the recharging docking station, respectively.

In order to allow the fire to evolve between drones’ interven-
tions, measurements and memories can only be updated every
five time-steps; i.e. for values of t which are multiples of 5 ∆t.
Thus, if mod(t, 5∆t) = 0, the drone measures the temperature at
its current location. If this value is higher than the one in its
memory, the latter is updated and a fraction of the water pay-
load is dropped prompting an update of the fire field following
the procedure described in Eqs. (13)–(14) and in Fig. 5.

The outdated memory and the diversity loss problems are ad-
dressed by erasing the individual memory of a drone when it has
not been updated in the preceding 10 seconds, re-initialising its
memorised best position randomly, and setting the associated
temperature one degree below ignition.

4.4. Update of Highest Temperature in Collective Memory

Since the drones operate in parallel, it is more realistic to
update the global memory in a synchronous manner once all
individual memories are up-to-date. Therefore, it needs to be
carried out outside the first loop through drones discussed in
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the previous section. This update simply consists of extracting
the location and temperature of the hottest spot from the current
memories of all drones.

4.5. Second Loop through Drones
The choice of a synchronous update of the global memory

makes this loop necessary. Otherwise, both the asynchronous
update of the swarm’s best experience and the tasks described
below could be performed at the end of the first loop through the
drones discussed in section 4.3. Hence the two loops through
the drones are sequential and nested within the loop through
time that simulates the evolution of the whole system. Note
that the second loop is only executed every 5∆t.

As discussed before, the PSO formulation proposed here de-
couples the generation of the overall attractor and the evaluation
of the trajectory difference equation. Thus, the overall attractor
for drone i at time t (p(t)

i ) is stochastically generated from a
uniform distribution within the rectangle spanned between the
location of the individual best experience (xb(t)

i ) and that of the
global best experience (xb(t)

k ) as in Eq. (15). Sub-index k iden-
tifies the drone holding the global best experience.

p(t)
i j = xb(t)

i j + U(0,1)

(
xb(t)

k j − xb(t)
i j

)
(15)

The acceleration coefficient (φ(t)
i j ) is generated independently

from the overall attractor as in Eq. (16). This is different from
the original coupled formulations in Eqs. (9)–(10). In addition,
the pair (φ, ω) is kept within the white region in Fig. 3 to favour
low-frequency harmonic oscillatory behaviour.

φ(t)
i j =

(√
ω − 1

)2
+ U(0,1)

[
(ω + 1) −

(√
ω − 1

)2
]

(16)

The target location for drone i for the next iteration (xt(t+1)
i ) is

generated as in Eq. (17). While the resemblance to the PSO tra-
jectory equation is evident, this is not really a difference equa-
tion because it returns xt(t+1) as a function of x(t) and x(t−1). This
is the drone’s target when in firefighting mode.

xt(t+1)
i j = x(t)

i j + ω(t)
i j

(
x(t)

i j − x(t−1)
i j

)
+ φ(t)

i j

(
p(t)

i j − x(t)
i j

)
(17)

5. Numerical Experiments

The domain in these experiments is a field of 100x100 m2

with fuel uniformly distributed except for a small band of 9.6 m
around the field so that combustion does not take place near
the boundaries. Thus, the total area covered with fuel equals
6,529 m2 whilst the total fuel energy available is 218.30 GJ.
The adopted fuel is short grass, referred to as Fuel Model 1 in
[3]. No-wind condition is assumed, and all experiments are run
for 480 s. The remaining settings are shown in Table 1.

The fire propagation model is implemented using an explicit
numerical scheme consisting of a 2nd order Finite Difference
Method (FDM) in space with Dirichlet boundary conditions and
a 4th order Runge-Kutta (RK4) method for the integration in
time. Implicit methods are impractical for our needs.

Experimental results, figures and animations are available
open access via the figshare online digital repository.

5.1. Fire Model Calibration Experiment
In order to make the numerical experiments as realistic as

possible to test the proposed firefighting system, the physics-
based fire spread model developed is calibrated against predic-
tions made by the commercial simulator FARSITE [27]. The
latter cannot be used directly because it does not comply with
the requirement of being physics-based to interact with the fire
suppressant. Nonetheless, FARSITE is useful for calibration
purposes because it has been validated against historical fires.

The calibration simulations are performed with a single-point
ignition of a uniformly distributed fuel bed. The objective is to
minimise the error between the area affected by the fire pre-
dicted by our model (Aa) and the one predicted by FARSITE
(Aref). Three variables are chosen for calibration, namely the
thermal diffusion coefficient (κ), Arrhenius pre-exponential co-
efficient (Ar), and the horizontal optimal thickness (δx = δy).
The optimisation problem is formulated in Eq. (18), where
Tref = 1,200 K is the temperature of wood combustion in the
absence of wind and crown fire. The second constraint ensures
that the horizontal optical thickness is smaller than the mesh
size, which is a model assumption for the local radiation.

Minimise
[κ, Ar, δx]

(Aa − Aref)2

Subject to Tmax = Tref

δx < ∆x

(18)

The optimisation problem is solved at t = 600 s using SQP,
which returns the following values of the calibration variables:
κ = 0.988 W·m−1·K−1, Ar = 5.667×10−5, and δx = δy = 0.112 m.
As expected, κ adopts an augmented value to compensate for
the lack of horizontal transport. The agreement between the fire
front predicted by our calibrated model and the one predicted by
FARSITE is shown in Fig. 6 and in [dataset] [39].

Figure 6: Fuel energy field 600 s after ignition during the calibration experi-
ment. The red line depicts FARSITE’s fire front, the outer blue line shows our
model’s fire front, the dark region inside shows the burnt area, and the inner
blue line encloses the burnt region with current temperature below ignition.
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Table 1: General settings for the numerical experiments, including the three calibrated variables.

R Universal gas constant 8.3140 J·mol−1·K−1

Tamb Ambient temperature 294.1500 K
Tref Reference temperature (for h and cp calculation) 298.1500 K
Pref Reference pressure 101325 Pa
Pamb Ambient pressure 101325 Pa
Tig Ignition temperature 370 K
ρ Gas mixture density 1.2172 kg·m−3

zth Thickness of layer of fuel (gas mixture) 1.00 m
Ar Arrhenius pre-exponential coefficient (calibrated) 5.667 × 10−5 -
Ca Turbulent convection coefficient in atmosphere 0.0600 J·m−3·K−1·s−1

κ Thermal diffusion coefficient (calibrated) 0.988 W·m−1·K−1

cp Specific heat capacity at constant pressure calculated J·kg−1·K−1

Xf Initial fuel molar fraction 0.1000 -
σ Stefan-Boltzmann constant 5.6704 × 10−8 W·m−2·K−4

ε Emissivity factor (< 1) 0.70 -
δx = δy Horizontal optical thickness (calibrated) 0.112 m
δz Vertical optical thickness 1.0 m
hc Specific combustion enthalpy calculated J·kg−1

∆x = ∆y Cell-size 0.80 m
∆t fire Time between fire-spread updates 0.20 s
∆t drone Time between sensor measurements and memory updates 1.00 s
tdep Time at which drones are deployed 20 s
Payload Total amount of water carried by a drone (3 drops of 40 kg) 120 kg
Flying range Maximum distance a drone can travel between recharges 2000 m
vmax Maximum drone velocity permitted 10 m·s−1

5.2. Fire Propagation Experiments

Two experiments are carried out to observe unchecked fire
propagation, and to keep the resulting values of the area af-
fected (Aa) and of the energy consumed (Ec) as frames of ref-
erence. The fire is started from a single spark (or source) in
the centre of the field for the first experiment, whereas three ad-
ditional sources are randomly generated for the second exper-
iment (i.e. four sparks). The temperature and the fuel energy
fields at t = 10 s and at t = 480 s are shown in Fig. 7 for the first
experiment and in Fig. 8 for the second one. As the fires propa-
gate, the evolution of the Aa and that of the Ec for each fire are
shown in Fig. 9, with the final values provided in Table 2.

Table 2: Aa and Ec 480 s after the fire started. Total area with fuel is 6,529 m2

and total fuel energy before fire is 218.30 GJ.

No. of sources Aa Ec

1 fire source 1,313.92 m2 38.91 GJ
4 fire sources 2,938.88 m2 89.56 GJ

Results from the numerical experiments in this section are
available in [dataset] [39], including animations of the evolu-
tions of the temperature and of the fuel energy fields which
appear sufficiently realistic to be used as a platform for initial

testing of the proposed self-organising firefighting system.

5.3. Scalability Experiments
Once the model developed for fire propagation runs realisti-

cally and reasonably fast, it is coupled with the proposed model
of self-organising swarms of firefighting drones as shown in
Fig. 4. Recall that, since the focus is on the swarm-intelligent
coordination mechanisms so that the drones self-organise to de-
velop the ability to fight fires autonomously and collaboratively,
the simulated drones are collision-free at this stage.

It is important to note that the model of the firefighting sys-
tem is stochastic, and therefore multiple runs are necessary for
each experiment in order to compute basic statistics required to
derive reliable conclusions from the results. Even though these
models are efficient, the overall coupled model in addition to
the overheads for generating figures, animations, data output
files, and organising them automatically in a folder structure, is
about four to five times slower than real time in a standard desk-
top computer. Therefore, only a limited number of experiments
can be carried out within a reasonable time frame.

For the remaining experiments in this paper, 31 independent
runs are carried out for the statistics. Evidently, this is not sta-
tistically significant. In fact, Fig. 10 shows a plot of the mean Aa
by the fire after an eight-minute propagation against the num-
ber of samples used for the mean calculations. Clearly, conver-
gence has not been reached after 28 successful runs (three runs
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Figure 7: Single run of the fire model started from a single spark (i.e. one fire source). The figures on the left are snapshots of the temperature field at t = 10 s (top)
and t = 480 s (bottom). The figures on the right are snapshots of the fuel energy field at t = 10 s (top) and t = 480 s (bottom).

failed to suppress the fire). Nonetheless, these runs still serve to
capture general trends. For example, a single run of an experi-
ment may show that the system fully suppresses a given wildfire
whilst 31 independent runs of the same experiment show that
success is an unlikely outcome. For more precise and definite
conclusions, a higher number of runs must be carried out.

Since swarm-robotic systems are inherently scalable, a fire
can always –in principle– be extinguished given enough time
and a sufficiently high number of firefighting drones, even if
this number is unrealistically high. Thus, the two fires from
section 5.2 are considered again, but now coupled with a self-
organising swarm of drones aimed at suppressing them. In each
case, the experiments start with a swarm-size that appears insuf-
ficient. The number of drones is increased thereafter to analyse
the impact on the success rate, the suppression time (tsup), the
area affected (Aa), and the energy consumed (Ec) by the fire.

The experimental results are provided in Table 3 and Fig. 11
for the fire started from a single source and swarm-sizes rang-
ing from 30 to 70 drones, and in Table 4 and Fig. 12 for the

fire started from four sources and swarm-sizes ranging from 70
to 110 drones. Output data files resulting from the numerical
experiments in this section are available in [dataset] [40].

Since the curves of the mean Aa and of the mean Ec display
convergent behaviour for successful runs (SRs) whereas they
are monotonically increasing for unsuccessful runs (URs), they
are considered separately in Figs. 11 and 12. Plotting mean
curves with SRs and URs averaged together would provide lit-
tle insight. However, this has the undesirable consequence that,
in most cases, even less than 31 runs are considered in the mean
calculations. Likewise, SRs and URs are also considered sepa-
rately in Tables 3 and 4.

Starting from the single-source fire, Table 3 shows that a
swarm of 30 drones is unable to consistently suppress this fire,
failing to do so around 75% of the time. Furthermore, by
analysing the animations in [dataset] [40], it can be observed
that URs are indeed due to insufficient firefighting power. This
can also be inferred from the curves for URs in Fig. 11 for 30
drones, which grow exponentially. Increasing the swarm-size
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Figure 8: Single run of the fire model started from four sparks (i.e. four fire sources). The figures on the left are snapshots of the temperature field at t = 10 s (top)
and t = 480 s (bottom). The figures on the right are snapshots of the fuel energy field at t = 10 s (top) and t = 480 s (bottom).

Figure 9: Area affected (Aa) [m2] and energy consumed (Ec) [GJ] for a single run of the fire model after having propagated for 480 s. Results from two fires are
shown, one which started from a single source (red) and another which started from four sources (blue).
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Table 3: Information extracted 480 s after a fire was originated from a single source, with ω = 0.75 and 31 runs carried out for each swarm-size for the statistics.
Means (µ) and standard deviations (σ) are calculated separately for successful runs (SRs) and unsuccessful runs (URs). A fire is deemed suppressed when the swarm
believes it to be so, and returns to the docking stations. Total area with fuel is 6,529 m2 and total fuel energy before fire is 218.30 GJ.

m SRs SRs Mean Successful Runs (SRs) Unsuccessful Runs (URs)
Actual Deemed tsup [s] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ]

30 7/31 8/31 236.43 61.07 23.13 1.18 0.46 343.15 158.29 7.75 3.99
40 19/31 25/31 255.05 52.75 12.44 0.99 0.25 97.92 19.88 1.85 0.39
50 28/31 30/31 203.52 43.06 10.47 0.78 0.21 205.65 112.22 5.01 3.19
60 30/31 31/31 143.47 34.88 7.39 0.62 0.13 551.04 – 15.30 –
70 29/31 31/31 100.73 33.30 3.94 0.57 0.07 401.28 170.16 10.84 5.06

Table 4: Information extracted 480 s after a fire was originated from four sources, with ω = 0.75 and 31 runs carried out for each swarm-size for the statistics.
Means (µ) and standard deviations (σ) are calculated separately for successful runs (SRs) and unsuccessful runs (URs). A fire is deemed suppressed when the swarm
believes it to be so, and returns to the docking stations. Total area with fuel is 6,529 m2 and total fuel energy before fire is 218.30 GJ.

m SRs SRs Mean Successful Runs (SRs) Unsuccessful Runs (URs)
Actual Deemed tsup [s] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ]

70 0/31 1/31 – – – – – 959.42 280.12 23.04 7.68
80 8/31 8/31 357.18 278.48 64.75 5.56 1.45 539.38 215.38 11.85 5.23
90 22/31 25/31 335.42 247.83 52.29 4.89 1.17 376.75 123.90 7.97 2.84
100 28/31 28/31 263.91 214.38 39.63 4.12 0.82 341.55 25.29 6.72 0.59
110 31/31 31/31 232.00 191.19 34.29 3.63 0.76 – – – –

Figure 10: Mean Aa after 480 s fire propagation versus number of samples used
for the statistics. The fire started from four sources, with 100 drones fighting its
propagation. Convergence still not achieved for 28 samples.

to 40 already has a big impact, approximately tripling the num-
ber of SRs, both actual and deemed. Interestingly, the swarm
believes to be successful about 80% of the time when in fact it
only suppresses the fire about 60% of the time. Analysing the
animations in [dataset] [40], it can be observed that the swarm is
close to suppressing the fire in all URs. This can also be inferred
from the curves for URs in Fig. 11 for 40 drones, which grow
with decreasing slope. In the six cases in which the swarm re-
turned to the docking station with the fire not fully extinguished,

this happened near the end of the simulation and therefore the
fire did not have time to grow back unchecked.

Further increasing the swarm-size to 50, 60 and 70, the ac-
tual success rate grows above 90%, with the swarm believing to
have suppressed the fire every time but once. Analysing the an-
imations in [dataset] [40] for these cases, it can be observed that
the fire is almost extinguished in every UR. Therefore, the prob-
lem is not a lack of firefighting power. Being able to only mea-
sure temperature above their exact current positions, and only
taking measurements once per second whilst vmax = 10 m/s,
the swarm is unable to fine-tune the search repeatedly overfly-
ing small remaining hotspots. This makes the swarm believe
that the fire has been suppressed in a few cases, returning to
the docking stations prematurely and letting the fire grow back
unchecked. For instance, see Fig. 13 and its corresponding an-
imation in [dataset] [40]. This is evident in the curves for URs
in Fig. 11 for 50, 60 and 70 drones, which display inflection
points after which the fire grows unchecked. Beware that the
mean curves in Fig. 11 and the statistics in Table 3 for 50, 60
and 70 drones must be taken with a pinch of salt given the small
number of URs involved. As to the SRs, the curves in Fig. 11
and the results in Table 3 display the expected trend: as the
swarm-size (m) increases, the means and standard deviations of
the suppression time (tsup), the Aa and the Ec decrease.

The fire which started from four sources is evidently more
challenging, and a 70-drone swarm now fails to suppress it ev-
ery time (see Table 4). Analysing the animations in [dataset]
[40], it is clear that there is a lack of firefighting power. An ex-
ample of a failed run is shown in fig. 14. Scaling up the swarm
to 80 drones starts showing some success, with the fire being
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Figure 11: Mean Aa and mean Ec by a fire originated from a single source and propagated for 480 s corresponding to different swarms composed of 30 to 70 drones
fighting its propagation (ω = 0.75). Whilst successful (SRs) and unsuccessful runs (URs) are considered separately, the mean values are calculated out of data
gathered from 31 runs in total for each swarm-size. That is to say that the sum of the numbers of SRs and URs for a given swarm-size equals 31.

suppressed about 25% of the time. Analysing the animations
in [dataset] [40] for the URs, it can be observed that the fire is
contained sometimes even if not fully suppressed (e.g. [dataset]
[40], 4 fire sources, Setting 2, Runs 7, 10 and 15), whereas other
times it goes completely out of control (e.g. [dataset] [40], 4 fire
sources, Setting 2, Runs 1, 2 and 3).

Further increasing the swarm-size has the desired effect. Suc-
cess rate is about 70% for 90 drones, 90% for 100 drones and
100% for 110 drones. For 90 drones, the phenomenon of the
swarm returning to the docking stations prematurely is still ob-
served in 3/31 runs. Analysing the curves in Fig. 12 and the
results in Table 4, the expected trend is observed: as the swarm-
size (m) increases, the means and standard deviations of the tsup,
the Aa and the Ec decrease. Note that every run is unsuccessful
for 70 drones whereas every run is successful for 110 drones.

It has been shown in these experiments that the proposed au-
tonomous firefighting system is straightforwardly scalable, with
the expected result that increasing swarm-sizes lead to increas-

ing firefighting power. In turn, this implies increasing ability to
cope with larger wildfires and to reduce their negative impact
in terms of area affected (Aa) and energy consumed (Ec).

5.4. Control Coefficients Experiments

This set of experiments aims to provide some initial insight
into the impact of the inertia weight on the firefighting perfor-
mance of the system. Since Eq. (12) in our PSO formulation
directly links the bounds of the acceleration coefficient (φ) to
the inertia weight (ω), the latter is the only coefficient left to
control the speed of convergence of the swarm.

For these experiments, a swarm of 100 drones is set to sup-
press a fire originated from four sources. Ten values of ω rang-
ing from 0.50 to 0.95 are considered, with φ generated ran-
domly from a uniform distribution as in Eq. (16). Results are
shown in Table 5 and Fig. 15.

The output data files resulting from the numerical experi-
ments in this section are available in [dataset] [37].
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Figure 12: Mean Aa and mean Ec by a fire originated from four sources and propagated for 480 s corresponding to different swarms composed of 70 to 110 drones
fighting its propagation (ω = 0.75). Whilst successful (SRs) and unsuccessful runs (URs) are considered separately, the mean values are calculated out of data
gathered from 31 runs in total for each swarm-size. That is to say that the sum of the numbers of SRs and URs for a given swarm-size equals 31.

For this formulation and for a deterministic particle –i.e.
drone– with a stationary attractor, ω ∈ (0, 1) guarantees con-
vergence whilst φ within the range stated in Eq. (12) leads to
low-frequency harmonic oscillations. Within this range and un-
der these ideal conditions, the lower the ω the faster the conver-
gence. Once randomness is re-introduced, note that a lower ω
also implies a smaller stochastic range for φ (see Fig. 3).

As can be observed in Table 5, the two lowest values of ω
result in the lowest success rates, as it is to be expected due
to favouring fast convergence over exploration. For ω ≥ 0.60,
success rate is above 84%, both actual and deemed. There are
only a few cases of premature return to the docking stations,
phenomenon that was discussed in previous experiments.

Although the pattern is not as clear as in the scalability ex-
periments, it can be observed in Table 5 and Fig. 15 that per-
formance of the proposed self-organising swarm of firefighting
drones improves as ω increases. This may be due to the fact
that larger values of ω favour exploration or to the larger range

of values allowed for φ to be generated. In this sense, it may be
interesting to run these experiments for a deterministic φ.

5.5. Fault Tolerance Experiments

Given that the proposed autonomous firefighting system is
based on swarm robotics, scalability was expected at the out-
set and confirmed in the experiments carried out in section 5.3.
Likewise, this decentralised, collaborative and self-organising
system is expected to be able to cope with the failure or loss of
a few drones without jeopardising the mission. In other words,
it is predicted to be fault-tolerant.

In order to confirm this, an experiment is designed in this
section in which one drone is lost at regular intervals during
firefighting operations. Thus, a swarm initially composed of
100 drones with ω = 0.75 is set to suppress a fire originated
from four sources during 480 s. The final number of drones
will depend on how long the swarm takes to suppress the fire.
The first drone is lost at t =30 s (recall that drones are launched
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Figure 13: Swarm of 70 drones fighting a single-source fire propagating for 480 s. The figures on the left show the temperature fields at t = 85 s (top), t = 149 s
(middle) and t = 480 s (bottom). The figures on the right show the corresponding fuel energy fields. By t = 149 s, the fire is almost suppressed and the swarm
returns to the docking stations leaving the fire to propagate unchecked. The corresponding animation is available in [dataset] [40], 1 fire source, Setting 5, Run 12.
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Figure 14: Example of a run for a 70-drone swarm failing to suppress a four-source fire. The figure on the left shows the temperature field while the one on the right
shows the fuel energy field at the end of the simulation (t = 480 s).

Table 5: Information extracted 480 s after a fire was originated from four sources, with a swarm of 100 drones fighting its propagation and 31 runs carried out for
each setting of the inertia weight (ω) for the statistics. Means (µ) and standard deviations (σ) are calculated separately for successful runs (SRs) and unsuccessful
runs (URs). A fire is deemed suppressed when the swarm believes it to be so, and returns to the docking stations. Total area with fuel is 6,529 m2 and total fuel
energy before fire is 218.30 GJ.

ω SRs SRs Mean Successful Runs (SRs) Unsuccessful Runs (URs)
Actual Deemed tsup [s] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ] µAa [m

2] σAa [m
2] µEc [GJ] σEc [GJ]

0.50 19/31 21/31 301.04 230.50 50.78 4.50 1.08 345.49 97.98 7.08 2.36
0.55 22/31 23/31 311.03 241.54 59.24 4.72 1.28 364.59 64.96 7.41 1.42
0.60 27/31 27/31 319.46 236.11 36.57 4.58 0.78 300.96 62.96 6.07 1.35
0.65 29/31 30/31 278.19 229.56 46.42 4.46 1.06 331.52 18.10 6.78 0.15
0.70 26/31 29/31 304.03 219.22 47.12 4.25 1.02 318.46 105.72 6.51 2.32
0.75 28/31 28/31 263.91 214.38 39.63 4.12 0.82 341.55 25.29 6.72 0.59
0.80 29/31 31/31 315.87 208.55 32.82 4.00 0.68 228.48 39.82 4.35 0.83
0.85 29/31 30/31 278.99 208.64 41.20 4.01 0.89 286.72 89.60 5.45 1.71
0.90 30/31 30/31 277.83 200.00 35.22 3.79 0.74 216.96 – 4.20 –
0.95 29/31 31/31 261.50 183.46 29.76 3.47 0.66 328.64 45.71 7.28 1.74

at t =20 s), with one drone being lost every 15 s thereafter.
Thus, if the swarm is unsuccessful, 70 drones will survive after
fighting the propagation of the fire for 480 s. The experimental
results are provided in Table 6 and Fig. 16.

The output data files resulting from the numerical experi-
ments in this section are available in [dataset] [38].

As can be observed in Table 6, the success rate is about 65%
with an average swarm-size of 75 at the end of the firefighting
operations. This is down from the 90% shown in Table 4 for
ω = 0.75 and 100 drones. While performance will always de-
crease when drone losses occur, this experiment shows that the
system adapts to the situation and remains operational. In ad-
dition, note that the curves for URs in Fig. 16 do not exhibit an
exponential but an approximately linear increase (i.e. the curves
are neither concave nor convex). This means that, although the
fire is not being fully suppressed in those unsuccessful cases,
it is not going out of control either. This is confirmed by ob-

serving the animations in [dataset] [38] (e.g. see animations
corresponding to Runs 1, 6 and 7).

Fig. 17 shows a successful run despite the loss of 21 drones.
In turn, Fig. 18 shows the only run in which the swarm mistak-
enly deemed the fire suppressed and returned to the docking sta-
tions only to allow the missed hotspot to propagate unchecked
for the remaining time of the simulation.

6. Conclusions and Future Work

Destructive wildfires continue to increase in frequency and
severity worldwide. Modern drones are often used to operate
in such dangerous environments for monitoring and detection
of wildfires but scarcely for their suppression. This work in-
vestigated the feasibility and potential of using self-organising
swarms of drones to fight the propagation of wildfires au-
tonomously and collaboratively, without risking human lives.
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Figure 15: Mean Aa and mean Ec by a fire originated from four sources corresponding to a swarm of 100 drones fighting its propagation for 480 s with different
values of the inertia weight (ω) between 0.50 and 0.95. Whilst successful (SRs) and unsuccessful runs (URs) are considered separately, the mean values are
calculated out of data gathered from 31 runs in total for each ω. Hence the sum of the numbers of SRs and URs for a given ω equals 31.

The focus was not on the design of the physical robots but on
their self-coordination mechanisms so that the desired firefight-
ing behaviour would emerge. Thus, an efficient physics-based
model of fire propagation and a self-organisation algorithm for
swarms of firefighting drones were developed and coupled, with
the collaborative behaviour based on a particle swarm algorithm
adapted to individuals operating within physical dynamic envi-
ronments of high severity and frequency of change.

The numerical experiments carried out in section 5 demon-
strated that the calibrated physics-based fire propagation model
could make realistic predictions, confirmed the expected scala-
bility and fault-tolerance of the proposed self-organising swarm
of drones as an autonomous firefighting system, and provided
some insight into potential parameters to control the emer-
gent behaviour of the swarm. It can be concluded that the
exploitation of self-organising decentralised collaborative be-
haviour is a powerful approach and a promising line of research
to deal with complex dynamic problems such as the suppres-

sion of wildfires. In principle, any wildfire could be suppressed
given enough time and a sufficiently high number of firefighting
drones – even if this number is unrealistically high with current
technology.

It is important to note that, whilst water was used as the fire
suppressant, the ultimate goal is to exploit more sophisticated
technology with higher extinguishing power and comprising
a lighter payload for the drones. One key challenge for this
technology to become practical is the design of efficient, light-
weight and environmentally friendly fire-suppression materials
which can be carried by relatively small drones. One of our
future research directions lies in the design of such materials
based on Class-A foam enhanced by nanoparticles.

At present, we are working towards the incorporation of mass
and momentum balance into the fire model, and of flight dy-
namics and multi-agent collision-avoidance algorithms into the
drone swarm model. In this regard, we are exploring the use
of charged particles (commonly used to maintain diversity [8])
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Table 6: Information extracted 480 s after a fire was originated from four sources, with an initial swarm of 100 drones (ω =0.75) fighting its propagation. Drone
losses occur during firefighting operations at the constant rate of one unit every 15 s, with the first drone lost at t = 30 s. While 31 runs are carried out for the
statistics, means (µ) and standard deviations (σ) are calculated separately for successful runs (SRs) and unsuccessful runs (URs). A fire is deemed suppressed when
the swarm believes it to be so, and returns to the docking stations. Total area with fuel is 6,529 m2 and total fuel energy before fire is 218.30 GJ.

Mean SRs SRs Mean Successful Runs (SRs) Unsuccessful Runs (URs)
mfinal Actual Deemed tsup [s] µaa[m2] σaa[m2] µec [GJ] σec [GJ] µaa[m2] σaa[m2] µec [GJ] σec [GJ]
75.45 20/31 21/31 327.36 217.63 36.54 4.19 0.74 423.56 108.08 8.98 2.52

Figure 16: Mean Aa and mean Ec by a fire originated from four sources corresponding to an initial swarm of 100 drones fighting its propagation for 480 s (ω =0.75).
Drone losses occur during firefighting operations at the constant rate of one unit every 15 s, with the first drone lost at t = 30 s. While 31 runs are carried out for the
statistics, the mean values are calculated separately for successful and unsuccessful runs.

or potential field algorithms [78, 77]. Other lines of future
research include different neighbourhoods (whether topologi-
cal, distance-based or speciation); mechanisms to handle the
outdated memory and the diversity loss; and the development
of self-organisation algorithms to achieve more sophisticated
firefighting behaviour than the one that emerges from simply
searching for hotspots.
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