

Workload Partitioning Strategy for
Improved Parallelism on FPGA-CPU
Heterogeneous Chips
Amiri, S., Hosseinabady, M., Rodríguez, A., Asenjo, R.,
Navarro, A. & Nunez-Yanez, J.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Amiri, S, Hosseinabady, M, Rodríguez, A, Asenjo, R, Navarro, A & Nunez-Yanez, J
2018, Workload Partitioning Strategy for Improved Parallelism on FPGA-CPU
Heterogeneous Chips. in 28th International Conference on Field Programmable Logic
and Applications (FPL). Conference on Field Programmable Logic and Applications ,
IEEE, pp. 376-380, 28th International Conference on Field Programmable Logic and
Applications , Dublin, Ireland, 27/08/18.
https://dx.doi.org/10.1109/FPL.2018.00071

DOI 10.1109/FPL.2018.00071
ISSN 1946-147X
ESSN 1946-1488

Publisher: IEEE

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228157484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Workload Partitioning Strategy for Improved
Parallelism on FPGA-CPU Heterogeneous Chips

Sam Amiri∗, Mohammad Hosseinabady∗, Andres Rodriguez†, Rafael Asenjo†, Angeles Navarro† and Jose Nunez-Yanez∗
∗University of Bristol, UK. E-mail: {ma17215, m.hosseinabady, j.l.nunez-yanez}@bristol.ac.uk

†Universidad de Malaga, Spain. E-mail: {andres, asenjo, angeles}@ac.uma.es

Abstract—In heterogeneous computing, efficient parallelism can
be obtained if every device runs the same task on a different portion
of the data set. This requires designing a scheduler which assigns
data chunks to compute units proportional to their throughputs. For
FPGA-CPU heterogeneous devices, to provide the best possible over-
all throughput, a scheduler should accurately evaluate the different
performance behaviour of the compute devices. In this article, we
propose a scheduler which initially detects the highest throughput
each device can obtain for a specific application with negligible
overhead and then partitions the dataset for improved performance.
To demonstrate the efficiency of this method, we choose a Zynq
UltraScale+ ZCU102 device as the hardware target and parallelise
four applications showing that the developed scheduler can provide
up to 94.06% of the throughput achievable at an ideal condition,
with comparable power and energy consumption.

Index Terms—scheduling, heterogeneous, parallelisation,
throughput, energy, power, FPGA, ARM, SoC, ZCU102

I. INTRODUCTION

Heterogeneous computing can solve performance and/or
power-energy consumption limitations associated with traditional
processing using a single type of device. Two common heteroge-
neous chips are the integrated CPU-GPU (Graphics Processing
Unit), and CPU-FPGA (Field-Programmable Gate Array). FP-
GAs offer bit-level parallel computing suitable for certain designs
which cannot easily be parallelised with traditional methods.
Hardware Description Languages (HDLs) are generally used to
program FPGAs requiring expert hardware knowledge. Recent
advancements in high-level synthesis tools have made it possible
to describe hardware at high level languages such as C++ and
OpenCL, and achieve performance comparable to when HDLs
are used as entry point for some applications [1].

The general approach of utilising a heterogeneous FPGA-CPU
device is to use the CPU as the scheduling and management unit
which offloads the tasks to an FPGA accelerator for processing.
Recent heterogeneous devices contain more CPU cores with
increased efficiency which makes CPU involvement in actual
task processing beneficial. A method for parallel execution is
to implement the entire application in both FPGA and CPU
devices, and schedule the workload for processing in them
such that every device consumes a different portion of dataset.
In this article, we introduce a strategy to partition the data
chunks among the devices proportional to their performance.
This requires exploring the performance behaviours of CPU and
FPGA devices for an application when the data chunk size (i.e.
data subset size) assigned to each device varies. The applications
are programmed in C/C++ for both CPU and FPGA using Xilinx

This work was funded by the Engineering and Physical Sciences Research
Council (EPSRC) through the ENEAC (EP/N002539/1) grant.

SDSoC framework for higher productivity. The novelty of this
work can be summarised as follows:

• Exploring the performance behaviour of tightly integrated
CPUs and FPGA when processing an application for differ-
ent data chunk sizes;

• Proposing a strategy to measure the data chunk sizes
required for CPU and FPGA to improve the execution
performance of an application;

• Implementing the scheduler based on the integration of the
pipeline pattern of Intel TBB (Threading Building Blocks)
with Xilinx SDSoC framework;

• Applying the proposed scheduler to four benchmarks with
different throughput behaviours implemented through SD-
SoC framework on a Xilinx Zynq UltraScale+ MPSoC
ZCU102 board composed of FPGA and CPU compute
units, and analysing the performance and power/energy
consumption results obtained.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III summarises
the development tools and the benchmarks. Section IV covers
the novelties of the article in detail, including the behaviour
of different compute units and the new scheduling strategy and
its application to four benchmarks to evaluate performance and
power/energy results. Finally, Section V concludes the paper.

II. PREVIOUS WORK AND BACKGROUND

The combination of CPUs and FPGAs, integrated on the
same die or externally, has received increasing attention recently.
Xeon-FPGA platform for the data centre by Intel [2], Catapult
fabric for accelerating large-scale data centre services by Mi-
crosoft [3], and integration of POWER8 processor architecture
with external FPGAs by IBM [4] are several examples.

Workload balancing for a heterogeneous device at compile- or
run-time has been explored in the literature around mainly two
types of implementations, vertical and horizontal. An application
might be vertically segmented into subtasks each optimally
mapped onto a different device, hence building a streaming
pipeline. In [5], an FPGA-GPU-CPU architecture is used where
steps of the algorithm requiring deep pipelining and small
buffers are mapped to FPGA, steps requiring massively parallel
operations with large buffers leverage GPU, and the CPU is used
for coordination, low throughput and branching dominated tasks.

In a horizontal implementation, different compute units run
the same kernel on different portions of the dataset. In [6],
the workload is manually partitioned with two-third of dataset
assigned to an FPGA and the rest to a GPU. LogFit scheduling
method, introduced in [7], [8] for GPUs and FPGAs respectively,

examines the throughput for different accelerator chunk sizes and
applies a logarithmic fitting function to find the accelerator chunk
size that maximises the throughput. CPU chunk sizes are adap-
tively computed based on the accelerator chunk size. Instead of
manually splitting the workload among the participating compute
units or examining various chunk sizes with large overhead, we
propose a solution here to estimate the throughputs at run-time
with low overhead. Our method explores the performance of the
units within a short period at run-time and then finds the optimal
split in order to improve execution overlap and hence throughput
for a specific application running on an FPGA-CPU device.

III. DEVELOPMENT ENVIRONMENT AND BENCHMARKS

To develop the scheduler and applications, we have used the
platforms, libraries and tools explained briefly in the following.

A. Development Tools

Every application is developed for two targets, FPGA and
CPU. For FPGA execution, the application is developed in
SDSoC environment, and using SDSoC tools (version 2017.1
[9]), we port the implementation to a Linux environment for
compilation by sds++ to generate hardware and drivers. This
gives a bitstream for uploading in the FPGA and a C-callable
hardware library to be linked with the CPU host code. The
CPU version of the application and the scheduler are compiled
using standard g++ (with C++11 support) directly in the target
board running Ubuntu 15.04. The evaluation board used in our
experiments is Xilinx Zynq UltraScale+ ZCU102 featuring a
XCZU9EG FPGA and ARM Cortex-A53 v8 architecture-based
64-bit quad-core processor.

B. Scheduling and Parallelisation

In a heterogeneous execution by dataset partitioning, the
whole dataset is divided into many fixed-length (e.g. matrix
rows) blocks and at each iteration, a number of blocks called
a data chunk is assigned to a compute unit. A property of such
heterogeneous execution at run-time is that once a chunk of data
is assigned to a compute unit, only that subset can be loaded
to the unit, and the unit’s input ports cannot be predictively
filled with extra chunks to save in time. This is because the
next data chunk to be processed is assigned at run-time to only
a compute unit in idle state. The cut-off time between data chunk
assignments causes filling and emptying ports and pipelines
hence introducing overheads. A scheduler should reduce this
overhead among other tasks.

To apply and control parallelism, we use pipeline and
filter classes of Intel Threading Building Blocks (Intel TBB)
[10]. Implementing a scheduler requires at least two pipeline
stages. The first is the main scheduling unit which is a serial
filter to select the next idle compute unit and calculate the data
chunk size to be assigned to it (explained in Section IV). The
iteration space is composed of the data subsets already assigned
to compute units and the ones remaining and waiting to be
assigned. The second stage is a parallel filter to communicate
and process data chunks simultaneously in all the compute units
(including the FPGA and four CPU cores).

C. Benchmarks

Four benchmarks with different features are used in our ex-
periments to expose the required scheduling decisions: Advanced

Encryption Standard (AES), HotSpot, Nbody, and General Ma-
trix Multiplication (GEMM). Our AES implementation uses a
256-bit key to encrypt blocks of 16-bytes, totalling 16MB of data.
15 rounds of byte manipulation functions (subbytes, mixcolumn,
addroundkey, and shiftrow) are repeated according to the stan-
dard. HotSpot application, extracted from Rodinia benchmark
collection, is used for thermal simulation on the surface of a
chip. It is applied to a chip with 1024x1024 points here. Nbody
is a physics simulation to measure particles (bodies) behaviour
under the influence of a force. 10K bodies are examined using a
brute force algorithm. GEMM application multiplies two dense
matrices each having 1024x1024 floating-point values.

IV. HETEROGENEOUS EXECUTION

As mentioned in Section II, the partitioning for parallelisation
can be applied at task level (vertical) or data level (horizontal).
For this work, we implement the entire application for each target
element, and the scheduler controls parallelism at run-time by the
size of data chunk assigned for processing by each device. The
emergence of C-based full-system design tools such as Xilinx
SDSoC has made this approach favourable as certain attributes,
directives, or pragmas can be used to convert a program coded
for a processor into the one targeting FPGA, although some
hardware knowledge is still required.

Every type of processing element present in a heterogeneous
system communicates and processes data in a different fash-
ion, hence exhibiting different throughput/energy-consumption
performance depending on the circumstances. The throughput
behaviour is important as it will affect the scheduling decisions.

A. Behaviour of a CPU-Only System

The cache-based architecture and relatively shallow pipeline
of a processor makes it perform at almost the same throughput
level irrespective of the data chunk sizes assigned to it. Each of
the four Cortex-A53 processors in ZCU102 device has separate
32 KB L1 caches for instruction and data, and all the cores
share a 1 MB L2 cache in Cache Coherent Interconnect (CCI)
domain. Access to DDR Memory Subsystem is provided through
CCI. With the L1 caches part of a processor’s 8-stage pipeline,
whether the processor is assigned many smaller data chunks or
few larger ones does not have a noticeable impact due to the
random memory access and cache filling. Empirically every data
block itself is composed of multiple finer data units (e.g. elements
in one row of a matrix) and changing the data chunk size
does not have a significant effect on memory locality. Although
considering processor cache-effects would increase the accuracy
of initial assessment in our proposed scheduler (Section IV-C),
it would also increase its overhead, hence it is ignored here.

B. Behaviour of an FPGA-Only System

Contrary to the behaviour of a CPU, as the chunk size
increases, an FPGA-only execution generally provides an in-
creasing performance up to a point (which we call Saturation
Level, SL) where it flattens out, as shown in Fig. 1. The FPGA
execution time to process a specific volume of data chunk is
mainly composed of the following components:

• Pipeline initialisation and flushing times (TIO): This is the
latency to initially locate and transfer data chunk from
memory through the chip ports and fill the pipelines (ramp
up) as well as the latency to empty the pipeline stages and

Chunk size

T
h

ro
u

g
h

p
u

t
(b

lo
ck

s/
s)

Saturation

Level

Fig. 1: Saturation level of an FPGA-only execution

finalise the processing of the data chunk assigned (ramp
down). TIO depends on the speed and width of the ports
communicating data, and is almost constant and independent
of the assigned data chunk size for an application. This
delay repeats for every iteration of FPGA execution.

• Pipeline processing time (TProc): This is the time to process
data chunk inside FPGA fabric. If the ratio of the number
of data units to pipeline depth is high, the average TProc for
one unit is almost equal to delay of the worst case pipeline
stage. As in a practical application the number of data units
is much higher than the number of pipeline stages, TProc

is directly proportional to the size of data chunk processed.
Therefore, the execution time (TExe) for a data chunk processed
in one iteration can be estimated as:

TExe = TIO + TProc (1)

Considering CSTot and CSF as respectively the total chunk size
to be processed in an application and the chunk size assigned to
the FPGA at each iteration, as CSF is made smaller, the number
of iterations to process CSTot becomes larger and the time TIO

is repeated at a higher rate (once per iteration). However, with
rising data chunk sizes, TIO repetitions are decreased causing
the gradual increase of throughput in the plot of Fig. 1. The
best FPGA throughput is at SL where the ratio of combined
TIO to TProc for all the iterations is reduced to almost zero.
An optimised scheduler should measure CSF such that it falls
within SL.

C. Proposed Scheduling Strategy for FPGA-CPU Device

For efficient scheduling, the data chunk size assigned to a
device should be proportional to its throughput [11]. Given a
heterogeneous device composed of an FPGA with ThF−SL

throughput at SL and four CPU units each having ThC for an
application and the throughput ratio of ThRat (ThF−SL/ThC),
then the processing of enough number of remaining data blocks
can be efficiently parallelised if the relationship between the data
chunk size assigned to FPGA (CSF) and to one CPU core (CSC)
is CSC = CSF /ThRat. For this scheduling strategy to work, if
one device is considered as base and its chunk size is known,
the data chunk size for the other devices can be adaptively set
according to the base device’s chunk size. We take FPGA as base
here due to its higher performance than CPU in general, however
the same results should hold if the base device is changed. When
processing the final few remaining data blocks, for each of the
nC CPUs the chunk sizes determined should be based on the
remaining chunk size CSRem as CSC = CSRem/(ThRat+nC)
to make sure that CPUs are assigned proportionally and if the
FPGA is freed, there are enough blocks for balanced execution.

CSC = min
(CSF

ThRat
,

CSRem

ThRat + nC

)
(2)

 8

 3

2

12

8

51

2

 2
04

8

 8
19

2

 3
27

68

13
10

72

52
42

88

Chunk size

0

2

4

6

8

10

12

T
h

ro
u

g
h

p
u

t
(A

E
S

 b
lo

ck
s/

s)

10
5

FC+4CC

4CC

FC+2CC

FC+1CC

2CC

FC

1CC

(a) AES

 2 4 8 1
6

 3
2

 6
4

12
8

25
6

51
2

Chunk size

0

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t
(t

em
p

er
a
tu

re
s/

s)

10
8

4CC

FC+4CC

FC+2CC

2CC

FC+1CC

1CC

FC

(b) HotSpot

 2 4 8 1
6

 3
2

 6
4

12
8

25
6

51
2

Chunk size

0

2

4

6

8

10

12

T
h

ro
u

g
h

p
u

t
(m

a
tr

ix
 e

le
m

en
ts

/s
)

10
5

FC+4CC

FC+2CC

FC+1CC

FC

4CC

2CC

1CC

(c) GEMM

8

 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

10
24

20
48

40
96

Chunk size

0

0.5

1

1.5

2

2.5

3

3.5

T
h

ro
u

g
h

p
u

t
(b

o
d

ie
s/

s)

10
4

FC+4CC

FC+2CC

FC+1CC

FC

4CC

2CC

1CC

(d) Nbody

Fig. 2: Performance evaluations using Dynamic partitioning

As this partitioning strategy requires the FPGA chunk size to be
known in advance, it cannot practically be used as a scheduler
however it can be utilised for exploring and analysing FPGA and
CPU performance and power/energy behaviours when different
chunk sizes are selected. This partitioning strategy is applied to
GPU-CPU devices in [11], called Dynamic partitioning, and we
extend it to FPGA-CPU devices for device throughput behaviour
analysis. Its application to our four benchmarks provides the
throughputs shown in Fig. 2 for various FPGA chunk sizes.
Each combination of the four available CPU cores (CCs) and
the FPGA core (FC) are considered. As expected, CPU-only
implementations are independent of data chunk sizes for all the
four applications. When FPGA is involved in the heterogeneous
process, the performance does not always increase with rising
chunk sizes. Three types of anomalies can generally occur:

• As CSF increases, ThC remains constant and ThF in-
creases gradually to SL. The expectation is to obtain non-
decreasing heterogeneous throughput ThHet with rising
CSF due to less overhead for data movement and pipeline
ramp-up and ramp-down. This might not happen creating a
hill-like plot as occurs for AES application.

• The overall throughput ThHet is expected to roughly equal
the combined throughputs of the running units. However
ThHet might sharply drop as happens for FPGA data
chunks of 2048 and 4096 in Nbody application.

• The heterogeneous performance could be much lower than
the performance of an individual unit throughout all the
chunk sizes examined, due to the negative effect of a
unit’s run on the others, in particular for memory access
contention. This happens for HotSpot application.

Our aim is to propose a scheduler which finds the best chunk size
for the base unit (FPGA) and resolves the first two issues men-
tioned above. The last anomaly is ignored here as its detection
overhead would be high. These problems arise mainly when two
non-overlapping periods occur with either FPGA working and
the CPUs idling or vice-versa, which occur respectively when
conditions of (3) or (4) hold true:

CSF

ThF
>

CSRem

nC × ThC
(3)

CSC

nC × ThC
>

CSRem

ThF
(4)

Condition of (3) generally happens when CSF × ThC is
large such that the CPUs process all the remaining data blocks
before FPGA could handle its assigned data. AES (and also
HotSpot, although its heterogeneous run fails to improve the
performance) suffers this inefficiency at large FPGA data chunk
sizes causing ThHet to decrease. Condition of (4) occurs when
CSC × ThF is large such that the FPGA processes CSRem

before CPUs can handle their assigned data. Lack of accurate
estimate of initial ThRat, ThInit−Rat at the start is the main
reason for this inefficiency; if ThInit−Rat is set to a small
value but the real ThRat is much larger, the measured and
assigned CSC would be too large for the CPUs to handle
(initially, CSC = CSF /ThInit−Rat). The performance collapse
of heterogeneous execution for large FPGA chunk sizes in Nbody
example is due to this problem. GEMM application does not
suffer from the inefficiencies discussed.

An efficient scheduler delivering a high throughput should
satisfy the following conditions:

1) CSF gives FPGA throughput at SL in heterogeneous run;
2) Condition (3) is avoided;
3) Since a run-time scheduler initially needs a ThInit−Rat

value, its negative effect (resulting in condition (4)) should
be constrained and minimised.

The first two conditions can be satisfied if:
CSF

CSRem
/

ThF−SL

nC × ThC
(5)

If (5) is set to equal, the CSF measured gives the upper bound
of SL region which is sufficient to overlap the FPGA and CPUs
processes; if CSF is set larger than that, CPUs will finally remain
idle and if set to a smaller value, the operations will still overlap
but FPGA operation might fall outside SL region. As SL in
general stretches for a wide range of FPGA chunk sizes, in order
to compensate for a possible marginal error for ThRat prediction,
it is better to use a smaller value for CSF than the one generated
by (5) when set to equal.

In order to measure CSF and CSRem through (5) for efficient
concurrent execution, we first need to find ThF−SL and ThC . If
these throughputs could be measured initially at run-time using
few blocks for FPGA and CPU, it would only incur a low
overhead and also restrict the inefficiency of (4) caused by a
random ThInit−Rat to this short period. Given two small FPGA
chunk sizes j and k where j < k, and following (1):

TExe(j) = TIO(j) + TProc(j) (6)

TExe(k) = TIO(k) + TProc(k) (7)

If k/j = l, from (6) we have:

l × TExe(j) = l × (TIO(j) + TProc(j)) (8)

j+4*1

CPUs

FPGA

k+4*k/Thrat

CPUs

FPGA FPGA

CPUs

Total data chunks

Fig. 3: Dataset partitioning by the proposed scheduler

Since l × TProc(j) = TProc(k), if we subtract (7) from (8):

l × TExe(j) − TExe(k) = l × TIO(j) − TIO(k)

= TIORed(k−j) (9)

where TIORed(k−j) is the FPGA communication time reduced
when data chunk size is increased by k− j. Since this reduction
becomes almost zero at SL, the average total time required to
execute one block at SL of FPGA can be measured as:

TExe−SL(1) =
TExe(j)

j
−

TIORed(k−j)

k − j

=
TExe(j)

j
−

l × TExe(j) − TExe(k)

k − j
(10)

If j = 2n and k = 2n+1, then (10) simplifies to (11) or (12):

TExe−SL(1) =
TExe(k) − TExe(j)

j
(11)

ThF−SL =
j

k
ThF (k)

− j
ThF (j)

(12)

and ThF/C which is the throughput ratio of FPGA to all CPU
cores combined can be measured as:

ThF/C =
ThF−SL

nC × ThC
(13)

Knowing ThF/C and the total data chunk size CSTot and
following from (5), CSF can be measured as:

CSF =
CSTot × ThF/C

1 + ThF/C
(14)

Fig. 3 shows how the dataset is assigned to FPGA and CPU
by the scheduler for processing. In summary:

• j data blocks are assigned to FPGA and one block to every
CPU core, hence ThInit−Rat = j. Within this period load
imbalance could occur due to not knowing the throughput
ratio and assigning a fixed number of tokens to different
compute units. However as the chunk sizes assigned are low,
the possible imbalance is marginal. ThF (j) is recorded.

• k data blocks are assigned to FPGA and with non-SL
ThRat measured at the end of preceding step, a proportional
number of tokens are assigned to each CPU core for rough
balance. ThF (k) and ThC are recorded. As CPU throughput
is constant irrespective of the data chunk size assigned, the
minimum chunk size would suffice to detect its throughput.

• With ThF (j), ThF (k) and ThC measured, CSF is calcu-
lated using (12), (13) and (14).

D. Performance Evaluation

The measurements and results of applying the proposed sched-
uler to the four applications are reported in Table I. For each
application, the obtained heterogeneous throughput ThHet can
be compared against the Dynamic scheduling results where all

TABLE I: Measurements and results by the pro-
posed scheduler (throughputs are in blocks/sec)

AES HotSpot GEMM Nbody
ThF(j)

* 224046 29077504 129135 655
ThF(k)

* 252568 36170957 221740 1287
ThC 165563 47080448 161913 1092
ThSL 289409 47842099 783877 37430
ThF/C 0.44 0.25 1.22 8.57
CSF 31872 179 503 8847
ThHet 806597 131072000 1038194 30303
* For better results, j and k are roughly decided based on

total data chunk size; for GEMM, HotSpot and Nbody:
j = 8 and k = 16, and for AES: j = 128 and k = 256.

TABLE II: Throughput comparison of the proposed scheduler
vs. the best results obtained with Dynamic scheduling (Fig. 2)

AES HotSpot GEMM Nbody
Performance Comparison 86.23% 82.50% 94.06% 111.51%

compute units are involved and all possible chunk sizes are ex-
amined and the best Dynamic throughput is selected (illustrated
in Fig. 2). This comparison is also reported in Table II.

The performance obtained by the proposed scheduler is com-
parable to the best performance of Dynamic partitioning. For
Nbody application, the overall throughput is even increased
because our scheduler resolves the condition of (4) which gen-
erally occurs when FPGA throughput is much higher than CPU
throughput. For GEMM application, a very high heterogeneous
throughput is achieved especially when taking into account the
small overhead initially incurred in the proposed scheduler to
find the devices throughputs. As can be observed in Table I,
the small drop in the performance of AES and HotSpot is due
to less accurate initial timing measurements of FPGA or CPU
executions, hence resulting in less accurate evaluations of ThC ,
ThF (j) or ThF (k). The advantage of the proposed scheduler is
that the chunk size of compute units is determined initially with a
low overhead while Dynamic partitioning needs to test all chunk
sizes and select the best.

E. Power and Energy Evaluation

ZCU102 board has a PMBus (Power Management Bus) power
control and monitoring system for reading power and current
values every 0.05 sec. The power values we measure are for
the combined power consumptions of LPD (low-power domain),
FPD (full-power domain), and PLPD (PL power domain). Energy
consumption is the integration of power readouts within the run
time. Fig. 4 illustrates power/energy evaluations for the four
applications on ZCU102. Dynamic scheduling results are shown
for all platform configurations and the best FPGA chunk size for
each configuration. The results for our proposed scheduler are
for full utilisation of the compute units. In general, with every
extra unit added to the configuration, the energy consumption
improves despite the power increase caused by the extra unit.

Overall, the power/energy costs obtained by our scheduler are
comparable to the best power/energy costs obtained by Dynamic
partitioning. HotSpot and AES show more noticeable higher
energy costs due to the lower throughputs obtained for these
applications.

V. CONCLUSION

This paper introduces a dataset partitioning strategy for parallel
execution of applications implemented in a heterogeneous device

D
yn

: 1
C

C

D
yn

: F
C

D
yn

: 2
C

C

D
yn

: F
C

+1C
C

D
yn

: F
C

+2C
C

D
yn

: 4
C

C

D
yn

: F
C

+4C
C

Pro
pos

ed
: F

C
+4C

C

0

1

2

3

4

T
o
ta

l
P

o
w

er
 (

W
a
tt

s)

0

5

10

15

20

T
o
ta

l
E

n
er

g
y
 (

J
o
u

le
s)

Power

Energy

(a) AES

D
yn

: F
C

D
yn

: 1
C

C

D
yn

: F
C

+1C
C

D
yn

: 2
C

C

D
yn

: F
C

+2C
C

D
yn

: F
C

+4C
C

D
yn

: 4
C

C

Pro
pos

ed
: F

C
+4C

C

0

5

10

T
o
ta

l
P

o
w

er
 (

W
a
tt

s)

0

0.1

T
o
ta

l
E

n
er

g
y
 (

J
o
u

le
s)

Power

Energy

(b) HotSpot

D
yn

: 1
C

C

D
yn

: 2
C

C

D
yn

: 4
C

C

D
yn

: F
C

D
yn

: F
C

+1C
C

D
yn

: F
C

+2C
C

D
yn

: F
C

+4C
C

Pro
pos

ed
: F

C
+4C

C

0

1

2

3

4

T
o

ta
l

P
o

w
er

 (
W

a
tt

s)

0

5

10

15

20

T
o

ta
l

E
n

er
g

y
 (

J
o

u
le

s)

Power

Energy

(c) GEMM

D
yn

: 1
C

C

D
yn

: 2
C

C

D
yn

: 4
C

C

D
yn

: F
C

D
yn

: F
C

+1C
C

D
yn

: F
C

+2C
C

D
yn

: F
C

+4C
C

Pro
pos

ed
: F

C
+4C

C

0

2

4

T
o

ta
l

P
o

w
er

 (
W

a
tt

s)

0

20

40

T
o

ta
l

E
n

er
g

y
 (

J
o

u
le

s)

Power

Energy

(d) Nbody

Fig. 4: Power/energy evaluations

composed of FPGA and CPUs. The proposed scheduler highly
restricts the overhead of device throughput estimations in order
to improve the heterogeneous performance. The throughput,
power, and energy evaluations obtained by the application of the
proposed scheduler on a ZCU102 board prove comparable to
the best evaluations when all the data chunk sizes are examined.
As future work, we plan to explore how the proposed scheduler
could be improved for irregular applications whose behaviour
depends not only on the data set size, but also on its contents.

REFERENCES

[1] O. Arcas-Abella et al., “An empirical evaluation of High-Level Synthesis
languages and tools for database acceleration,” in FPL ’14, 2014, pp. 1–8.

[2] “Xeon+FPGA platform for the data center,” www.ece.cmu.edu/∼calcm/carl/
lib/exe/fetch.php?media=carl15-gupta.pdf, accessed: 2018-04-02.

[3] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” ser. ISCA ’14, 2014, pp. 13–24.

[4] “Managing reconfigurable FPGA acceleration in a POWER8-based cloud
with FAbRIC,” https://openpowerfoundation.org/blogs/fabric-fpga-cloud/,
accessed: 2018-04-02.

[5] P. Meng et al., “FPGA-GPU-CPU heterogeneous architecture for real-time
cardiac physiological optical mapping,” in FPT ’12, 2012, pp. 37–42.

[6] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with FPGAs and
GPUs,” ser. FPGA ’10, 2010, pp. 115–124.

[7] A. Vilches et al., “Adaptive partitioning for irregular applications on
heterogeneous CPU-GPU chips,” Procedia Computer Science, vol. 51, pp.
140–149, 2015.

[8] J. Nunez-Yanez et al., “Simultaneous multiprocessing in a software defined
heterogeneous FPGA,” The Journal of Supercomputing, 2018.

[9] “SDSoC user guide,” www.xilinx.com/support/documentation/sw manuals/
xilinx2017 1/ug1027-sdsoc-user-guide.pdf, accessed: 2018-04-06.

[10] “Intel TBB,” www.threadingbuildingblocks.org, accessed: 2018-04-06.
[11] A. Navarro et al., “Strategies for maximizing utilization on multi-CPU and

multi-GPU heterogeneous architectures,” The Journal of Supercomputing,
vol. 70, no. 2, pp. 756–771, 2014.

	Workload Partitioning cs
	Workload Partitioning pdf

