-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by CURVE/open

Multi-precision convolutional neural
networks on heterogeneous

hardware
Amiri, S., Hosseinabady, M., MciIntosh-Smith, S. &
Nunez-Yanez, J.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Amiri, S, Hosseinabady, M, MclIntosh-Smith, S & Nunez-Yanez, J 2018, Multi-precision
convolutional neural networks on heterogeneous hardware. in Design, Automation
& Test in Europe Conference & Exhibition (DATE). Date Proceedings, IEEE, pp. 419-
424, DATE - Design, Automation and Test in Europe Conference, Dresden, Germany,
19/03/18.

https://dx.doi.org/10.23919/DATE.2018.8342046

DOl 10.23919/DATE.2018.8342046
ISSN 1558-1101

Publisher: IEEE

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://core.ac.uk/display/228157481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multi-Precision Convolutional Neural Networks
on Heterogeneous Hardware

Sam Amiri, Mohammad Hosseinabady, Simon Mclntosh-Smith and Jose Nunez-Yanez
Faculty of Engineering, University of Bristol, Bristol, UK
Emails: {mal7215, m.hosseinabady, s.mcintosh-smith, j.l.nunez-yanez} @bristol.ac.uk

Abstract—Fully binarised convolutional neural networks
(CNNs) deliver very high inference performance using single-
bit weights and activations, together with XNOR type operators
for the kernel convolutions. Current research shows that full
binarisation results in a degradation of accuracy and different
approaches to tackle this issue are being investigated such as
using more complex models as accuracy reduces. This paper
proposes an alternative based on a multi-precision CNN frame-
work that combines a binarised and a floating point CNN in
a pipeline configuration deployed on heterogeneous hardware.
The binarised CNN is mapped onto an FPGA device and used
to perform inference over the whole input set while the floating
point network is mapped onto a CPU device and performs re-
inference only when the classification confidence level is low. A
light-weight confidence mechanism enables a flexible trade-off
between accuracy and throughput. To demonstrate the concept,
we choose a Zynq 7020 device as the hardware target and show
that the multi-precision network is able to increase the BNN
accuracy from 78.5% to 82.5% and the CPU inference speed
from 29.68 to 90.82 images/sec.

Index Terms—multi-precision, performance, Convolutional
Neural Network, deep learning, heterogeneous, FPGA, ARM,
CIFAR-10, inference

I. INTRODUCTION

Recent advancements in convolutional neural network
(CNN) performance has been possible thanks to multi- and
many-core hardware platforms with parallel CPU, GPU and
FPGA resources. These powerful platforms enable training and
inference of deep CNNs with hundreds of object categories
and millions of images such as ImageNet [1]. Recent research
has shown that reduced precision neural networks with 8
and 16-bit operators can improve the throughput in deep
CNNs with minimal impact on accuracy [2]. The extreme
case of fully binarised Neural Networks (BNNs) presented
in [2] shows a large reduction in the memory requirements
and the design compute datapath at a cost of around 13%
in accuracy. BNNs are very suitable for FPGA hardware
since it is possible to store all their network parameters in
internal memory eliminating access to external memory and
use custom hardware to build the single-bit operators.

This paper proposes a multi-precision CNN integrating
two different CNN implementations in which one of them
brings throughput, such as a BNN, and the other provides
accuracy, such as a full-precision CNN. The high-throughput

This work was funded by the Engineering and Physical Sciences Research
Council (EPSRC) through the ENEAC (EP/N002539/1) grant.

Yes

-
a Hngh-tgroughput L Perceptron NN High-accurate L
ﬁ d NN e CNN |

[o\‘;\

>1

Fig. 1. Overview of the proposed multi-precision CNN.

implementation is the main inference engine; if the classifi-
cation confidence of an image is low then the high-accuracy
implementation will be activated. A light-weight mechanism is
used to make the decision to switch from the high-throughput
CNN to the high-accurate CNN. The two networks operate in
parallel as a stream of images pass through the system. Fig.
1 depicts this concept.
The contributions of this article are:

« Introduction and analysis of a parallelised multi-precision
design composed of two different-precision networks,
one based on the binarised FINN network [3] providing
throughput and the other a Caffe-based floating-point
network providing accuracy;

e Proposing a trainable and adjustable method based on
Softmax function to identify the incorrectly-classified
images by the high-throughput network and activate the
high-accurate network for their re-classification in order
to provide throughput/accuracy balance;

o Port of the original binarised FINN network to a Linux-
based Zynq compute environment using the Xilinx SD-
SoC high-level synthesis tools and optimization of the
BNN for different utilizations of on-chip memory and
hardware resources;

o Classification of CIFAR-10 test dataset in three multi-
precision experiments, each with a different floating-
point Caffe network combined with the FINN network.
A balanced multi-precision experiment, integrating a
light floating-point network with FINN, demonstrates that
FINN accuracy is improved from 78.5% to 82.5% and
floating-point network inference rate is improved from
29.68 to 90.82 images/sec.

II. PREVIOUS WORK AND BACKGROUND

Floating-point CNNs provide high classification accuracies
in multiple application areas but require large compute/mem-
ory resources usually available in multi-core and many-core
hardware [4]. A number of compression techniques have been

introduced to limit compute and/or memory requirements of
neural networks. In [5], a three-stage pipeline compression
technique is introduced where pruning, trained quantization
and Huffman coding work together to reduce the storage re-
quirement of neural networks. SqueezeNet [6] is a small CNN
architecture which uses reduced precision with fixed-point
arithmetic and fewer parameters than the full network, hence
suitable for deployment on hardware with limited memory.
Binarised Neural Networks (BNNs) [2] are the most reduced
precision CNNs compressed into only single-bit parameters,
improving both the implementation datapath and memory
costs.

An efficient framework to implement BNNs on FPGA is
FINN [3]. FINN is based on the BNN method developed by
Courbariaux et al. [2] providing high performance and low
memory cost using XNOR-popcount-threshold datapaths and
with all the parameters stored in on-chip memory (OCM).
FINN has a streaming multi-layer pipeline architecture where
every layer is composed of a compute engine surrounded by
input/output buffers. A FINN engine implements the matrix-
vector products of fully-connected layers or the matrix-matrix
products of convolution operation which is obtained by un-
rolling the convolution operation [7]. An engine computes
binarized products and then compares against a threshold
for binarized activation. It consists of P processing elements
(PEs), each having S SIMD lanes processed simultaneously.
Every layer is scalable rather than fixed and the number of
PE and SIMD lanes in the engines can be balanced according
to the their compute requirements. The first layer of the
network receives non-binarised image inputs hence requiring
regular operations, and the last layer outputs non-binarised
classification result and does not require thresholding. Non-
binarised operations can also be extended to handle inputs
and outputs in inner layers resulting in a partially-binarised
network.

III. MULTI-PRECISION CNN

As explained in Section I, we propose a multi-precision
design which balances the features of different solutions and
is built with three components: a CNN with high throughput,
a CNN with high accuracy and a light-weight NN as the
Decision Making Unit (DMU) in between. In our current
configuration, a single-bit BNN network is considered as
the high-throughput CNN and a floating-point NN provides
the high-accuracy CNN. Using an FPGA-CPU heterogeneous
device, we execute the single-bit network on the FPGA and the
floating-point network on the CPU. After initial classification
of the dataset in the BNN, a trained DMU decides to send a
selected subset of images for re-inference to the floating-point
network. DMU can be set to different thresholds to adjust
accuracy vs. speed by controlling the number of reclassifica-
tions in the floating-point network. For this work, the BNN
implementation on the FPGA is based on FINN. Using the
SDSoC tools (version 2016.3), the original FINN implementa-
tion is ported to a Linux environment and a hardware library is
generated. The original FINN interface code based on Vivado
HLS is removed and SDSoC pragmas are added to guide the

FPGA HOST
FINN | FINN
Layer 1|Layer 2 g Caffe Model
FINN | FINN e Caffe Model
Layer 1|Layer 2 s
FPGA HOST

FINN | FINN
Layer 1[Layer 2 g Caffe Model
FINN | FINN e Caffe Model
Layer 1|Layer2| .

Fig. 2. Pipelined implementation of our multi-precision design on a ZC702
board. Other than the concurrent execution of FPGA with host, FINN layers
are also pipelined and dual-core processors run in parallel.

SDSoC cross-compiler with the hardware and Linux driver
generation. The result of this process is a bitstream ready to be
uploaded in the FPGA and a software library that can then be
linked with the rest of the host code. The host code is compiled
using standard g++ in the target board directly running Linaro
12.11. The advantage of using these libraries and splitting
host and hardware compilation is that the host code can be
compiled with the latest g++ version supporting C++11, and
the SDSoC environment sds++ compiler only needs to handle
the driver and hardware generation. The evaluation board used
in our experiments is the Xilinx Zyng-7000 ZC702, featuring
the XC7Z2020 SoC with Artix-7 programmable logic and a
processing system containing a dual core ARM Cortex-A9
processor with a maximum clock frequency of 666 MHz.

The pipeline diagram of the multi-precision design in the
FPGA-CPU heterogeneous device is shown in Fig. 2. On every
pass, the FINN implementation processes a batch of images in
FPGA and the Caffe network classifies a subset of the batch
which was previously processed by FINN in the FPGA. The
selection of this subset is implemented by the DMU which is
executed in the processor.

In order to provide asynchronous execution and parallelism
between hardware and host CPU, corresponding to the execu-
tion style shown in Fig. 2, the paired SDSoC pragmas of SDS
async (ID) and SDS wait (ID) are used, as illustrated in
the following pseudo-code:

for (1 = 0; 1 < image_numbers/batch_size; i++) {

#pragma SDS async (1)
FPGA_execution (batch([i]);
if (i > 0) ARM_execution(incorrectly
classified images of batch[i-11);
#pragma SDS wait (1)
}
ARM_execution (incorrectly classified images of last
batch);

Using this method, the compiler does not generate the wait
after a call to a hardware function; after transferring the inputs
to hardware, the program returns immediately and executes to
the point of SDS wait (1) and then checks the hardware
output and waits if it is not ready.

Given the accuracy and speed of the two different pre-
cision designs and also the DMU details and settings, the
performance of the resulting multi-precision system can be
measured. If tgimg and tpanimg are the times taken to process
an image in a floating-point network in host and a single-
point network in FPGA respectively, and R, is the ratio of

images in a batch re-processed in host (0 < Ryeryn < 1), then

the average interval time to process an image in the multi-
precision system will be

tmulli—prec/img ~ max{tfp/img X Rreruna tbnn/img}- (1)

Since in general the host re-inference latency is the bottleneck,
Tmulti-precsimg €an be adjusted through several factors including
the computational load of the network in host, the performance
of the host processor, utilisation of a different trained DMU
network or a different threshold setting for it; the trade-off
resulting from the multi-precision system provides the timing
gain of tgpyimg X (1 — Rrerun) for the host processor.

If Rrerun_err 1s the ratio of images which have been initially
classified correctly by BNN method but due to DMU error are
reprocessed by host, and Accynn and Accy, are the accuracies
for networks in FPGA and host which are scaled to 0-1 range,
the accuracy of the multi-precision system can be measured
as

Accmulli—prec ~ Accom + (Accfp X Rrerun) - Rrerun_en~ 2)

The balanced multi-precision system improves the accuracy of
the BNN method by (Accr X Rrerun) — Rrerun_err- For a higher
accuracy gain, a deeper host network with higher Accy, or a
DMU with lower Ryerun_err 1S required. Although higher Ryequn
or larger host network might increase the accuracy, it will also
increase tmulgi-prec/img> hence the host network choice or the
DMU design and its threshold setting should be dependent
on the desired overall requirements. In practice, ACCmum-prec
is lower than the one acquired by (2) as Accg, drops when a
subset of hard-to-classify images are re-inferred in the host.

Changing batch size does not have a significant effect on
multi-precision features. From a practical point of view, as
batch size increases, there is slightly less overhead in the
buffers and FIFOs but a larger pipeline ramp up and ramp
down due to the larger batch size. Also with higher batch sizes,
the latency of an image to pass through the multi-precision
system increases.

In the remaining of this section, the three components of
the multi-precision system (fast network, DMU, and accurate
network) are introduced and analysed separately and then the
results obtained by the combined system are presented. In
particular, we focus on the processing of CIFAR-10 classi-
fication example!. CIFAR-10 dataset contains 32x32 colour
images in 10 classes (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck). It includes 50000 training images and
10000 test images.

A. FINN Scaling Analysis

The FINN network layers used in this experiment to classify
CIFAR-10 dataset are listed in Table I. Each layer of the
network is implemented in one engine and every engine has
two parameters to control how a weight matrix is partitioned
and hence its performance: P which is the number of the
processing elements (PEs) of the engine, and .S which is the
number of SIMD lanes per PE. A P x S tile of weight matrix

Uhttps://www.cs.toronto.edu/~kriz/cifar.html

TABLE I
THE FINN ENGINES OF THE NETWORK USED IN OUR EXPERIMENT FOR
CLASSIFICATION OF CIFAR-10 (NO ZERO PADDING IS APPLIED)

FINN

input (32x32 RGB image)
3% 3-conv-64

3% 3-conv-64

pooling
3%3-conv-128
3%3-conv-128
pooling
3%3-conv-256

3% 3-conv-256

FC-64

FC-64

FC-64 (no activation)

is processed at a time where each row of the tile is mapped
to a different PE and each column to a different SIMD lane.
The performance of every layer in a FINN design is controlled
by that layer’s P and S, and the worst case layer decides the
performance of the whole network. Hence to adjust the design
based on the requirements, the features involved should be
known. For a convolution or fully-connected (FC) layer of a
FINN network with P PEs and S SIMDs, given the following
feature sizes:

o Convolution kernel: K x K

o Convolution layer input: /H x IW x ID

o Convolution layer output: OH x OW x OD
o FC layer input: 1D

e FC layer output: OD

then the following features are obtained for the layer:

« Total weight size of a convolution layer:
OD x (K« K *1ID)

o Total weight size of a FC layer:
OD x ID

o Weight memory:

P files each containing 1olveight size

arrays of S-bit

PxS
values
o Threshold memory:
P files each containing % arrays of a constant bit size

(in our experiment, 24-bit for first stage and 16-bit for
the rest except the last stage.)
With the above specification, the total number of clock cycles

(C'C) for a convolution layer to produce all its activations will

be
OD KxK=xID

P s
and for a FC layer will be

COCONV = * OH x OW (3)

cc FC — O?D * % (4)
For a given layer to complete its computation, the number
of clock cycles measured by (3) or (4) agrees with the
estimated report provided by Analysis Perspective of Vivado
HLS environment; to do this, we set the batch size to 1 since
otherwise the amount of processing would be dependent on
a run-time value and latencies would be unknown at compile
time.

4000
3051
o 3000 b
[0}
0
2]
% 2000 1206 --4
e A 1741
= 1000 1210 —O— Expected | |
217 &— _ ;
o ez a4 ‘ A Ob‘tamed
20 30 40 50 60 70 80 90 100
100 ; ; ; ; ; ; ;
-~ M
X
< 80+t 86 86 4
= 83 83 N
= AT 75
= 60r a7 1
D AT 59 —O—BRAM_18K
52 54 —A— LUT
40 L L L L L L L

20 30 40 50 60 70 80 90
Total PE count

100

Fig. 3. Performance and area utilization for different CIFAR-10 implemen-
tations on ZC702 board each with a different degree of parallelism.

In order to maximise the throughput, it is necessary to rate-
balance the heterogeneous streaming network layers. The layer
with the highest latency will determine the overall throughput.
Since in a layer P and S determine its throughput, for a rough
balance of all the layers and given one desired latency (in C'C'),
(3) or (4) should be assessed for each layer to find a combi-
nation of P and S for that layer satisfying the equation. To
avoid padding extra space to Weight and Threshold memories
of a layer, P and S should be selected from the divisors of the
number of rows and columns of measured total weight size of
that layer, respectively. For a layer taking C'C' clock cycles to
calculate all required activations, the FPS obtained will be

Hardware Clock Rate
cc '

Fig. 3 shows performance and memory utilisation (BRAMSs
and LUTSs) of various FINN implementations on the ZC702
board when the network layers are balanced. Only the total
PE count of all the layers (without SIMD count) is shown
for each experiment for simplicity. The top plot illustrates the
performance we expected from each experiment based on (3),
(4), and (5) (or equivalently, using HLS Analysis Perspective
report) and the one obtained in practice, and the lower plot
shows the corresponding memory utilisation for each of them.
The CIFAR-10 classification accuracy over the first 1000 test
images using this network is 78.5%. As seen, for ZC702 board,
the current BRAM utilisation for every possible configuration
of this network is too high to allow any other design to
be implemented alongside the classification design such as
hardware that could extract regions of interest in a large HD
frame and then scale to 32x32 sub-frames for use in CIFAR-10
network.

FINN places the network parameters (weight and threshold
values) onto the OCM of FPGA for higher performance. Since

FPS = (5)

every memory instance of over about 1 Kb is assigned to
BRAMs by Vivado HLS tools (lower-capacity instances are
assigned to LUTs and FFs), the FPGA device BRAMs are
highly utilised by the network parameters. Furthermore, inter-
layer stream buffers increase BRAM pressure too. Therefore
the memory components available on board should be used
efficiently, but as reported in [8], on average only ~ 22%
of the storage space in the allocated BRAMs is actually
used. One major contributor to this underutilization is how
the compiler allocates BRAMs. For every memory allocation
instance, BRAM utilisation is rounded to the next power of
two for performance. Having multiple layers in a network,
each with P instances of Weight memory and P instances
of Threshold memory, a better allocation of BRAMs could
reduce its under-utilisation by a large amount.

One possible method to reduce BRAM under-utilisation
for each engine is to use HLS array_partition pragma
to realise memory instances with desired capacities. Block-
type array partitioning can be used in every layer of the
network, for each of the P instances of Weight memories or P
instances of Threshold memories, if the allocated BRAMS can
be reduced by dividing that instance of memory into multiple
smaller sized ones. This will prevent a large unused gap being
appended to memory instances. Although this method could
help with partitioning files taking up multiple BRAMs, the
smaller files using only a fraction of one BRAM cannot be
improved here. Applying efficient partitioning of memories to
every configuration shown in Fig. 3, we achieve the results
shown in Fig. 4 where BRAM utilisation drops 15%-18%.
Block type array partitioning causes the configurations with
higher PE counts to retain their original obtained performance
but the ones with lower accelerations to slow down.

Since image classification designs are typically part of a big-
ger design in practice (e.g. used in live video streams), in this
experiment we select the configuration with the lowest BRAM
utilisation to release resources for other hardware blocks; the
implementation with 32 PEs, reaching 430 images/second and
utilising 65% of the ZC702 board BRAMs, is used through
the rest of this article for further development.

B. Decision-Making Unit (DMU)

The DMU is designed to estimate the success or failure
of the single-bit network inference. The inputs to the DMU
are the outputted class scores from the BNN, and the DMU
output is a measure indicating whether the confidence value
of the BNN classification is considered high or not. The
DMU function is required to have these two characteristics: it
should be trainable, and it should squash a vector of arbitrary
values (the resulting BNN scores) to a real probability value
in the range 0—1 (BNN success probability). A good DMU
function candidate for the classification problem is Softmax.
For this work, we executed the FINN classification on CIFAR-
10 training dataset and created a new dataset composed of the
FINN output scores and its identification result (1 indicating
success and O failure). This dataset was used to train a Softmax
layer with the 10 scores used as the input and the single
identification result as the label. The resulting trained Softmax

2000 T

_A
L _—— 1739 i
g 1500 o —
R &7
(2} —
o 1000 - 767 _ 7
&
430 — -
= 500 A]
108 7~
0 | | | | | | |
20 30 40 50 60 70 80 90 100
80 ————
_— %
701 B 7! il
& 70 70 -
5 65 65 ~
260 - 1
o _ - 61
8 -——— A
550t K54 53 —6— BRAM_18K | |
49 —— LUT
40 | | | | | | I
20 30 40 50 60 70 80 90 100

Total PE count

Fig. 4. Performance and area utilization for different CIFAR-10 implemen-
tations on ZC702 board each with a different degree of parallelism, when
BRAM utilisation is made efficient by block type array partitioning.

layer can receive 10 FINN class scores of a test image and
output one probability value estimating if it was a correct
detection by FINN.

The images classified by FINN and then estimated by Soft-
max can fall in one of the following categories (represented
as percent of total):

o F'S: classified correctly by FINN and estimated as being

correct by Softmax too;

o F'S: classified incorrectly by FINN and estimated as

being incorrect by Softmax too;

e FS: classified incorrectly by FINN but estimated as being

correct by Softmax;

o FS: classified correctly by FINN but estimated as being

incorrect by Softmax.

The classification of the images in F'S and F'S will not
be rerun in the host contrary to the ones in F'S and FS.
The obtained Softmax accuracy is F'S + F'S, with F'S being
the net contribution of FINN to the multi-precision system’s
classification accuracy. F'S is of key importance here as this
puts a cap on the achievable accuracy by the multi-precision
system; as F'S increases, the multi-precision system accuracy
decreases. On the other hand, given a more accurate but slower
classification model on the host system, as F'S increases,
the multi-precision system’s classification speed decreases. To
control F'S and F'S, a threshold on Softmax estimation can be
applied. To balance the multi-precision classification accuracy
against the host classification speed, the threshold selection
can be made considering the following relations

1
" Host Classification Speed’

FS ~ Host Classification Speed. @)

(6)

On CIFAR-10 training data, as shown in Fig. 5, in threshold
values range of 0.5-1, F'S decreases while F'S increases.
To strike a balance between the multi-precision classification
accuracy and speed, a suitable threshold selection given a slow
host classifier should be from the start of this range, and given

90

80 —_— o i

70 &

50 Accuracy (~ FS + FS) [
— — FS

4o H——F$

Percent

30 / \ 4
\

20 R4]

0 I I I I I I I I I ~
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Softmax threshold

Fig. 5. Softmax layer accuracy and F'S and F'S values for different thresholds
obtained when applied to CIFAR-10 training dataset.

TABLE II
SOFTMAX LAYER THRESHOLD SETTING AND THE OBTAINED VALUES FOR
CIFAR-10 EXPERIMENT

FS FS | FS
128% | 87% | 12.3%

Threshold | FS
0.84 66.2%

a fast host classifier from the end of the range (up to 0.9).
The threshold setting and the results obtained for this work is
shown in Table II. With this setting, the maximum achievable
multi-precision accuracy will be 91.3%.

In our work, every inference by the trained single-layer
Softmax function consists of ten floating-point multiplications
and their sum, a bias addition, and application of a Sigmoid
positive transfer function. Softmax layer is directly added to
the host C++ source code.

C. Floating-Point Network on ARM Host

The floating-point network in the CPU uses both cores but
its classification rate is much slower than the FPGA BNN.
The adjustable ratio of images to be re-processed by the
high-accurate network in the host (25.1% in our experiment
according to Table II) and the very fast but less accurate
classification by BNN in FPGA are used to balance speed
against accuracy.

For this work, the framework used for the higher accuracy
network implementation in the host CPU is Caffe which is
open source and written in C++. A strong point of Caffe
for multi-core CNN implementations is its efficient and easy
utilisation of OpenBLAS?. To achieve high performance for
linear algebra operations on the ARM processor, we compiled
and installed OpenBLAS with OPENMP on the ZC702 board.
Although in our 32-bit ARMv7 processors OpenBLAS pro-
vides efficient CNN operations, it does not utilise the NEON
architecture due to limited performance gains. OpenBLAS
utilises the high-performance NEON (replaced by Advanced
SIMD) in 64-bit ARMv8 processors, hence the performance

Zhttp://www.openblas.net

TABLE III

THE THREE NETWORKS USED FOR CLASSIFICATION ON CIFAR-10
DATASET IN PROCESSING SYSTEM

Model A [Model B | Model C
input (32x32 RGB image)

5x5-conv-32 5%5-conv-192 ReLU | dropout
pooling ReLU Ix1-conv-160 ReLU | 3x3-conv-96 ReLU
LRN 1x1-conv-96 ReLU 3%3-conv-96 ReLU
5x5-conv-32 ReLU | pooling 3x3-conv-96 ReLU
pooling dropout dropout
LRN 5x5-conv-192 ReLU | 3x3-conv-192 ReLU
5x5-conv-64 ReLU | 1x1-conv-192 ReLU | 3x3-conv-192 ReLU
pooling 1x1-conv-192 ReLU | 3x3-conv-192 ReLU
FC-10 pooling dropout

dropout 3x3-conv-192 ReLU

3x3-conv-192 ReLU | 1x1-conv-192 ReLU

I1x1-conv-192 ReLU | 1x1-conv-10 ReLU

1 x1-conv-10 ReLU pooling

pooling

TABLE IV

PERFORMANCE OF NON-HETEROGENEOUS CIFAR-10 TESTING-DATA
CLASSIFICATION, FOR MODELS A, B, AND C RUNNING IN ARM CPU OF
ZC702 BOARD (FINN IS ALSO INCLUDED FOR COMPARISON)

Model A | Model B | Model C | FINN (FPGA)
Accuracy 81.4% 89.3% 90.7% 78.5%
Images/sec | 29.68 3.63 3.09 430.15

of experiments in this article can be further improved in these
high-end processors.

We test three Caffe models for CIFAR-10 classification in
this work: Model A which is built based on Alex Krizhevsky’s
cuda-convnet®, Model B which is the ”"Network in Network”
model described in [9], and Model C which is an ”ALL
Convolutional Net” model described in [10]. The networks
of these models are shown in Table IIIl. Model A is a fast
classifier and better suited for slow processors such as our
dual core ARM Cortex-A9, compared to Models B and C
which are deeper. Table IV shows the testing accuracies and
classification rates of these models executed in host when
FPGA is left idle (FPGA-based FINN classification results
are shown for comparison). These results verify that while the
single-bit precision FINN provides much faster inference, its
accuracy falls short of even a simple floating-point network
such as Model A.

D. Multi-Precision Results

The accuracy/speed balanced results obtained by parallel
classification of CIFAR-10 test dataset on FPGA and host
(for different host Model selections) are listed in Table V. Of
the three implementations, the combination of Model A and
FINN increases FINN accuracy by 4% (and even increases
the accuracy of the floating-point network of host by 1.1%)
and the resulting 90.82 classification rate is well above 60 fps
required in most real-time video streaming applications. The
deeper Models B and C improve the multi-precision accuracy
by a larger amount but would require faster host CPU for real-
time applications. In these experiments, the host accuracies
for Models A, B, and C on the subset of images selected by

3https://code.google.com/archive/p/cuda-convnet/

TABLE V
PERFORMANCE OF HETEROGENEOUS MULTI-PRECISION CIFAR-10 TEST
DATASET CLASSIFICATION, FOR MODELS A, B, AND C RUNNING IN ARM
CPU IN PARALLEL WITH FINN IN FPGA OF ZC702 BOARD

Model A | Model B | Model C

& FINN | & FINN | & FINN
Accuracy 82.5% 86% 87%
Images/sec | 90.82 14.00 11.98

the Softmax function are 65%, 79%, and 83% respectively;
compared to the non-heterogeneous accuracy results in Table
IV, this shows that the re-inference process in host is applied
to hard-to-classify subset of images.

IV. CONCLUSION

In this article, we proposed a multi-precision convolutional
neural network inference approach in which the full dataset
and a subset of it are respectively run in a reduced and
full precision implementations in parallel. A DMU function
is used to set a trade-off between accuracy and speed by
deciding on the degree of subset recalculation. The results
show that the multi-precision concept can provide overall
balanced results improving BNN accuracy and floating-point
network throughput. The results in the tested configuration
are limited by the overall low throughput achieved in the weak
Cortex A9 processors. Our future work aims at using the multi-
precision concept on higher-end heterogeneous devices that
incorporate ARMvVS processors with active NEON engines and
also considering use of mixed precision on the FPGA hardware
as well.

ACKNOWLEDGMENT

The authors would like to thank Xilinx Corporation for pro-
viding FINN framework and helping with its implementation.

REFERENCES

[1] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vision, vol. 115, no. 3, pp. 211-252, Dec. 2015.

[2] M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[3] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’17. New York, NY, USA: ACM, 2017, pp. 65-74.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov 1998.

[5] S.Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

[6] F.N.Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” CoRR, vol. abs/1602.07360, 2016.

[71 K. Chellapilla, S. Puri, and P. Simard, “High performance convolu-
tional neural networks for document processing,” in Tenth International
Workshop on Frontiers in Handwriting Recognition, G. Lorette, Ed.,
Université de Rennes 1. La Baule (France): Suvisoft, Oct. 2006.

[8]1 N.J. Fraser et al., “Scaling binarized neural networks on reconfigurable
logic,” CoRR, vol. abs/1701.03400, 2017.

[9] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol.
abs/1312.4400, 2013.

[10] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-
miller, “Striving for simplicity: The all convolutional net,” CoRR, vol.
abs/1412.6806, 2014.

	Multi-precision cs
	Multi-Precision Convolutional pdf

