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ABSTRACT9

The increasing availability of open data and the demand to understand better the nature
of anomalies and the causes underlying them in modern systems is encouraging
researchers to analyse open datasets in various ways. These include both quantitative
and qualitative methods. We show here how quantitative methods, such as timeline,
local averages and exponentially weighted moving average analyses, led in this work
to the discovery of three anomalies in a large open DNS dataset published by the Los
Alamos National Laboratory.
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INTRODUCTION17

Large datasets are becoming ever more available in open formats for various domains18

of technology driven by the aim of creating shared knowledge beyond the capabilities19

that a single organisation can generate. Such knowledge is valuable as it maintains and20

facilitates the operation of a robust, efficient and reliable IT infrastructure. As a result,21

the analysis and mining of large and open datasets has become, in recent times, an22

important and integral part of the research activities in successful IT teams, particularly23

within the scope of Cyber security research. In recent years, we have witnessed the24

arrival of large open Cyber security datasets, e.g. VCDB [23], CERT’s Vulnerability25

Notes Database at Carnegie Mellon University [4], SecRepo [8], CAIDA [3] and LANL26

[7]), backed and maintained by reputable organisations.27

In this short paper, we summarise the results of one such analytical exercise we28

performed on a large and open dataset containing Internet events, namely the Domain29

Name Service (DNS) dataset [5, 1] provided and maintained by the Los Alamos National30

Laboratory [6]. Our analysis follows three methods: a timeline analysis to understand31

whether there exist any gaps in the timeline, a local averages analysis, which identifies32

the server’s average load in each timeline period, and the Exponentially Weighted33

Moving Average (EWMA) [16] analysis, which results in a control chart that monitors34

the progress of the DNS workload.35
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RELATED WORK36

Anomaly analysis of computing and communication-related datasets using statistical37

methods such as the EWMA method is not a new idea and it has been researched38

and applied in literature on several occasions [24, 2, 12]. Viinikka and Debar [24],39

for example, presented an alert processing method based on EWMA control charts to40

summarise the behaviour of alert flows to meet a set of five objectives. These objectives41

included anomaly highlighting, decreasing operator load, reduction measurement and42

determination of suitable flows for monitoring and trend visualisation. Carter and43

Streilein [2], on the other hand, employed a probabilistic weighting method to the44

standard EWMA method to dynamically adjust parameterisation based on the probability45

of a given observation. Osanaiye, Alfa and Hancke [12] used the EWMA method to46

detect anomalous changes in the intensity of a jamming attack event. This is achieved47

by monitoring the packet inter-arrival feature of the received packets from sensor nodes.48

In [11] in 2002, Ye, Borror and Zhang used the EWMA method in three instances;49

for auto-correlated data, for uncorrelated data and for the standard deviation, to detect50

Denial-of-Service (DoS) attacks in computer networks, therefore becoming one of the51

earliest works that suggested the application of the EWMA method to computer intrusion52

detection.53

Other statistical methods have also been applied to the analysis of computer net-54

works traffic where for example in [15, 22], Polunchenko, Tartakovsky, Mukhopadhyay55

and Sokolov used four statistical methods: the CUmulative SUM (CUSUM) [13],56

the Shiryaev-Roberts (SR) [19, 17], the Shiryaev-Roberts-Pollak (SRP) [14] and the57

Shiryaev-Roberts-r (SR-r) [10] methods to rapidly detect anomalies in such traffic,58

where an anomaly is considered to be a change in the traffic. More recently, Sklavounos,59

Edoh and Plytas [20] used the EMWA and the CUSUM methods to detect instances60

of the Root-to-Local (R2L) attacks, where the attacker sends packets to some remote61

computer with the aim of exploiting its vulnerabilities and acquiring privileges as a local62

user. The proposed method is used in detecting shifts of the normal process of the TCP63

source bytes during operation, which could imply an R2L attack.64

Finally, in [21], Soldo, Le and Markopoulou used the EWMA method as a spatio-65

temporal pattern prediction tool to predict future attack sources from past attack logs66

that contain attacker-victim history and interactions. This is then implemented as a67

blacklisting recommendation system.68

THE LANL DNS DATASET69

Our analysis focuses on the DNS datasaet [5], part of the ”Comprehensive, Multi-Source70

Cyber-Security Event” datasets published by the Los Alamos National Laboratory71

(LANL). The dataset represents 58 consecutive days of de-identified DNS lookup72

events collected from within LANL’s corporate internal computer network. Each event,73

expressed as a row, has the metadata (time, source computer, computer resolved). There-74

fore, the events have a minimalistic set of metadata or information associated with them:75

the time at which the event occurred, a pseudo-identity of the computer issuing the query76

and a pseudo-identity of the computer the query was resolved to. The time of the events77

themselves starts at an unknown epoch of ”1” and uses a time resolution of ”1” second.78

An example representing three entries from this dataset is shown below [5]:79
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80

31,C161,C210981

35,C5642,C52882

38,C3380,C2284183

84

The dataset is 812MB in size and spans over 40,821,591 records. The dataset can85

therefore be described as Big, and it was published back in 2015.86

THE ANALYSIS APPROACH87

Our approach in analysing the LANL DNS Dataset [5] was driven by the nature of the88

data included. This mainly suggested two streams of analysis: First analysis of the89

timeline and second analysis of the DNS server workload. More specifically, we carried90

out the following three analyses.91

First Method: Timeline Analysis92

The first method we used is the timeline analysis, to discover if there were any time gaps93

in the DNS server’s readings that would divide the timeline of the readings into periods.94

We define a gap, as a period of inactivity that exceeds 24 hours. Other definitions are95

possible where the length of this period of inactivity would vary. Assuming there are96

g number of such gaps, we can divide a timeline T into n number of activity periods,97

where n = g+1.98

Second Method: Local Averages Analysis99

The second analysis method we applied is a local averages analysis. More precisely,100

given a timeline T extending over the period from 0 to time t, and divided into n number101

of periods (in our case n = 2, where g = 1), then a local averages analysis will produce102

the set A = {av1, . . . ,avn} representing the averages for each of the periods over which103

T is divided. Each avi value is calculated as the average of the number of DNS requests104

made over the ith period.105

Third Method: Exponentially Weighted Moving Average Analysis106

We adopted the Exponentially Weighted Moving Average (EWMA) statistic [16] as the107

third analysis technique for the LANL DNS dataset. EWMAs are a kind of statistical108

control charts, a concept first proposed by Shewhart in 1931 [18]. Shewhart control109

charts have been widely used for decades. However, since these charts use only the in-110

formation contained in the current sample observation, they are not efficient in detecting111

small process parameter changes. On the other hand, EWMAs are better in detecting112

small shifts [9] and average data in a way that gives less and less weight to the data as113

they are further removed in time.114

The EWMA analysis produces two control limits that define the band of values115

for the Y-axis that are considered to be normal and therefore under control. These116

limits are the Upper Control Limit (UCL) and the Lower Control Limit (LCL), and are117

calculated based on the standard deviation σ value for the Y-axis. The main rationale in118

choosing this method as the third kind of analysis is to determine what is normal and119

what is abnormal processing load for the DNS server. This is determined by adjusting120
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the distance at which the UCL and LCL limits are set, which in reality will be based121

on the history of data and past experience with the server’s behaviour. In our case, we122

chose (as an example) to set the limits to be at 25×σ .123

OUR FINDINGS124

The general timeline analysis is shown in Figure 1.

Figure 1. Timeline analysis of the LANL DNS dataset over the whole 58 days but not
showing the first anomaly.

125

Below, we outline the findings we concluded from this analysis.126

First Anomaly127

The first anomaly we detected was the result of the application of the timeline analysis128

where we discovered the presence of a time gap of 77.1225 hours (i.e. 3 days, 5 hours,129

7 minutes and 21 seconds) during which the DNS server readings were absent. This130

gap starts at time 2010062 (i.e. after approximately 23 days and 6 hours) and ends at131

time 2287703, inclusive. In the actual dataset, this gap is seen in-between these two rows:132

133

2010061,C5948,C457134

2287704,C12019,C1707135

136

This indicates that the DNS server (or its configuration server) was taken down for137

this period, perhaps due to the presence of the second anomaly we discuss below. As a138

result, our timeline analysis divides the DNS dataset timeline T into two periods (n = 2)139

and one gap (g = 1).140

Second Anomaly141

The second anomaly we found was a result of the application of the local averages142

analysis, and it is related to the query processing ability of the DNS server over the143

whole period of the dataset. This analysis showed that the server in the first activity144
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period of 23 days and 6 hours performed at a low workload, where the number of145

Queries it Processed per Second (or what is known as the QPS metric) was on average146

approximately 1.6. On the other hand, after time 2287704, when the server recovers147

from its downtime (first anomaly above), its QPS average rises in the second activity148

period to 14.8 over the last 31 days recorded in the dataset. We consider that the low149

QPS in the first period may have been caused by an earlier fault, misconfiguration or150

even an attack that prevented the server from processing queries at a normal workload.151

Third Anomaly152

We applied the EWMA statistic to the second activity period in the dataset’s timeline,153

which was the last 31 days (or 2678400 seconds), as we consider this to be more of154

a normal workload period for the server. The resulting chart for this second period is155

shown in Figure 2.

Figure 2. The EWMA chart for the last 31 days of the LANL DNS dataset for control
limits of 25×σ .

156

The black dots represent numbers of DNS requests per second that fall within the157

control limits, whereas the red dots represent cases where such numbers are outside of158

the UCL limit. The LCL limit here is a negative number, therefore it cannot be violated.159

As we mentioned earlier, one of the main benefits of an EWMA analysis is to determine160

whether a process is under control and highlight points that are outside of the normal161

control limits, therefore, prompt the administrators to further investigate those abnormal162

points.163

Based on this approach, and by setting the limit to be at 25×σ , we were able to164

discover points in time when the DNS server was not operating within the normal load.165

The classification is based on the choice of this limit. In our case, it confirmed that the166

“spike” in the number of queries processed by the DNS server at time 3906002 (i.e. on167

day 45, around the 5th hour) where 1051 queries were processed in that second, was168

indeed an unusual point in the chart. This spike is more than 70 times higher than the169

average QPS during this period and it is substantially higher than the next three highest170

spikes of 394, 360 and 357 queries per second occurring at times 4271510, 2998863 and171

5/7
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27116v1 | CC BY 4.0 Open Access | rec: 14 Aug 2018, publ: 14 Aug 2018



3114002, respectively. Therefore, it does indicate some form of DoS attack or possible172

stress testing on the sever.173

A different (but rather unusual) interpretation of the data would have been to choose174

the control limits sufficiently wide enough such that there would be no abnormal points,175

including the large spike at time 3906002. The choice of control limits is entirely176

dependant on the control procedures adopted by the organisation.177

CONCLUSION AND FUTURE WORK178

To conclude this short paper, we applied three analysis techniques to the LANL DNS179

open dataset in order to understand what kind of timeline and workload properties this180

dataset demonstrated. We were able to detect, as a result, three kinds of anomalies. The181

first indicated a period of time when the DNS server was not fully functional. The second182

anomaly showed that the server became non-functional (offline) for a short period of183

time, and finally, the third anomaly demonstrated an unusual spike in the number of184

queries that the server process in one second after it was restored.185

In the future, we plan to apply other statistical analysis methods to the current186

dataset and to other datasets. We are also planning to investigate how to set the EWMA187

control limits in an automatic manner based on data mining techniques that utilise past188

experience to determine what normal load the server should be running at.189
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