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Abstract: This paper presents a Box Regularized Particle Filter (BRPF). This state estimator
aims to be robust to ambiguous (non-injective) and uncertain measurements. Based on previous
works on box particle filters, we present a more general and improved formulation of the
algorithm, with two innovations: a generalized box resampling step and a kernel smoothing
method, which is shown to be optimal in terms of Mean Integrated Square Error. Monte-
Carlo simulations demonstrate the efficiency of BRPF on a severely ambiguous and non-linear
estimation problem, the Terrain Aided Navigation. BRPF is compared to the Sample Importance
Resampling Particle Filter (SIR-PF), the Markov Chain Monte Carlo approach (MCMC), and
the original Box Particle Filter (BPF). The algorithm is demonstrated to outperform existing
methods in terms of Root Mean Square Error (e.g., improvement up to 42% in geographical
position estimation with respect to the BPF) for a large initial uncertainty. The BRPF yields
a computational load reduction of 73% with respect to the SIR-PF and of 90% with respect to
MCMC for similar RMSE orders of magnitude. The present work offers an accurate (in terms of
RMSE) and robust (in terms of divergence rate) way to tackle state estimation from ambiguous
measurements while requiring a significantly lower computational load than classic Monte-Carlo
and particle filtering methods.

Description Notation
2-Norm ‖.‖
Frobenius norm ‖.‖F
Identity matrix In ∈ Rn×n

Real set (dimension δ) Rδ

Set, such that (e.g.) {S} = {x ∈ Rδ
∣∣ xTx > c}

Real interval set IR
Real box set (dimension δ) IRδ = IR× . . .× IR
Interval [a] ∈ IR
Box [a] ∈ IRδ
Density of x relative to y p (x|y)

Indicator function on box [a] 1[a](x) =
{

1 if x ∈ [a]
0 else

Uniform kernel on box [a] U[a](x)
Normal density N (µ,σ2)
Probabilistic expectation E []
Probabilistic covariance Cov ()
State and measurements xk ∈ Rd and mk ∈ Rdm

1. INTRODUCTION

A state estimation problem is commonly formalized by:
a dynamical state model, which represents the state evo-
lution, and an observation model, which links the state
with the measurements. These two models usually include
uncertainty to account for unmodeled dynamics, perturba-
tions and measurement errors. Two main frameworks can
be used to model uncertainty, namely: probabilistic filters
and set-based observers.

In the probabilistic scheme, uncertainty is modeled by a
probability density function. The most commonly used
probabilistic filter is the Kalman Filter, originally designed
for linear problems. It was extended to non-linear problems
through the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF). Kalman filters assume that
the uncertainty probability distributions are gaussian. In
comparison, particle filter methods, which are based on
Monte-Carlo methods, handle non-gaussian and strongly
non-linear systems. Ristic (2004) provides a review of
probabilistic state estimation techniques, from Kalman
Filters to particle filters. In order to enhance the accuracy
of particle filter estimation, a large variety of methods
were proposed. In particular, the kernel smoothing regu-
larization (Regularized Particle Filter, Musso et al. (2001))
was proposed to make the estimated density function fit
the target density in an optimal way, based on the kernel
theory of Silverman (1986). In what follows, kernel refers
to a given probability density function. However, proba-
bilistic techniques may diverge when strong measurement
ambiguity arises. Measurement ambiguity refers to the case
when the observation model is non-injective, i.e., when one
measurement corresponds to several possible states.
In the set-based framework, uncertainty probability dis-
tributions are assumed to be unknown but bounded
and are represented by bounded sets, as introduced by
Schweppe (1968). Several set representations have been
proposed, including: intervals and boxes (Jaulin, 2009),



ellipsoids (Maksarov and Norton, 1996), and polytopes
(Piet-Lahanier and Walter, 1994). The output of those
algorithms is thus not seen as a point estimate associated
with an uncertainty, as with probabilistic filters, but is con-
sidered as a bounded set that is guaranteed to contain the
real state. However, set-based techniques are often limited
to linear or somewhat non-linear systems, especially with
regard to the observation model.
In order to produce an estimator able to handle strong
non-linearities with minimal complexity, Abdallah et al.
(2007) introduced the Box Particle Filter (BPF). The
algorithm is similar to a conventional particle filter, except
that each particle is a weighted box. Each measurement is
also represented by a box. At each measurement time-step,
the box particles are contracted, which means that they
are replaced by a subset of themselves consistent with the
measurements. The interval analysis framework (Jaulin,
2001) makes box manipulations locally simple, while the
resulting union of all box particles can approximate a
complex state density.
The BPF has the advantage of requiring significantly less
computation than the classic Sample Importance Resam-
pling Particle Filter (SIR-PF) for a similar estimation
performance. Indeed, the SIR-PF requires a large number
of point-wise sampled particles to approach the state den-
sity. On the contrary, a d-dimensional box particle cloud
description yields a better covering of the state space. As a
result, far fewer particles are needed for the same estima-
tion performance compared with a conventional particle
filter. BPF was used for various cases, e.g., for tracking
applications (Gning et al., 2012a), extended object track-
ing (Petrov et al., 2012), and crowd tracking (De Freitas
et al., 2016).
However, BPF still suffers some drawbacks. First, mod-
elling a priori the boxes as uniform kernels leads to a
loss of generality. Although this simple probabilistic as-
sumption is of practical interest in the case of unknown
uncertainty probability density functions, it excludes the
case when other assumptions could be available on those
densities. The present paper proposes a more general the-
oretical description of BPF. In addition, BPF tends to
be quite conservative for severely ambiguous problems.
Indeed, the filter often yields excessively large confidence
bounds around the estimate. An example of ambiguous
measurements is Terrain Aided Navigation (TAN), for
which BPF fails to accurately converge (Merlinge et al.,
2016). This is mostly due to the resampling step, which
aims to avoid the degeneracy phenomenon. The resampling
is triggered when too many particles have a weight that is
close to zero. They are considered inconsistent with respect
to the measurements and are replaced by subdivisions of
the more highly weighted particles. The subdivision is per-
formed along one dimension of the state space and consists
of a repaving of the particle into a number of new particles
proportional to the original particle weight. The total
number of particles remains unchanged. Although many
problem-dependent subdivision approaches exist, there is
no general method. In addition, the box resampling leads
to an increasing number of box overlaps, which results in
a lack of accuracy in terms of density approximation.

This paper presents two main contributions leading to a
more general and accurate formulation of BPF (Sections 2
and 3) called the Box Regularized Particle Filter (BRPF)
(Section 4):
(1) A new box particle subdivision approach for re-

sampling, with an analytic solution based on an
observability-linked criterion (Section 4.1). A signifi-
cant accuracy enhancement compared to the conven-
tional BPF is demonstrated by numerical simulations,
in terms of Root Mean Square Error.

(2) The optimal smoothing of the posterior conditional
density estimation using bounded kernel regulariza-
tion expressed in terms of box parameters (Sec-
tion 4.2). The optimal smoothing kernel is determined
analytically by minimization of the Mean Integrated
Square Error (MISE) criterion. The resulting per-
formance enhancement compared to BPF is demon-
strated by simulation.

Numerical simulation results are presented in Section 5.

2. PROBLEM STATEMENT

The system evolution is modeled by a discrete dynamical
model:

xk = f (xk−1,uk) + wk (1)
with wk ∈ Rd the process noise and uk ∈ Rdc a control
input. For the sake of brevity, the control input will be
omitted. The observation equation is as follows:

mk = h (xk) + vk (2)
where h is the observation model (potentially non-
injective), and vk ∈ Rdm is the measurement noise. Pro-
cess and measurement uncertainties can be described using
two different frameworks. The first one consists in associ-
ating a probabilistic density function (pdf) to vk and wk.
However when the selection of a suitable structure for the
pdf proves difficult for highly non-linear models, an alter-
native consists in representing these uncertainties using
the unknown but bounded representation which relies on
providing only a description of the bounds within which
they vary. These different descriptions lead to different
estimation methods that are briefly recalled hereafter.

2.1 Probabilistic observers framework

In the probabilistic scheme, the process noise and the
measurement noise are associated with some probability
density function: the transition density p(xk|xk−1) and the
likelihood p(mk|xk), with Mk = {m1, . . . ,mk}.
The prediction step corresponds to the dynamical prop-
agation of the conditional density. The conditional den-
sity is obtained by a convolution of the prior conditional
density p(xk−1|Mk−1) with the state transition density
p(xk|xk−1), through the Chapman-Kolmogorov equation:

p(xk|Mk−1) =
∫
p(xk|xk−1)p(xk−1|Mk−1)dxk−1 (3)

The correction step corresponds to the predicted condi-
tional density p(xk|Mk−1) updated by the measurements
density p(mk|xk) and is obtained by the Bayes rule, under
the assumption of statistically independent measurements:



p(xk|Mk) = p(mk|xk)p(xk|Mk−1)∫
p(mk|xk)p(xk|Mk−1)dxk

(4)

2.2 Set-based observers framework

In the set-based observer scheme, the process and mea-
surement noises are modeled by bounded sets {wk} and
{vk}. Therefore, let the measurement set be defined as
{mk} =

{
y ∈ Rdm

∣∣y−mk ∈ {vk}
}

. Let {xk−1} be the
previous state set estimation and {xk} the current state
set estimation.
The prediction step corresponds to the propagation of all
elements of the previous estimated set, plus the process
uncertainty set:
{xk|k−1} =

{
x ∈ Rd

∣∣ x− f(x’) ∈ {wk} ∀x’ ∈ {xk−1}
}
(5)

The correction step corresponds to the measurement up-
date obtained by intersecting the predicted set:

{xk} =
{
x ∈ {xk|k−1}

∣∣ h(x) ∈ {mk}
}

(6)
Several methods have been introduced to describe these
sets and their evolution. In the present work, the algorithm
developed relies on the use of specific set descriptions
that are boxes and intervals. The interval framework is
described hereafter.

2.3 Interval analysis

This paragraph briefly recalls the interval analysis for-
malism described in Jaulin (2001). An interval [a] of R
is defined as [a] = [a, a] = {x ∈ R, a ≤ x ≤ a} ∈ IR,
where IR denotes the real interval space. Equivalently,
it can be described by its center and its diameter as
[a] = (c, δ) = {x ∈ R, c− δ/2 ≤ x ≤ c+ δ/2} ∈ IR.
A box is noted [a] = [a,a] ∈ IRd with a ∈ Rd and
a ∈ Rd the lower and upper bounds of [a]. It describes
a hyperrectangle and can be written as a vector of in-
tervals: [a] = [a1] × [a2] × . . . × [ad] ∈ IRd. Equiva-
lently, it can be described by its center and its diameter
[a] = (c[a], δ[a]). Table 1 describes the most usual interval
analysis operations. One can notice that the volume of

Table 1. Interval Analysis operations (Jaulin,
2001)

Description Notation

Operation �
(+,−, ∗, /) [a]� [b] =

[{
x� y

∣∣ x ∈ [a], y ∈ [b]
}]

Intersection [a] ∩ [b] = [max(a, b),min(a, b)]
Diameter δ[a] = |[a]| = a− a (∈ R)

By convention, |∅| = 0
Volume of a box |[a]| =

∏d

j=1 |[aj ]| (∈ R)
Diameter of a box δ[a] = [|[a1]|, ..., |[ad]|]T (∈ Rd)
Center of a box c[a] = 1

2 (a + a) (∈ Rd)

a box corresponds to the Lebesgue measure. Functions
of Rδ1 → Rδ2 (δ1, δ2 ∈ N∗) have also to be adapted to
interval framework. This leads us to define the inclusion
function concept. An inclusion function of a function ψ
from Rδ1 to Rδ2 is defined as [ψ] from IRδ1 to IRδ2 . The
output of [ψ] is a box [ψ]([a]) ∈ IRδ2 that contains the

output set {ψ([a])} = {y ∈ Rδ2 | y = ψ(x) ∀x ∈ [a]}
of box [a] by ψ. An inclusion function is minimal if its
image is the smallest box containing {ψ([a])}. In what
follows, in order to limit the pessimism of box-based
outer-approximations of output sets, inclusion functions
are chosen minimal (Jaulin, 2001). Thus, (1) and (2) can
be rewritten as follows:{

[xk] = [f ]([xk−1]) + [wk]
[mk] = [h]([xk]) + [vk] (7)

3. BOX PARTICLE FILTER (BPF)

The Box Particle Filter was initially proposed in (Abdallah
et al., 2007) as a first bridge between Monte-Carlo methods
and set-based approaches.
This section details the general BPF description by deriv-
ing the Optimal Filter’s equations (3) and (4). A generic
formulation of BPF is introduced. The prior conditional
state density at time k − 1 is defined by a mixture of
N kernels bounded by box particles [xik−1] ∈ IRd and
weighted by weights wik whose sum is unity:

p(xk−1|Mk−1) =
N∑
i=1

wik−1π
i
k−1(xk−1)1[xi

k−1](xk−1) (8)

where each box kernel πik−1 : Rd → R refers to a known
probability density function and satisfies

∫
[xi

k−1] π
i
k−1(x)dx =

1. The assumption is made that the dynamical model
f : Rd → Rd and the observation model h : Rd → Rdm are
continuous on their domain. Initial box kernels πi0 : Rd →
R are also assumed to be continuous. Likewise, the mea-
surement density πmk : Rd → Rdm is assumed to be con-
tinuous at each time-step. For the sake of brevity, kernel
arguments may be omitted in what follows. A solution is
provided for the specific case of uniform kernels (Abdallah
et al., 2007; Gning et al., 2013), which is computationally
efficient.

3.1 Prediction step

Applying the Chapman-Kolmogorov equation (3) to the
prior density (8) yields:

p(xk|Mk−1) =
∫
Rd

πxk|k−1

N∑
i=1

wik−1π
i
k−11[xi

k−1]dxk−1

=
N∑
i=1

(
wik−1

∫
[xi

k−1]
πxk|k−1π

i
k−11[xi

k−1]dxk−1

)
(9)

Define the ith predicted kernel, whose support is included
in box particle [xik|k−1]:

πik|k−1(xk) ,
∫

[xi
k−1]

πxk|k−1(xk−f(xk−1))πik−1(xk−1)dxk−1

(10)
The predicted conditional density can be written as:

p(xk|Mk−1) =
N∑
i=1

wik−1π
i
k|k−11[xi

k|k−1] (11)

with
[xik|k−1] , [f ]([xik−1]) + [wk] (12)



As stated in Gning et al. (2013), for uniform kernels, the
assumption can be made that:

πik|k−1 =
∫
Rd

U[xi
k−1]p(xk|xk−1)dxk−1 ≈ U[f ]([xi

k−1])+[wk]

(13)

3.2 Correction step

The correction step determines the posterior conditional
distribution of the state with respect to the predictive
distribution (11) and the measurement density. The mea-
surement noise dentity p(mk|xk) = πmk is assumed to be
bounded by the box [mk]. Bayes’ rule (4) leads to:

p(xk|Mk) = 1
qk

(
N∑
i=1

wik−1π
i
k|k−11[xi

k|k−1]

)
πmk

= 1
qk

N∑
i=1

wik−1

(
πik|k−11[xi

k|k−1]π
m
k 1[mk]

) (14)

Therefore, a new box particle can be defined as the
consequence of the product of the two indicator functions:

[xik] =
[{

x ∈ Rd
∣∣ 1[xi

k|k−1](x) 1[mk](mk − h(x)) 6= 0
}]
(15)

which is equivalent to a Constraints Satisfaction Prob-
lem defined by

[{
xk ∈ [xik|k−1]

∣∣ h(xk) ∈ [mk]
}]

(Jaulin,
2009). Therefore, new kernel supports [xik] can be com-
puted by interval contraction:

p(xk|Mk) = 1
qk

N∑
i=1

wik−1

(
πmk π

i
k|k−11[xi

k
]

)
(16)

However, the term πmk π
i
k|k−11[xi

k
] no longer sums to unity

and is therefore not a pdf. Indeed, the support of the kernel
πik|k−11[xi

k|k−1] has been truncated by [xik] ⊂ [xik|k−1]
whose volume is lower or equal to that of [xik|k−1]. Fur-
thermore, it is multiplied by the measurement kernel πmk ,
which leads to a new kernel proportional to πmk π

i
k|k−1.

Therefore, it has to be normalised by
∫

[xi
k

] π
m
k π

i
k|k−1dx,

which yields,

p(xk|Mk) = 1
qk

N∑
i=1

(
wik−1

∫
[xi

k
]
πmk π

i
k|k−1dx

)
πik1[xi

k
]

(17)
where πik , 1∫

[xi
k

]
πm

k
πi

k|k−1dx
πmk π

i
k|k−1 is the updated ker-

nel. This kernel is only defined if
∫

[xi
k

] π
m
k π

i
k|k−1dx 6= 0, i.e.

if box i is consistent with the measurement density. Else,
it can be set by convention to wik = 0.
Finally, the posterior conditional density is obtained:

p(xk|Mk) =
N∑
i=1

wikπ
i
k1[xi

k
] (18)

where the update of weights is, for k ≥ 1:

wik ,
1
qk
wik−1

∫
[xi

k
]
πmk (mk − h(x))πik|k−1(x)dx (19)

The integral term in (19) can be interpreted as a consis-
tency term between the box kernel πik|k−1(x) whose sup-
port is restricted to box [xik] and the measurement kernel

πmk (mk − h(x)). This integral term belongs to interval
[0, 1]. The normalisation quotient is:

qk =
∑
i

wik−1

∫
[xi

k
]
πmk π

i
k|k−1dx (20)

In the case of uniform kernels and a uniform measurement
noise (Gning et al., 2013), the updated weights are ob-
tained by:

wik = 1
qk

|[xik ]|
|[xik|k−1 ]|

wik−1 (21)

3.3 Resampling step

As in a conventional particle filter, a resampling step is
added to avoid the degeneracy phenomenon, when only a
small number of box particles are consistent with the mea-
surements and all others have a near-zero weight. When
the resampling step is triggered, each particle is duplicated
in ni ∈ [0, N ] instances. A zero ni yields the particle
deletion. The total number of particles usually remains
the same after resampling, i.e,

∑
i n

i = N . The most
common method used to determine ni is the multinomial
resampling. The duplication number per particle ni relies
on the particle weight, such that high weighted particles
are more likely to be duplicated than low weighted par-
ticles. A survey on resampling techniques for particles
filters can be found in Li et al. (2015). The resampling
step is not processed at every time-step and is triggered
by a threshold based on the particle weights. The most
commonly used is the N effective criterion:

1∑N
i=1 w

i
k

2 < θeffN (22)

with θeff ∈ [0, 1] a normalized tuning threshold. This
criterion is designed to reflect the case where the number of
particles with a low weight value exceed a given threshold.
The resampling step can be derived for the BPF scheme.
Instead of duplicating the box particles, the BPF subdi-
vises them along one dimension dcut,ik ∈ [1, d] to increase
the resolution of the state density estimation. Several
strategies were proposed to choose the dcut,ik dimension
along which to subdivide the current box particle. How-
ever, to the best of the author’s knowledge, they are either
limited to a specific state representation, e.g. Abdallah
et al. (2008); Merlinge et al. (2016); De Freitas et al.
(2016), fully observable states (Luo and Qin, 2018) or are
not determinisitic (Gning et al., 2012b).

3.4 State estimation

A state estimate x̂k can be derived from the box particles
cloud such that:

x̂k , E [xk ∼ p(xk|Mk)] ≈
N∑
i=1

wik−1cik (23)

For the sake of brevity, the box particles centers are
denoted cik , c[xi

k
]. An empirical covariance matrix can

be defined by:

P̂k = Cov (xk ∼ p(xk|Mk)) ≈
N∑
i=1

wik(cik − x̂k)(cik − x̂k)T

(24)



4. BOX REGULARIZED PARTICLE FILTER (BRPF)

In the previous section, a general probabilistic formulation
of BPF was provided. However, as mentioned in 3.3, the
box-resampling dimension subdivision does not have a
generic definition in the literature and is often problem
dependent. In this section, a generic box subdivision
technique is described, based on a variance evaluation.
Moreover, the resulting box particle cloud does not ap-
proximate the actual posterior conditional density in an
optimal way with respect to the Mean Integrated Square
Error (MISE) metric. Therefore, a kernel smoothing step
is added after each resampling step to obtain an optimal
box particles breakdown with respect to the MISE. We call
the derived algorithm the Box Regularized Particle Filter.

4.1 Box particles subdivision for resampling

The BPF box-resampling method aims to enhance the
resolution of the state space exploration in its most likely
regions by replacing low-weighted boxes by subdivisions
of high-weighted ones. For each particle, the resampling
algorithm provides an integer value indicating how many
subdivisions will be performed on it. In this section,
we consider a box i which has to be subdivided in ni

sub-boxes. A common approach is subdividing each box
particle i along a single state dimension dcut,ik ∈ [1, d],
where d is the number of state variables. Various methods
were proposed in the literature. However, they are often
too application-specific, not deterministic, or limited to
fully observed states.
The objective of this section is providing a generic and
deterministic formulation for the subdivision dimension
dcut,ik for each particle. Our approach relies on an edge
normalization by a lowest expected variance in the sense
of the maximum likelihood estimator.
Proposition 1. During the box subdivision resampling,
each box can be subdivided along the edge that is the
most pessimistic compared to a lowest expected variance.
Provided that:
• The measurement noise (associated with the likeli-

hood density) has a covariance Rk ∈ Rdm×dm ,
• The observation model h is differentiable

The subdivision dimension dcut is chosen by picking the
largest coefficient of a normalised box particle’s diameter
δ̃
i

k = [δ̃i,1k , ..., δ̃i,dk ]T :
dcut,ik = argmax

j∈J1,dK
(δ̃i,jk ) (25)

The normalised diameter is computed from the box parti-
cle’s prior diameter δik , δ[xi

k
] ∈ Rd and the inverse of the

square root (e.g., Cholesky decomposition) of the lowest
theoretical covariance Σk:

δ̃
i

k ,
(√

Σk

)−1
δik ∈ Rd (26)

where Σk ∈ Rd×d can be evaluated by:

Σk , P̂k + 1
2

N∑
i=1

wik
(
Σi
k + Vi

k

)
(27)

where

Σi
k = Vec−1

((
λTi

k ⊗Ti
k + (1− λ)Id2

)−1

Vec
(
λHi

k

TRkHi
k + (1− λ)∆i

k

)) (28)

where Vi
k is obtained from the polar decomposition of Σi

k,
Ti
k =

(
∂h
∂x
)T (∂h

∂x
)
, Vec is the vectorization operator, and

∆i
k is a diagonal matrix whose diagonal terms are the

squared box’s diameters δi,jk
2

(j ∈ [1, d]). The box can
be subdivided in ni new boxes along the dimension that
maximises the normalised diameter:

dcut = argmax
j∈J1,dK

(δ̃j) (29)

Proof In the following, the analytic expression of Σk is
derived, leading to equation (27).
The measurement density p(mk|xk) = πmk (mk − h(xk)) is
assumed to have a single maximum x̂ik inside each subset
[xik] which satisfies:

x̂ik = argmax
xk

(p(mk|xk)) (30)

Thus, one can link h(x̂ik) and mk as h(x̂ik) = mk.
The measurement variance Cov [mk] = Rk ∈ Rdm×dm is
assumed to be known. As a result, the maximum likelihood
satisfies, for all i:

Cov
[
h(x̂ik)

]
= Rk (31)

where the measurement covariance Rk does not depend
on i. On the other hand, the observation function h can
be locally linearised to first order as follows:

h(x̂ik) = h(xik) + Hi
k(x̂ik − xik) + o(x̂ik − xik) (32)

with Hi
k , ∂h

∂x

∣∣
x=xi

k

∈ Rdm×d and xik = E
[
πik
]
.

This implies that:
h(x̂ik)− h(xik) ≈ Hi

k(x̂ik − xik) (33)
and that (

h(x̂ik)− h(xik)
)(

h(x̂ik)− h(xik)
)T

≈ Hi
k(x̂ik − xik)(x̂ik − xik)THT

(34)

Thus, by taking the expectancy of both hand sides:

E

[(
h(x̂ik)− h(xk)

)(
h(x̂ik)− h(xk)

)T]
≈ E

[
Hi
k(x̂ik − xk)(x̂ik − xk)THi

k

T
]

= Hi
kE
[
(x̂ik − xk)(x̂ik − xk)T

]
Hi
k

T = Hi
kCov[x̂ik]Hi

k

T

(35)
Thus, the local maximum likelihood must satisfy:

Cov
[
h(x̂ik)

]
≈ Hi

kΣi
kHi

k

T (36)

with Σik , Cov[x̂ik]. Therefore, by combining (31) and (36),
one can write:

Hi
kΣi

kHi
k

T ≈ Rk (37)
In practice, since the actual state xk is unknown, Hi

k can
be evaluated from Hi

k ≈ ∂h
∂x

∣∣
x=ci

k

with cik the center of the
ith box particle. Equation (37) imposes a constraint on Σi

k
which depends on the observation equation.
However, if the rank of Rk is less than the rank of Σi

k, some
additional information needs to be added. Indeed, (37)



only affects the coefficients of Σi
k that explicitly depend

on the measurement in the observation function h. In
order to calculate the other coefficients, which are linked
together through the dynamical model f(), a possible
solution is to introduce a dynamical information with
∆i
k , Diag

(
δik

2). Function Diag() transforms a vector
of Rn into a diagonal matrix of Rn×n. Such techniques
are known as regularisation techniques (Neumaier, 1998).
Therefore, the problem to solve is a trade-off between the
observation constraint and the state constraint:

Σi
k = argmin (J(Σ))

J(Σ) = λ
∥∥∥Hi

kΣHi
k

T −Rk

∥∥∥2

F
+ (1− λ)

∥∥Σ−∆i
k

∥∥2
F

Σ > 0
(38)

where λ ∈ (0, 1) is a tuning coefficient. Equation (38) can
be solved by computing the derivative of J :
∂J
∂Σ = ∂

∂Σ

[
λtr
(

(Hi
kΣHi

k

T −Rk)T (Hi
kΣHi

k

T −Rk)
)

+(1− λ)tr
(
(Σ−∆i

k)T (Σ−∆i
k)
)]

= 2λ ∂
∂Σ tr

(
(Hi

kΣHi
k

T )T (Hi
kΣHi

k

T )
)

−2λ ∂
∂Σ tr

(
Hi
kΣHi

k

TRk

)
+(1− λ) ∂

∂Σ tr
(
Σ2)− 2(1− λ) ∂

∂Σ tr
(
Σ∆i

k

)
= 2λ

(
Hi
k

THi
kΣHi

k

THi
k

)
− 2λ

(
Hi
k

TRkHi
k

)
+2(1− λ)Σ− 2(1− λ)∆i

k

(39)
Finally, the equation ∂J

∂Σ = 0 is equivalent to:
λTi

kΣTi
k + (1− λ)Σ = Ωi

k (40)

with Ti
k = Hi

k

THi
k and Ωi

k , λHi
k

TRkHi
k + (1 −

λ)∆i
k. Using the Kronecker product properties, denoted

⊗, derive (40) as follows:
(λTi

k ⊗Ti
k + (1− λ)Id2)Vec(Σ) = Vec(Ωi

k) (41)
where Vec() : Rd×d → Rd2 stands for the column-wise
concatenation of a matrix.
As a result, the solution Σi

k can be obtained by:
Σi
k = Vec−1 ((λTi

k ⊗Ti
k + (1− λ)Id2)−1Vec(Ωi

k)
)

(42)

where Vec−1() : Rd2 → Rd×d gives a d × d matrix
representation of a d2 vector whose elements are taken
column-wise.
However, the resulting Σi

k matrix might not be positive
definite. It can then be approximated by the nearest
positive definite matrix, in terms of Frobenius norm, by
Σi

k = 1
2
(
Σi
k + Vi

k

)
, where Vi

k ∈ Rd×d is obtained from
the polar decomposition of Σi

k, i.e Σi
k = Ui

kVi
k with

Ui
k

TUi
k = Id. This theorem is developed in the work of

Higham (1988).
The Maximum Likelihood covariance can therefore be
approached by:

Σk , P̂k +
N∑
i=1

wikΣ
i

k (43)

Each box diameter is normalised by the square root of Σk

using (26) and the choice of dcut is done using (29).

4.2 Bounded Kernel Smoothing by Regularization

In the previous section, a deterministic way to subdi-
vide box particles was described. However, whatever be
the subdivision method, this operation ends with a high
correlation between the box particles parameters (centers
and diameters). As a result, several particles may exactly
overlap and the posterior density p(xk|Mk) is often poorly
approximated, which leads to a biased state estimation. A
possible solution to enhance the posterior density approxi-
mation is smoothing the box particles parameters distribu-
tions by adding a stochastic bounded noise. This process,
called kernel regularization, was presented in (Musso et al.,
2001) to improve the accuracy of conventional particles
filters. It is based on the theory of Silverman (1986) on
kernel smoothing and density estimation. A kernel refers to
a given probability density function, as introduced in Sec-
tion 1. We introduced a first adaptation of this approach to
the Box Particle Filter in Merlinge et al. (2016). However,
this formulation was performed by approximating each
box particle by a uniform expectancy, which corresponds
to the center of the box. As a result, the regularization
formulation was equivalent to a conventional particle filter
regularization.
The objective of this section is to determine an optimal
smoothing kernel applied to the box parameters, in terms
of the Mean Integrated Square Error (MISE) criterion
defined in (48). Recall that the regularisation is only per-
formed when a resampling step is triggered by condition
(22). We propose a new adaptation of the kernel regular-
ization method which relies on the whole boxes descrip-
tion. The regularization takes place after the resampling
operation and the correction step that we have previously
presented.
Each box particle [xik] is characterized by a vector of R2d

which consists of their center cik ∈ Rd and their diameter
δik , δ[xi

k
] ∈ Rd. A vector description of a box particle is:

ξik
T =

[
cik
T
, δik

T
]
∈ R2d (44)

The boxes parameters (center and diameter) can be as-
sociated to a random vector ξk. Then, a new expression
of the density’s approximation can be written, using some
kernels K centred on each box particle ξik.

p̂(ξk|Mk) ≈
N∑
i=1

wikKh(ξk − ξik) (45)

where {
Kh : R2d 7→ R
Kh(ξ) = 1

h2dK
( 1
hξ
) (46)

in the re-scaled kernel density K(.), h ∈ R+∗ is the kernel
bandwidth. The kernel density is a symmetric probability
density function such that:∫

ξK(ξ)dξ = 0,
∫
‖ξ‖2K(ξ)dξ <∞ (47)

The kernel K(.) and bandwidth h are chosen to minimize
the Mean Integrated Square Error (MISE) between the
hypothetical posterior density and the corresponding reg-
ularized filter’s representation, defined as:

MISE(p̂) = E

[∫
(p̂(ξk|Mk)− p(ξk|Mk))2dξk

]
(48)



where p̂(ξk|Mk) denotes the approximation to p(ξk|Mk)
given by (45). If all the box particles have the same weight,
during the resampling step, an optimal choice of the kernel
is the bounded Epanechnikov kernel (Silverman, 1986).

Kopt(ξ) =
{

2d+2
2c2d

(
1− ‖ξ‖2

)
if ‖ξ‖ < 1

0 otherwise
(49)

where c2d is the volume of the unit hypersphere in R2d.
The kernel support length is expressed as:{

hopt = µA(K)N−
1

2d+4

A(K) = [8c−1
2d (2d+ 4)(2

√
π)2d]

1
2d+4

(50)

where µ ∈ [0, 1] is a tuning parameter, introduced to avoid
an over-smoothing of the density, which would produce
divergences.
After kernel smoothing regularization, the box particle
kernels mixture is guaranteed to better fit the optimal pos-
terior density. In practice, this will result in an improved
estimation accuracy.

4.3 BRPF algorithm

The above developments are summarized in Algorithm 1.

Algorithm 1 Box Regularised Particle Filter
1: Generate N box particles {[xi0]}i∈J1,NK of empty inter-

section, associated to weights wi0 = 1/N .
2: for each time-step k do
3: Propagate box particles using (12).
4: Contract box particles using (15) (if a measure-

ment is available).
5: Update weights using (21).
6: Normalize weights using (20).
7: if (22) is satisfied then
8: Use a resampling method (e.g., multinomial re-

sampling) to determine the number of new boxes
ni ∈ [0, N ] per existing box particle.

9: Chose one subdivision dimension dcut,i
k per box

particle using (29), (26), and (27).
10: Subdivide each box in nik new boxes along its edge

dcut,i
k .

11: Reset all weights to wik = 1/N .
12: Regularize the box particle cloud by noising each

box parameter (44) using the optimal smoothing
kernel defined by (49) and (50).

13: end if
14: Estimate state x̂k (23) and its confidence P̂k (24).
15: end for

mk 

DEM(xk, yk) 

zk 

z = 0 

Terrain 

y 

z 

x 

Fig. 1. Elevation measurement mi
k in terrain navigation

5. NUMERICAL RESULTS, APPLICATION TO
TERRAIN AIDED NAVIGATION

To illustrate the behaviour of the resulting filter with non-
injective and uncertain measurements, an application to
Terrain Aided Navigation (TAN) is presented. The TAN
problem is a very non-linear and ambiguous estimation
problem. To begin, the observation equation involves a
non-analytic Digital Elevation Model (DEM) map, which
can hardly be linearized. As a result, the Kalman filters
(EKF, UKF) are not suitable. Then, the DEM often
contains several similar patterns (e.g., peaks and valleys),
which makes the relationship h between the state and the
measurement non-injective. In addition, the measurement
is a scalar value, which does not provide much information
about the state. In practice, conventional Particle Filters
often fail to solve this problem (Merlinge et al., 2016).
The state vector represents an aerial vehicle coordinate in
a geographical frame at time-step k, it consists of:

xTk =
[
pTk ,vTk

]
∈ R6 (51)

where pk = [xk, yk, zk]T is the position vector and vk ∈ R3

is the velocity vector.
The vehicle dynamical model is assumed to be linear:

xk = Fxk−1 + wk (52)

where F =
[
I3 dtI3
03 I3

]
with 0n ∈ Rn×n the null matrix

and dt a time-step value. A radar altimeter provides
elevation measurements (the relative height mi, see Fig. 1)
along the vehicle trajectory at discrete time values. By
comparing on board these elevations with a DEM, it is
possible to reconstruct the absolute position of the aircraft.
The DEM gives the absolute elevation as a function of
the geographical coordinates (xk, yk). The measurement
equation is, as illustrated in Figure 1:

mk = zk −DEM(xk, yk) + vk ∈ R (53)
where DEM : R2 → R is the embedded terrain map and
vk ∈ R is the measurement noise. There is no analytic de-
scription of DEM, which is assumed to be obtained from an
embedded terrain map. In this paper, for reproducibility
purpose only, the terrain map is analytically generated by
the following equation, corresponding to the MATLAB R©

peaks() function plus a Fourier series:{
DEM(x, y) : R2 7→ R
z = peaks(qx, qy) +

∑6
i=1 ai sin(ωiqx) cos($iqy)

(54)
with ai = {300, 80, 60, 40, 20, 10}, ωi = {5, 10, 20, 30, 80, 150},
$i = {4, 10, 20, 40, 90, 150}, q = 3/(2.96×104) a scale fac-
tor, and peaks(x, y) = 200(3(1−x)2e−x

2−(y+1)2−10(x/5−
x3 − y5)e−x2−y2 − (1/3)e−(x+1)2+y2).

5.1 Simulations overview

In this section, the proposed BRPF algorithm is compared
to the SIR-PF (Gordon et al., 1993), the Monte-Carlo
Markov Chains (MCMC, Andrieu et al. (2010)) and the
BPF (Gning et al., 2013). The individual effects of the
two improvements presented in section 4 are numerically
illustrated, namely the box particles subdivision for resam-
pling (4.1) and the kernel regularization smoothing (4.2).



Table 2. Simulation configuration
Kinematics Value
Initial position [−3.0,−19.2, 1.1]× 103m
Initial velocity [211.5, 215.3, 0]m/s
Initial state estimate [1.0, 1.0, 0.1]× 103m
uncertainty (st.d.) [3.0, 3.0, 1.0]m/s
Actual process noise (st.d.) [0.1, 0.1, 0.3]m

[1.45, 2.28, 11.5]× 10−2m/s
Time-step dt 100 ms
Final time T 100 s
Measurements
Radar-altimeter error (support) vk ∈ [−45,+45] m
Radar-altimeter update rate ∆tRA = 100 ms
BPF and BRPF
Resampling coefficient θeff 0.7
Normalization parameter λ 0.5
Process noise None
SIR-PF
Resampling coefficient θeff 0.5
Process noise [10, 10, 1]m
(standard deviation) [1, 1, 1]× 10−1m/s
MCMC
Burn-in samples 5N
Process noise [10, 10, 5]m
(standard deviation) [1, 1, 10]× 10−1m/s

Table 3. Simulation results (final time-step)

SIR-PF MCMC BPF BRPF
N 5×104 5×103 103 103

µ - - - 0 0.1 0.3
RMSEx (m) 404 292 171 121 100 99
RMSEv (m/s) 3.7 5.5 3.2 2.8 2.6 2.2
σx (m) 71 187 482 217 207 148
σv (m/s) 4.1 8.6 4.6 4.0 3.8 3.5
Resamp. rate (%) 20 - 2 2 2 3
Div (%) 4 15 0 0 0 1
Time (ms) 123 356 11 33 33 33

Table 2 describes the simulation parameters. The num-
ber of particles for each filter was chosen to get a simi-
lar computation load. The computation time is obtained
on a 1600 MHz CPU running MATLAB R©. A hundred
Monte-Carlo simulations are run. The first evaluation cri-
terion is the Root Mean Square Error (RMSE) defined
by RMSEχ(k) =

√
1

NMC

∑NMC

j=1 ‖χ̂k,j − χk,j‖2, where NMC =
100 is the number of runs. Vector χ̂k,j stands for esti-
mate position or velocity at time-step k for run j. Vector
χk,j stands for actual vector to be estimated. The second
evaluation criterion is the mean estimate uncertainty, de-
fined by σχ(k) = 1

NMC

∑NMC
j=1 ‖σ̂

j
χ(k)‖ ∈ R3, where σ̂jχ(k)

contains the diagonal coefficients of the square root of
P̂
j

χ(k), with P̂
j

χ(k) ∈ R3×3 the considered filter estimate
covariance confidence of vector χ = pk or χ = vk (po-
sition or velocity) for simulation j at time-step k. The
third criterion is a divergence counter (%), defined by
Div(k) = 100

NMC

∑NMC
j=1 (‖x̂k,j − xk,j‖ > 3σx(k)).

5.2 Numerical results

Fig 2 shows the individual effects of each improvement
(variance-based box particle subdivision in green and ker-
nel smoothing regularization in red) on the RMSE crite-
rion in comparison to the original BPF (black curve). The
variance-based box particle resampling presented in 4.1
allows the filter to restrict its uncertainty and results in a

Fig. 2. RMSE for BPF and for two configurations of BRPF

Terrain 
elevation 
(m)

Actual state
Estimate
Box Particles
Hull box

t = 5 s t = 30 s

t = 60 s t = 80 s

Fig. 3. BRPF simulation example at different times-steps.

lower error (green curve). The kernel smoothing regular-
ization presented in 4.2 helps to converge more accurately.
The combination of these modifications results in a lower
estimation error (red curve). Figure 3 illustrates the filter’s
behavior for one run (BRPF, µ = 0.3).
Table 3 presents the performance obtained with SIR-PF,
MCMC, BPF, and BRPF for several values of µ. For a
similar RMSE order of magnitude, the SIR-PF requires
50 times more particles than the BPF, which yields a
significantly higher computation time than the BPF and
the BRPF. The MCMC method appears more accurate
than the SIR-PF with less samples but requires a higher
computational load due to the burn-in period (see Andrieu
et al. (2010)). SIR-PF and MCMC require a greater
computation time per time-step than the desired 100 ms
time-step imposed by the measurement rate (10 Hz).
With a computation time of only 11 ms and 33 ms, the
BPF and the BRPF yield a significantly lower RMSE.
BPF and BRPF also produce a lower divergence rate
(≤ 1%) than the other methods. This illustrates their
ability to robustly tackle real-time applications with non-
linear measurements. However, the original BPF yields
a conservative final covariance (σx = 482 m and σv =
4.8 m/s). As expected, the results obtained using the
covariance-based subdivision resampling strategy (BRPF
with µ = 0) are more accurate and less conservative



than those obtained using the random subdivision strategy
(BPF), resulting in a lower RMSE (121 m versus 171 m)
and a lower estimation confidence (217 m versus 482 m).
The use of the Kernel Smoothing strategy µ > 0 makes it
possible to enhance the estimate accuracy (for µ = 0.1
and µ = 0.3 the RMSE falls from 121 m to 99 m in
position and from 2.8 m/s to 2.2 m/s in velocity). As
a result, BRPF appears to be able to tackle ambiguous
measurements (non-injective observation model) in a more
accurate way than previous approaches while meeting real-
time requirements.

6. CONCLUSION

In this work, a state estimation algorithm named Box
Regularized Particle Filter (BRPF) is introduced. The
algorithm description is more general than the ones pre-
sented in previous box particle filters approaches, in terms
of dynamical model, observation model and involved un-
certainties (Section 3). Two main improvements are in-
troduced in the BPF classic formulation (Section 4). The
first one provides a general way of subdividing the box
particles during the box resampling step (Section 4.1).
This formulation is analytic and deterministic. It can be
applied to any dynamical and observation models. It leads
the box particles to take the shape of the smallest ex-
pected variance. As a result, the estimation accuracy is
significantly improved compared to the original BPF (see
Section 5). The second one is a stochastic posterior kernel
smoothing method (Section 4.2). It allows the estimated
state density to fit the theoretical state density in an
optimal way in the sense of the Mean Integrated Square
Error criterion. The performance enhancement resulting
from both contributions is demonstrated by numerical sim-
ulations on a very ambiguous and non-linear problem, the
Terrain Aided Navigation (see Section 5). Higher accuracy
is obtained by the BRPF compared to the BPF in terms
of Root Mean Square Error. It is also far more robust
than the conventional SIR-PF and the MCMC approach
in terms of divergence rate. As a result, BRPF achieves an
efficient trade-off between robustness and accuracy.

REFERENCES
Abdallah, F., Gning, A., and Bonnifait, P. (2007). Box

particle filtering for non linear state estimation using
interval analysis. Automatica.

Abdallah, F., Gning, A., and Bonnifait, P. (2008). Box
particle filtering for nonlinear state estimation using
interval analysis. Automatica, 44(3), 807–815.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Par-
ticle markov chain monte carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 72(3), 269–342.

De Freitas, A., Mihaylova, L., Gning, A., Angelova, D.,
and Kadirkamanathan, V. (2016). Autonomous crowds
tracking with box particle filtering and convolution
particle filtering. Automatica, 69, 380–394.

Gning, A., Mihaylova, L., and Abdallah, F. (2012a). Parti-
cle filtering combined with interval methods for tracking
applications. Integrated Tracking, Classification, and
Sensor Management: Theory and Applications.

Gning, A., Ristic, B., Mihaylova, L., and Abdallah, F.
(2013). An introduction to box particle filtering. IEEE
Signal Processing Magazine, 166–171.

Gning, A., Ristic, B., and Mihaylova, L. (2012b). Bernoulli
particle/box-particle filters for detection and tracking in
the presence of triple measurement uncertainty. IEEE
Transactions on Signal Processing, 60(5), 2138–2151.

Gordon, N.J., Salmond, D.J., and Smith, A.F. (1993).
Novel approach to nonlinear/non-gaussian bayesian
state estimation. In IEE Proceedings F (Radar and
Signal Processing), volume 140, 107–113. IET.

Higham, N.J. (1988). Computing a nearest symmetric
positive semidefinite matrix. Linear algebra and its
applications, 103, 103–118.

Jaulin, L. (2009). Robust set-membership state estima-
tion. Automatica, 45, 202–206.

Jaulin, L. (2001). Applied interval analysis: with examples
in parameter and state estimation, robust control and
robotics, volume 1. Springer Science & Business Media.

Li, T., Bolic, M., and Djuric, P.M. (2015). Resampling
methods for particle filtering: classification, implementa-
tion, and strategies. IEEE Signal Processing Magazine,
32(3), 70–86.

Luo, J. and Qin, S. (2018). A fast algorithm of simultane-
ous localization and mapping for mobile robot based on
ball particle filter. IEEE Access.

Maksarov, D. and Norton, J. (1996). State bounding with
ellipsoidal set description of the uncertainty. Interna-
tional Journal of Control, 65(5), 847–866.

Merlinge, N., Dahia, K., and Piet-Lahanier, H. (2016). A
box regularized particle filter for terrain navigation with
highly non-linear measurements. IFAC-PapersOnLine,
49(17), 361–366.

Musso, C., Oudjane, N., and LeGland, F. (2001). Improv-
ing regularized particle filters. Sequential Monte Carlo
Methods in Practice, 12, 247–271.

Neumaier, A. (1998). Solving ill-conditioned and singular
linear systems: A tutorial on regularization. SIAM
review, 40(3), 636–666.

Petrov, N., Gning, A., Mihaylova, L., and Angelova, D.
(2012). Box particle filtering for extended object track-
ing. In Information Fusion (FUSION), 2012 15th In-
ternational Conference on, 82–89. IEEE.

Piet-Lahanier, H. and Walter, E. (1994). Exact description
of feasible parameter sets and minimax estimation.
International journal of adaptive control and signal
processing, 8(1), 5–14.

Ristic, B. (2004). Beyond the Kalman filter: Particle filters
for tracking applications. Artech House, Boston.

Schweppe, F. (1968). Recursive state estimation: unknown
but bounded errors and system inputs. IEEE Trans. on
Autom. Contr., 13, 22–28.

Silverman, B. (1986). Density Estimation for Statistics
and Data Analysis. Chapman & Hall, London.


	Elsevier
	BRPFjournalPaper

