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Abstract 11 

Day lighting significance in architectural designs is well established for enhancing visual 12 

comfort, energy-efficiency and low carbon buildings development. Practicing the atrium 13 

element in the modern architectures has been increasingly popular in recent years because of 14 

the fact that the transitional space with good environmental elements can improve the quality 15 

of the buildings and reduce extra energy utilisation. The present study explores the advantages 16 

and effect of atrium on the energy performance of small buildings, a case study of 'The Azuma 17 

Row House'. Based on local micro-climate data Autodesk Ecotect Analysis was performed to 18 

calculate the daylight factors and the energy demand of the building.  A comparison was made 19 

with atrium and without atrium in the building to evaluate overall energy savings. The results 20 

show a higher annual heating energy demand with atrium 3,443 kWh compared without atrium 21 

2,526 kWh. The annual cooling energy demand without atrium 2,516 kWh is significantly 22 

greater than with atrium 912 kWh. The total energy requirements under no atrium case is about 23 
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5,042 kWh which is considerably higher than the total annual energy demand with atrium 4,355 24 

kWh. The total amount of energy saved is about 15.7% per year by introducing the sunlight 25 

through the atrium. Along with the increasing issue of the energy crisis, environmental problem 26 

and the beautiful design of atrium, the development of atrium in modern architecture designing 27 

is feasible to have a good future. 28 

 29 

Keywords: Sustainable Energy, Low carbon buildings, Solar energy, Atrium, Transitional 30 

spaces, Simulation and Autodesk Ecotect. 31 

 32 

1. Introduction 33 

Buildings are responsible for a large amount of energy consumption because of heating 34 

ventilating, and air conditioning (HVAC) systems [1-3] for different weather conditions during 35 

the year. This energy is mostly coming from fossil fuels such as coal, oil and natural gas. 36 

According to predictions, the energy consumption in this sector continues to increase [4] and 37 

this increase will clearly raise the global carbon dioxide (CO2) emissions. Energy saving 38 

technologies have, therefore, become more popular from last few decades with decreasing the 39 

energy sources and increasing the negative effect of CO2. Additionally, reduction of the energy 40 

using in buildings is to utmost importance in achieving to reduce CO2 and other GHGs 41 

emissions [5]. The atrium has become a popular architecture form to bring sunlight into the 42 

building and to enhance the sense of spaciousness [4, 6-8]. In the construction industry, it can 43 

be predicted that the atrium could have a good developing foreground in future. 44 

 45 

The atrium is a transitional space widely used in the architecture design. The design feature 46 

Atria gives a "feeling of space and light" in a building. The atrium was introduced in the 19th 47 

century, with the industrial revolution in iron and glass manufacturing techniques. It became a 48 

popular practice after 1970's energy crisis [9]. Nowadays, the modern architecture designers 49 
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practice the atrium widely in large-scale commercial buildings. Despite the aesthetic 50 

advantages other potential benefits of this feature are low carbon, energy saving, solar gain and 51 

natural ventilation. It is, therefore, considered that the good characteristics of the atrium can 52 

save energy consumption and can widely be used in the modern world’s buildings [6]. In the 53 

19th century, the atrium in buildings appeared for the first time, due to the progress of 54 

construction technology in the manufacturing [9]. Then in the 20th century, Sharples and Lash 55 

[9] considered that the atrium has lost some concerns, perhaps because of the increasing 56 

attention on lighting potentialities and air conditioners. However, after 1970’s energy crisis, 57 

atrium again attracted by lots of people due to its sustainable advantages [9]. In recent years, 58 

designing of the atrium in modern architecture has become very popular at small and large-59 

scale commercial buildings [10]. 60 

 61 

There are many key factors which influence the energy performance of atrium building such 62 

as; the geometric shape of the atrium, orientation to the sun, penetration of daylight into 63 

adjoining space, reflectivities of the atrium’s surface and transmittance of the atrium roof and 64 

latitude [4, 11-15]. These parameters should be carefully considered to design an effective 65 

energy saving atrium. Previous studies revealed that atrium geometry has a strong relationship 66 

with the daylight factor [4, 12, 16-18]. Aizlewood and Maurice [19] have documented the 67 

several forecasting techniques to assess the average of the daylight factors and also mentioned 68 

the significance of atrium position in the building. The atrium position is a critical characteristic 69 

for the quantification of a complex daylight factor, i.e. the daylight of the atrium spaces and its 70 

adjacent spaces [20]. Latitude has a significant effect on solar radiations an through atrium in 71 

buildings. The optimum tilt angle of the roof can be changed in different latitude in order to 72 

get required solar radiation which is confirmed in previous literature [21, 22]. 73 

 74 

In fact, the design and location of the atrium are based on the local climatic conditions, 75 



4 

 

 

expectations of thermal comfort level, building function and the experiments of architecture. 76 

Aldawoud [4] has investigated the response of different atrium forms and geometries in under 77 

various conditions. The results of the study demonstrate that the total energy consumption is 78 

significantly affected by the shape of the atrium. According to Moosavi et al. [18], the most 79 

important objective of the atrium is for daylight factor and ventilation. In addition, Moosavi et 80 

al. [18] have also pointed out that the atrium position and shape design in a building is the main 81 

factor which determines the advantages of the atrium in the building environment. Different 82 

shapes of the atrium are categorised as; centralised, semi-enclosed, attached and linear as 83 

shown in Fig. 1.  84 

 85 

 86 

Fig. 1. Four different general forms of  atrium; (a) Centralised, (b) Semi-enclosed, (c) Attached and 87 

(d) Linear [23]. 88 

The atrium position in the building is the main factor which determines the advantages of the 89 

atrium in the building environment. Ahmad [24] has mentioned that the horizontal top-lit form 90 

atrium is not suitable for tropical regions. Furthermore, Ghasemi et al. [13] have assessed the 91 

daylight performance in the adjacent spaces of the vertical top-lit atrium in the tropical climate 92 

regions with reference to Malaysia. The findings demonstrate that by providing sufficient 93 

daylight in the adjacent spaces of the vertical top-lit atrium, a model of the atrium with atrium’s 94 

section aspect ratio 1, atrium’s plan aspect ratio 1/3, and 3/8 atrium clerestory to atrium height 95 

is the most proper model of atrium [13]. 96 

Atrium Atrium Atrium Atrium

(a) (b) (c) (d)
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 97 

Different kinds of daylight factors distribution in the atrium have a relationship with a 98 

geometrical shape index [17]. Kim and Boyer [16] presented relationships and dependencies 99 

between the centre of the daylight factors in open atrium spaces and atrium shapes. Aizlewood 100 

[19] pointed out several forecasting methods and techniques to assess the average of the 101 

daylight factors, as well as considered the parameter influences within the daylight of the 102 

atrium spaces and its adjacent spaces. It is always complex and hard to predict that the daylight 103 

of the atrium in a building. The atrium as a transition space not only presents the atrium space 104 

itself but also offer natural light to adjacent spaces [20]. Through exchanging inside and outside 105 

air, the building atrium also offers natural ventilation and daylight [25]. 106 

 107 

Buildings consume a lot of energy and resources, the atrium is the main potential source to 108 

offer daylight into buildings and provide other environmental factors; such as the reduction of 109 

energy consumption, solar gain and natural ventilation. The present study investigates the 110 

benefits of the atrium in small buildings and to explore main characteristics of the atrium which 111 

lead to energy saving. The focus is given to the linear shape atrium to investigate the advantages 112 

of the atrium, as well to know how much energy could be saved through introducing sunlight 113 

through atrium by using a sample case of the Azuma Row House (Osaka, Japan). Furthermore, 114 

the study evaluates the effect of the atrium on the energy consumption and demand of the 115 

building. Autodesk Ecotect tool has been employed to calculate the average Daylight Factor 116 

(DF) and to analyse the energy demand of this unique style of architectural practice. “Ecotect 117 

was developed by Square Research Ltd and Dr Andrew Marsh. Ecotech software is an energy 118 

simulation tool and it is compatible with BIM software, for example, Autodesk Revit 119 

Architecture.  Several studies are carried out which demonstrated high accuracy of Ecotect 120 

simulation to perform preliminary building energy performance analysis [26, 27]. It offered a 121 

wide variety of simulation and building energy functionality analysis which helps to visualize 122 
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and simulate building performance especially day lighting simulation. The software for 123 

analysis combines an intuitive 3-D design interface with the performance analysis function set 124 

the interactive display of information[28]. This also provides Acoustic, thermal and lighting 125 

analysis. It includes monthly space loads, acoustic reflection, the impact of environment, cost 126 

of the project and artificial/ natural lighting level [29]. Although its modelling and analysis 127 

capabilities handle geometry of any complexity and size, the main advantage is to focus on 128 

feedback at an initial stage of building process design. In addition to the table and standard 129 

graph based reports results of the analysis can be mapped over the surfaces of the building and 130 

can be directly displayed within the spaces such as spatial and volumetric results analysis 131 

visualization. In building Ecotect simulation helps in achieving design by different 132 

architectural practices, in turn, reducing global warming potential. Secondly, it also helps in 133 

reducing building operating cost [30]. Since the release of 5.6 versions, Ecotect added the 134 

support for gbXML and IFC schemas. Ecotect can import CAD software like Revit, 3Ds Max 135 

and AutoCAD. It exports to a wide range of other programs and is supported by GBS, Energy 136 

Plus and Equest [31]”. The results provide very useful findings to compare energy consumption 137 

in the Azuma Row House with atrium and no atrium under the same circumstances. This study 138 

is a good example to demonstrate the energy saving and sustainability in small and narrow 139 

houses buildings.  140 

 141 

2. Methodology and data analysis 142 

The experimental program was divided into a few analysing steps. Initially, the time duration 143 

and mode of the daylight enters the interior spaces were analysed. The daylight factor was 144 

tested in the overcast sky of the whole year. The energy consumption of the Azuma Row House 145 

with the factor of the atrium was measured. Design modifications were then carried out by 146 

adding a roof at atrium position and measuring the energy consumption without atrium. The 147 

Ecotect Analysis tool was employed to calculate daylight factor, illuminance level and energy 148 
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consumption by incorporating a global weather information database [32]. 149 

 150 

2.1 The daylight factor 151 

Daylight Factor (DF) is the most common index and easy to measure the light in buildings. It 152 

is the instant proportion of inside light level in the measuring points, to the outside light level 153 

in the same horizontal plane under a standardised CIE overcast sky [11] and is defined as 154 

follows: 155 

 156 

(%) ( )*100di

do

E
DF

E
                (1) 157 

where 
diE = indoor horizontal illuminance measured under the diffuse sky and 

doE  is outdoor 158 

horizontal illuminance from the diffuse sky from the diffuse sky. 159 

 160 

The daylight factor is used in building and architecture design not only for evaluating the 161 

interior natural daylight illuminance on the surface but also for ensuring whether there will be 162 

enough space for habitats to do their normal works [11]. It is a complex and repeated process 163 

to calculate the daylight factor, and thus it is necessary to use some software products, such as 164 

Ecotect, Radiance, DAYSIM and DIVA. These are a set of tools to present daylight simulation, 165 

including renders and many other features to measure simulated daylight levels. In these tools, 166 

radiance is one of the most popular and powerful daylight simulation products [33]. 167 

More specifically, radiance should be able to predict the internal luminance and illuminance 168 

distributions in any sky conditions, and it has been widely validated during the past 20 years 169 

[7]. Ecotect simulates the performance of building with the context of the environment. The 170 

Ecotech inbuilt tools are used to present daylight simulation, including renders, radiance and 171 

many other features to measure simulated daylight levels [7, 33].  172 

 173 
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The daylight factor is often measured in an artificial sky or under an overcast day [11]. 174 

According to the British Standards Institution (BSI, BS 8206) [34], when a space with an 175 

average daylight factor of less than 2% is considered as dim and dark, it means most of the day 176 

needs electric lighting. When the daylight factor is between 2% and 5%, there is a good balance 177 

between thermal and lighting aspects, as well as a little or no additional lighting is required 178 

during the daytime, moreover, supplementary artificial lighting is necessary. When the average 179 

value of the daylight factor is more than 5%, space appears strongly light, it seldom needs to 180 

use artificial lighting during the daytime. 181 

 182 

Three simple steps to estimate and calculate the daylight factors in the centre of the atrium 183 

spaces are as follows [35-38]:  184 

 185 

First, compute the Well Index (WI) by considering the represented values of 186 

height, width and length of the atrium. 187 

 188 

*( )* *
2

width length
WI height length width


           (2) 189 

 190 

Second, compute the horizontal DF (%) for unglazed roof. (Open atrium without roof). 191 

100* WIDFunglazed e                (3) 192 

 193 

Third, estimate the transmission factor (ρ) for a glazed roof and multiply the calculated DF 194 

with it. 195 

*DFglazed DFunglazed                 (4) 196 

 197 

2.2 The Azuma Row House 198 

The Azuma Row House (also known as Sumiyoshi by Japanese) was designed by Tadao Ando 199 
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in Osaka, 1976 [39, 40]. The Azuma Row House is located in Osaka. The latitude and longitude 200 

of Osaka are 34° 40' 0" N and 135° 30' 0" E respectively. The house is a narrow concrete 201 

rectangular house with covered area 70 m2, with rooms back and forth connection through the 202 

outdoor bridge. The floor plan of the house and the sun lights which pass through the atrium 203 

are illustrated in Fig. 2. There is a living room, a kitchen-dining room on the ground floor, 204 

separated by an external atrium and stairs to the two bedrooms on the floor above. The central 205 

atrium space is the sole source of natural daylight throughout the whole house. It is a small and 206 

narrow house in a rectangle area, with rooms back and forth connection through the outdoor 207 

bridge in the centre of the atrium. The Azuma Row House is chosen in the present study to 208 

highlight the effectiveness of atrium at small scale level where space is limited.  209 

 210 

    211 

 212 

Fig. 2. The Azuma Row House floor plan and sunlight distribution [39, 40]. 213 

 214 

An external atrium is located in the central space between the rooms. It is a linear-shaped atrium 215 

type. There are three reasons to choose the Azuma Row House to test the daylight factor and 216 

to calculate the energy saving for the atrium. Firstly, Tadao Ando is an architect of light, 217 

sun

sunsun

Ground Floor

First Floor

Atrium
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focusing on using natural light and ventilation for his architecture design. The second reason 218 

is that the Azuma Row House contact with light, rain, air and other natural elements. Almost 219 

the whole daylight goes through the atrium spaces, however, the one through several small 220 

windows is quite small. The last reason is that there is no air-condition in the simple and narrow 221 

house. Moreover, the Azuma House as a researching sample is easier to test and more 222 

convenient to analyses the importance of atrium in energy saving as compared to other modern 223 

buildings with an atrium. 224 

 225 

2.3 Testing and calculations 226 

The testing can be divided into few steps as; the first step is to use Ecotect for analysing when 227 

and how long the daylight enters the interior spaces under the condition of no change. The 228 

second step is to calculate the energy consumption of the Azuma Row House with or without 229 

the factor of the atrium in this testing. With the purpose of research, the role of this atrium, a 230 

roof which can prevent daylight through Azuma Row house has been made in this atrium. In 231 

this way, it can be calculated how much energy should be used under the condition of a roof 232 

and without a roof. Autodesk Ecotect Analysis with a comprehensive concept-to-detail method 233 

is architectural design software to analyse sustainable building design. The tool is applied to 234 

calculate daylight factor and illuminance level at any point through the model, as well as to 235 

calculate the energy use of the whole building on annual, monthly, daily and hourly basis. 236 

 237 

2.4 Distribution of daylight factor 238 

The Azuma Row House is located in Osaka, Japan. The latitude and longitude of Osaka is 34° 239 

40' 0" N and 135° 30' 0" E respectively. According to the latitude, it is easy to present solar 240 

angle in different seasons and different time using Sun-Path Diagram, as shown in Fig. 3. The 241 

Azuma Row House was roughly divided into four main areas, respective to measure the 242 

daylight factors of these four rooms on an overcast day. 243 
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 244 

Table 1. The solar angle during different seasons and time in Osaka [41]. 245 

Seasons      Day 8:00 12:00 16:00 

Summer solstice 21st June  37.2°  78.6°  37.0° 

Vernal equinox  21st March  23.1°  54.9° 23.1° 

Winter solstice  21st December  9.3°  31.7°  7.9° 

Autumn equinox  21st September  26.6°  56.1°  23.1° 

 246 

 247 

 248 

Fig. 3. Sun-path diagram in Osaka along with solar angles during different seasons and times [41, 42]. 249 

 250 
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3. Results and discussion 251 

3.1 Daylight factor analysis 252 

Fig. 4 illustrates the distribution of daylight factor in the interior spaces based on the local 253 

weather data analysis. From Fig. 4(a), the first analysis grid it can be seen that the average 254 

value of the daylight factor is about 6.30% DF, which is more than the average daylight factor 255 

mentioned on the British Standard (BS 8206) [34]. The institution mentioned that the average 256 

DF should be at least 2%. If the average daylight factor in a space is at least 5% then electric 257 

lighting is not normally needed during the daytime, provided the uniformity is satisfactory [34, 258 

43]. Then in Fig. 4(b), the second analysis grid shows that the average value of the daylight 259 

factor is about 5.54% DF in the room, which is located at the front of the building. Although 260 

the value is slightly less than the back room still it is not necessary to use artificial lighting on 261 

most of the daytime. In this testing, the value range of the daylight factor is from 0.0% to 15.0%. 262 

 263 

 264 

Fig. 4. The distribution of DF at a height of 800 mm above the ground floor; (a) Behind the building, 265 

(b) Front of the building. 266 

(a) (b)

Average Value: 6.30 %DF, Visible Nodes: 320

Analysis Grid
RAD Daylight Factors

Range: 0.0-15.0 %DF

Average Value: 5.54 %DF, Visible Nodes: 320

Analysis Grid
RAD Daylight Factors

Range: 0.1-40.1 %DF
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 267 

Fig. 5. The ground floor room arrangement rendering in Ecotect; (a) Behind the building, (b) Front of 268 

the building. 269 

The contour lines for ground and first floors are presented in Fig. 5 and Fig. 7, respectively. 270 

The different colours of the contour lines represent different levels of daylight factor. The blue 271 

contour lines represent the lowest daylight factor, on the contrary, the red contour lines 272 

represent that the highest daylight factor. Although there is an uneven distribution of the 273 

daylight factor, it can still be found from the figure the light source mainly comes from the 274 

atrium and small low-level windows. 275 

 276 

Similarly, Fig. 6 indicates the daylight factor distribution in the first floor spaces at the height 277 

of 800 mm. From the analysis grid Fig. 6(a), it can be seen that the average value of the daylight 278 

factor is about 8.82% DF, which is strongly light and it seldom needs to use artificial lighting 279 

during the daytime as it is much higher than the standard average DF mentioned in BS-8206 280 

[34, 43]. Then the analysis grid Fig. 6(b) shows that the average value of the daylight factor is 281 

about 5.05% DF for the room which is located at the front of the building at first floor. Although 282 

the values are less than the back room, it is still unnecessary to use artificial lighting on most 283 

of the daytime. In this testing, the daylight factor values range from 0.0% to 20.0%. 284 

 285 

(a) (b)
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 286 

Fig. 6. The distribution of DF at the height of 800 mm above the first floor; (a) Behind the building, (b) 287 

Front of the building. 288 

 289 

Fig. 7. The room of the first-floor arrangement rendering in Ecotect; (a) Behind the building, (b) Front 290 

of the building. 291 

 292 

The average daylight factors computed for front and behind rooms at ground floor were 6.30% 293 

and 5.54% DF respectively, while 8.82% and 5.05% DF at first floor. The analysis shows that 294 

there is 40% more daylight on the first floor i.e. on the front room. According to BSI, the range 295 

lies between the theoretical limits specified to use extra light energy (i.e. DF<2% considered 296 

(a) (b)

Average Value: 8.82 %DF, Visible Nodes: 320

Analysis Grid
RAD Daylight Factors

Range: 0.0-20.0 %DF

Average Value: 5.05 %DF, Visible Nodes: 320

Analysis Grid
RAD Daylight Factors

Range: 0.0-20.0 %DF

(a) (b)
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dim and dark) [34, 43, 44]. Therefore, even in the overcast day, it is not necessary to use extra 297 

artificial lighting during the daytime and to reduce energy consumption.  298 

 299 

3.2 Heating and cooling energy demands  300 

All of the results from Ecotect simulation (radiances) have been analysed and interpreted. The 301 

testing comes out mainly from the illustrated heating and cooling energy demand of the whole 302 

year with or without atrium in the Azuma Row House. These results help to predict that how 303 

much energy can be saved by constructing atrium as a major source of daylight. Firstly, Fig. 8 304 

displays result under the condition of no atrium, the heating and cooling loads for the whole 305 

building from January to December, measured in Watts (W). The red bars represent when need 306 

to be heated and blue bars represent when need to be cooled. The total heating (red) and cooling 307 

(blue) energy being used by the building. In addition, each bar is divided into two parts, the 308 

dark brown bit is for the whole ground floor of the building and the light brown bit is on the 309 

first floor of the building.  310 

 311 
Fig. 8. Annual heating and cooling energy demand with no atrium. 312 
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One thing should be concerned, the house is heated if the interior temperature is below 18 °C 313 

and cooled if the temperature is above 26 °C. It can be seen that the energy requirement for the 314 

first floor is observed higher than the ground floor for each month during the year. The total 315 

annual energy demand for heating and cooling for the whole building is about 5,042 kWh, 316 

which is separately 2,526 kWh for the heating and 2,516 kWh for the cooling. The highest 317 

energy demand month for heating is January, total 675 kWh, and for cooling in August, about 318 

820 kWh. Moreover, July is also the second highest energy demanding months of the year, 319 

about 760 kWh. As the first month of the year, January is the coldest month and need the 320 

highest energy requirement and the seventh month of the year, July, is one of the hottest months. 321 

It is clearly understandable high energy requirement in these months.  322 

 323 

As for the case with atrium, Fig. 9, the heating and cooling loads for the whole building from 324 

January to December, measured in watts (W). Likewise, red represents a heating load while 325 

blue represents a cooling load. The energy demand in a year for heating and cooling in this 326 

whole building is about 4,355 kWh, which is separately 3,443 kWh for the heating demand and 327 

912 kWh for the cooling demand under the case of the atrium.  328 

 329 

Fig. 9. Annual heating and cooling energy demand with an atrium. 330 
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 331 

Although the total annual energy demand for heating under no atrium is 2,526 kWh which is 332 

little less for the condition with atrium 3,443 kWh total annual energy demand for cooling 333 

under no atrium is 2,516 kWh which is considerably greater than energy demand with atrium, 334 

912 kWh. The possible reason behind this is the heat gains are not too much in the atrium space 335 

during the cooling term. This may be considered that the exterior air temperatures are higher 336 

during the whole year and heat loss does not occur. As a result, the demand of the heating load 337 

is relatively lower. Additionally, whereas the energy requirement for the first floor dramatically 338 

decreased with the atrium case, it increases for the ground floor. This might be explained by 339 

atrium position; while the top of the atrium receives direct light, the ground floor receives much 340 

more reflected light rather than direct light as mentioned also by Aschehbough [45]. Moreover, 341 

internal obstructions of the house such as walkways and flight of stairs can significantly reduce 342 

the daylight available in the ground floor [43]. However, Samant concluded that a progressive 343 

increase in the number of openings from upper to the lower floors can lead to higher DFs 344 

available at the ground floor [46]. 345 

 346 

Based on the tested data from Ecotect shown in Fig. 8 and Fig. 9, the energy consumption 347 

analysis for both cases, with and without atrium is presented. It is clear that the no atrium case 348 

consumed more energy as compared to the atrium case especially in the Summer solstice (21st 349 

June). Furthermore, the energy requirements for the first floor without atrium case is also 350 

higher than that with atrium case in the other terms; the Autumnal equinox (22nd September), 351 

Vernal equinox (21st March) and Winter solstice (21st December). On the other hand, during 352 

Winter solstice, the energy demand for the ground floor with atrium case is much higher than 353 

without atrium case. As a result, although the energy demand of the total annual for heating 354 

under no atrium is 2,526 kWh is slightly less than energy demand in the condition with atrium 355 

3,443 kWh. The total annual energy demand for cooling under no atrium is 2,516 kWh which 356 
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is significantly greater than energy demand with atrium 912 kWh. If there is no atrium, the 357 

annual heating and cooling energy demand is about 5,042 kWh. This value is considerably 358 

higher than total annual energy demand with atrium 4,355 KWh.  359 

 360 

3.3 Energy savings 361 

The energy savings are computed on monthly basis and are represented in Fig. 10. It can be 362 

observed that during cooling period from June to October, it is possible to save quite a lot of 363 

energy such as; 500% in June, 120% in July, 110% in August, 220% in September and 20% in 364 

October. As mentioned by Moosavi et al [18], atria and courtyards are commonly embedded 365 

in some buildings for natural ventilation and cooling purposes. It is clearly seen from this 366 

research the atrium on the Azuma Row House has non-negligible results on the energy saving 367 

for this purpose. However, during the heating term from November to May, the energy saving 368 

is on the negative side. As previously indicated, the measurements are taken in the real atrium 369 

of the Azuma Row House, which served as a model, confirms the effectiveness of the presence 370 

of the atrium as compared to the no atrium case. The energy performance of the atrium is much 371 

better at its first floor where more optimal conditions are produced.  372 

 373 

As the solar angle during the winter solstice is the lowest as compared with other terms. 374 

However, the annual heating and cooling energy demand for the no atrium case is 687 kWh 375 

which is high as compared with the atrium case for the whole year. The probable reason for 376 

that is the heat gains are not too much in the atrium space. This may be considered that the 377 

exterior air temperatures are higher during the whole year and heat loss does not occur. As a 378 

result, the demand of the heating load is relatively lower. 379 

    380 
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   381 

Fig. 10. Total energy saving in the case of with atrium on monthly basis. 382 

 383 

A simple atrium can save about 687 kWh, the building energy for a whole year. In other word, 384 

nearly 15.7% of the total energy of the building can be saved every year. Therefore, the atrium 385 

is effective to save an overall energy of the building, although the saving is small it could be 386 

improved by introducing different location, shape and size of the atrium with respect to the 387 

architectural design of the building. However, it may have negative effects on the annual 388 

energy demands if the location or climate changes. In addition, the results are tested by a model 389 

which is making by sketch-up, the predicting daylight factor of the atrium area sometimes can 390 

be uncertain and inaccuracy. Furthermore, the consequence may differ under different forms 391 

and structures of buildings. For example, there are different shapes of the atrium, centralized, 392 

semi-enclosed, attached, and linear etc. [18]. Therefore, for the better performance or higher 393 

energy savings, the characteristics of these different shapes of atriums under different weather 394 

conditions could be studied. 395 

 396 
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4. Conclusions 397 

In the present study, the Azuma Row House is taken as the model structure and tested under 398 

atrium and no atrium conditions as a sustainable energy-saving alternative. Nevertheless, 399 

atrium plays an important role in Architecture designing, especially in daylight factor and 400 

energy saving.  Ecotect (Radiance simulation) is used to calculate and evaluate the daylight 401 

factors. The results showed that atrium has great importance in energy savings and reduce 402 

carbon footprints. The atrium can bring sunlight into the interior space of the building to reduce 403 

the usage of artificial lighting. Under atrium conditions, the ground floor daylight factor of 404 

indoor spaces at behind and front of the building is about 6.30% and 5.54% respectively. 405 

Whereas first-floor daylight factor at behind and front of the building is about 8.82% and 5.05% 406 

respectively, satisfying the requirement of the function for occupancy. The mentioned above 407 

the average value of the daylight factor is more than 5%, space appears strongly light, and it 408 

seldom needs to use artificial lighting in the daytime. Therefore, it is can be considered that the 409 

energy conservation decreased without using artificial lightings. The energy demand is 410 

calculated for linear shaped atrium by using the Ecotect. The overall average energy savings 411 

of the Azuma House is about 15.7%. However, future research could be focused on the other 412 

characteristics of the atrium. These may contain the shape of the atrium, the attitude of the 413 

building, the climate around the building and so on. Along with the increasing issue of the 414 

energy crisis, environmental problem and the beautiful design of atrium, the development of 415 

atrium in modern architecture designing is conceivable to have a good future.  416 

  417 
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