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Abstract 
 

This paper describes a two-step method to prepare novel copper-methanol nanofluids 

capped with a short chain molecule, (3-Aminopropyl)trimethoxysilane (APTMS).  

Two commercial nanopowders were dispersed at various powers using a 20 kHz 

ultrasonic probe into solutions of methanol and the capping agent.  Ultrasonic energy 

input was measured by calorimetry with z-average diameters, intensity and number 

size distributions recorded by a dynamic light scattering technique.  The stability of 

the dispersion was monitored visually, and quantified by recording the zeta potential. 

Dispersions of the bare powder were used as a control. Absorption spectroscopy was 

used to confirm the presence of the capping agent. The thermal conductivities of 0 to 

10 % wt./vol. (1.1 % vol.) dispersions of the capped copper-methanol nanofluid were 

determined using a C-Therm analyzer. Optimum ultrasonic de-agglomeration 

conditions gave dispersions with a z-average particle size of  < 200 nm and a PdI of < 

0.2. The capped particles showed good stability; up to six months in some instances, 

and an average zeta potential of + 38 mV was recorded.  The thermal conductivity of 

the nanofluid increased with concentration, and an enhancement of 9% over the base 
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fluid was found at 10 % wt./vol. (1.1% vol.). This innovative work has demonstrated 

the ultrasonic preparation and stability of copper nanoparticles protected with 

APTMS; a short chain molecule which binds to copper and prevents oxidation.  The 

protected particles can enhance the thermal conductivity of methanol with no 

interference from the capping ligand.  

Keywords: copper nanoparticles; methanol; nanofluids; nanorefrigerant; particle size; 

thermal conductivity; thermofluids; ultrasonic dispersion; zeta potential. 

1. Introduction 

 

Many engineering applications, such as refrigeration, direct solar collectors [1], 

automobile radiators [2] and the cooling of central processing units in electronic 

systems [3] use heat exchangers to transfer heat between two or more fluids. Heat 

exchangers are a critical component of any system and should work efficiently.   

Although various methods have been used to improve their performance, success is 

often limited by the thermal conductivity of the transfer fluid.  

One possible method of enhancing thermal conductivity of fluids is to add 

particles with a high thermal conductivity to form a dispersion of the solid in the base 

fluid.  However when particle sizes are of the order of millimetres or micrometres, the 

suspensions are unstable, and the solids simply separate out and become ineffective.  

Because of their small size, nanoparticles offer a greater chance of producing stable 

dispersions. Since Choi et al. [4] conceived the concept of nanofluids, many 

researchers are working actively on nanofluid systems for heat transfer applications 

[5–8].  

Nanoparticle metal oxides are routinely added as additives to base fluids due to 

their relatively high thermal conductivity, low cost, and compatibility [9].  Typically, 

aluminium, copper, silicon, titanium, and zinc oxides have been studied and their 
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effect on thermal conductivity at different particle concentrations has been recorded 

[10–14] . Nanofluids containing base metals such as gold, silver and copper have also 

been prepared [15–17] . Copper is a relatively low cost base metal, with a very high 

thermal conductivity (401 W / m K), second only to silver, and is approximately one 

order of magnitude higher than copper oxide. Reported enhanced thermal 

conductivity values for copper range from 2 to 78% [8].   However, when metallic 

nanoparticles are introduced to a base fluid they often have poor stability.  Stability is 

a critical issue for nanofluids [18,19] and is considered to be one of most challenging 

factors limiting their practical use and further development. 

For metals such as copper, dispersion stability can be improved by applying long 

chain surface capping ligands [20–22] or by the addition of  polymer dispersants 

[23,24].  This can be achieved through a one or two-step preparation method [25]. 

Ultrasonication is regarded as a critical part of  the two step process [25] and 

ultimately influences the quality and stability of the prepared dispersion. Ghadimi et 

al. [26]  reviewed ultrasonic experimental conditions  and Haddad et al. [18] reviewed 

methods for the preparation of aqueous, oil and ethylene glycol copper nanofluids. 

They stated that in all the copper preparation methods reviewed the nanofluids  were 

not stable for more than one month.  Graves et al. [27,28]  studied  the ultrasonic 

dispersion and particle size of bare and functionalised APTMS copper nanopowders 

in propan-2-ol, for applications in electronics manufacturing. The capped powders 

showed good dispersion characteristics and remained stable for long periods after 30 

min of ultrasonic dispersion with a z-average of 165 nm and a polydispersity value of 

0.17. 

This work investigates the use of methanol as a base fluid for capped copper 

nanopowders. Methanol has useful properties; it can provide good protection against 
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freezing and can be used in solar adsorption refrigeration systems. Previous work has 

reported on the thermal conductivities of  methanol / oxide systems [10,11,29] for 

various applications [30,31], and also reported enhanced thermal conductivities 

ranging from 10 to 30%. Capped copper nanopowder / methanol solutions have not 

been investigated. We report for the first time on the ultrasonic preparation; particle 

size; stability and thermal conductivity of APTMS capped copper nanoparticles in 

methanol. We have identified optimised ultrasonic processing conditions to produce a 

nanofluid which has demonstrated good stability and enhanced thermal conductivity.  
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2. Materials, Equipment and Methods 

 

2.1. Materials  

Copper nanopowders, unprotected, were purchased from two sources; 

SkySpring Nanomaterials Inc. (Product #:0800SJ, 25 nm Ø, 99.8% Cu, supplier 1) 

and Sigma-Aldrich (Product Code: 774081-5G, 25 nm Ø by TEM, supplier 2). 

Commercial powders were used to eliminate issues with product variation and to 

consider the potential for large scale use of the materials in any ‘end’ application.  

They were supplied in the form of dry powders contained in either sealed pouches or 

airtight glass containers. The copper particles were stored and dispensed in a nitrogen 

filled glove box. Methanol (high performance liquid chromatography grade, HPLC) 

was purchased from Fisher-Scientific and was used as supplied. The capping agent, 

(3-Aminopropyl)trimethoxysilane (APTMS), was supplied as a 97% liquid by Sigma-

Aldrich. Further material properties are listed in Table 1. 

2.2. Equipment 

 Micrographs of the powders were recorded using a Carl Zeiss 1530 VP field 

emission gun scanning electron microscope (FEGSEM). To prepare the samples, 

copper powder was brushed onto adhesive carbon supports placed on aluminium 

stubs. A 20 kHz Sonic and Materials Inc. VC 750 Ultrasonic Processor with a 

maximum electrical energy output of 750 W was used for dispersing the powders into 

methanol. The unit was fitted with a solid 1.3 cm diameter horn. The ultrasonic probe 

was calibrated with methanol using the calorimetry method [32].  HPLC grade 

methanol (100 cm3) was sonicated for 5 minutes and the temperature increase was 

recorded using a thermocouple-type thermometer. The experiment was repeated three 

times for each amplitude. Energy densities of 0.07, 0.18, 0.32 and 0.42 W cm-3 were 
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calculated at 20, 40, 60 and 80 % amplitudes respectively. Power intensities of 5, 14, 

24 and 32 W cm-2 were calculated for these amplitudes.  

The particle size of the dispersed nanofluid was measured using a Dynamic 

Light Scattering (DLS) instrument (Malvern Zetasizer NanoS). Z-average diameters 

(mean cluster size based on the intensity of scattered light), intensity and number 

based size distributions were recorded. Each measurement consisted of 12 runs and 

there were three measurements automatically taken for each sample. A material 

absorption value of 1.00 was used for copper. Zeta potential measurements were 

measured by Electrophoretic Light Scattering (ELS) using a Malvern Zetasizer Nano 

ZSP. Preparation solutions were visually inspected every 24 hours and photographs 

taken to monitor stability. A Shimadzu UV-1800 UV/VIS spectrophotometer was 

used to confirm the presence of nanoparticles.  

The thermal conductivities of nanofluid dispersions were measured using a C-

Therm TCi Thermal Conductivity analyser by applying a known current to the 

sensor’s spiral heating element. The C-Therm MTPS method applied a low energy 

pulse for a very short time (0.8 s) so that the thermal conductivity measurement was 

not influenced by thermal convection.  Three readings were taken for each dispersion 

and the average calculated. The readings were recorded at 22ºC. Methanol and a 

standard foam were used as control samples. The precision of the C-Therm is ~ 1 %, 

while the accuracy of the measurements is < 4 %. 

2.3. Methods 

 A two-step preparation method (represented schematically in Figure 1.) was 

used to prepare bare and capped copper nanofluids using a similar procedure 

described in [27,28]. Typically, 0.1 g of copper nanopowder was added to 100 cm3 of 

methanol in a 150 cm3 tall glass beaker to produce a 0.1 % wt./vol. mixture. The 
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capped particles were prepared by adding APTMS (175 µL) to the methanol prior to 

the addition of the copper powder. A 20 kHz ultrasonic probe was used to disperse the 

particles. The capped nanoparticles were separated from any excess APTMS 

molecules by centrifugation. The supernatant was decanted; the remaining solid 

washed with methanol and the process repeated before a final ultrasonic treatment 

was applied. All samples were analysed by DLS and then transferred into glass vials 

for monitoring and thermal conductivity testing. 
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3. Results and Discussion 

 

3.1 Copper nanoparticle morphology 

 

SEMs of the ‘as supplied’ dry copper nanopowders are shown in Figure 2(a) and (b). 

The particles from both suppliers were of similar appearance; large irregular sphere 

shaped particles were observed, and sizeable clusters were present which were 

agglomerates of the primary particles. A primary particle size of 25 to 75 nm Ø was 

observed for the powder from supplier 1, Figure (a).  The results are very similar to 

those reported in [27]. The SEM image of the powder sourced from supplier 2 showed 

primary particles between 25 to 250 nm Ø, Figure (b). Both images presented a 

structure which was liable to disruption under sonication. The powder samples were 

sputter coated. Hence the mottled effect observed on the surface of the particles. 

3.2  Ultrasonic dispersion of bare and capped nanopowders 

Ultrasonic dispersion using a 20 kHz horn is very effective at de-agglomerating 

copper nanopowders. Protecting the copper surface, which is prone to oxidation, with 

a short chain molecule such as APTMS can be an effective means of capping the 

clusters and stabilising the dispersion [28]. APTMS is soluble in methanol and can be 

added to the base fluid before the copper nanopowder and ultrasonic dispersion takes 

place. Nanopowder from supplier 1 was used to study the effect of ultrasonic 

amplitude on dispersion particle size for bare and capped APTMS particles. Figure 

3(a) shows a plot of the z-average value as a function of amplitude after 30 minutes of 

ultrasonic processing for nanopowders in methanol, 0.1 % wt./vol. For the bare 

particles it was difficult to measure the particle size distribution with great confidence 

because of the interference from micron sized agglomerates, which scatter 

significantly more light than nanoparticles.  In particular, large variations in the z-

average size were observed at lower amplitudes; the result at 40% amplitude 
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demonstrates this type of interference.  For powders dispersed in the presence of 

APTMS the results could be reproduced with consistency at low and high amplitudes.  

They also showed a gradual decrease in z-average with increasing ultrasonic 

amplitude from 330nm at 20% to 190 nm at 80%.   

Typical intensity plots for the lowest and highest amplitudes applied to the 

capping solution are shown in Figure 3(b). After 30 minutes of processing at 20 % 

amplitude, two peaks were recorded at 340 nm and 4690 nm and the z-average and 

polydispersity index (PdI) were 330 nm and 0.229 respectively. At 80% amplitude, 

the peak was shifted to the left and a unimodal distribution was observed. The 

recorded z-average was 190 nm and the PdI was 0.162. The size distribution number 

plot, Figure 3 (c) also showed a shift in peak position to lower particle sizes as the 

amplitude was increased, with a maximum peak height at 105 nm.  Clearly, higher 

ultrasonic operating amplitudes lead to greater agglomeration breakage rates, along 

with a reduction in the size of the capped copper nanopowder clusters, as reported in 

previous work with propan-2-ol [27,28]. Optimum de-agglomeration conditions were 

established at 80 % amplitude and 30 min processing time. Typically, this gave a 

significant proportion of 100 nm capped clusters and a z-average of 190 nm. A higher 

amplitude of 100% was tested, but the heat generated during the 30 min processing 

period caused significant loss of methanol base fluid. 

To simplify the experimental design, a comparison of the dispersion 

characteristics of the two capped nanopowders was undertaken.  Size distribution-

intensity plots after 30 minutes of ultrasonic processing at 80% amplitude are shown 

in Figure 4.  Again, fragmentation of the large agglomerates was observed and the 

size distribution was unimodal for both nanopowders. A slight shoulder at lower size 

diameters was recorded for supplier 2 which would suggest the presence of a second 
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population of smaller sized nanoparticles.  As a consequence, lower z-average and 

higher polydispersity index values (167 nm and 0.210) were recorded in comparison 

with powder 1 (190 nm and 0.162).  The presence of the smaller sized particles has 

decreased the z-average value but has increased the size range of particles present in 

the dispersion. Based on this experiment the difference between the two commercial 

powders was deemed to be insignificant and therefore further experiments were 

performed only with the nanopowder from supplier 2. 

3.3 Nanofluid stability 

Bare and capped particles were prepared using optimum ultrasonic conditions and 

then set aside in glass vials in order to assess the short term stability of the prepared 

nanofluids. DLS measurements were taken both at preparation and after 24, 48 and 72 

hours, to record the particle size. A plot of z-average versus time for the bare and 

capped dispersions is shown in Figure 5(a).  Just after preparation, z-averages were 

similar to those which had been observed previously. With increasing time, the z-

average decreased slightly and then maintained a steady value below 150 nm.  Figure 

5(b) and (c) record the intensity and number size distribution plots for the capped 

particles after 0 and 72 hours.  The intensity peak has shifted to the left after 72 hours, 

indicating some sedimentation of larger particles. The number-size distribution plot 

also recorded a shift in peak population from a bimodal distribution to a unimodal 

distribution below 100nm.  

However, it was obvious from photographs of the dispersions, Figure 6, that 

although both samples were fully dispersed after preparation (a,b); after 72 hours 

visible sedimentation had occurred in the glass vial containing bare particles (c) but 

not the capped particles (d). Figure 6(e) is a photograph of the bare particles taken 

after six months. It can be seen that complete sedimentation has taken place; the 
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copper particles have also changed appearance and colour (black to blue). For the 

capped particles, a small amount of sedimentation was observed, but a significant 

proportion of the powder remained dispersed (d) and in some cases samples retained 

their stability after six months of storage (f).  A DLS measurement taken from sample 

(f)  had a  recorded z-average of  227 nm and a PdI of 0.237, higher values than after 

preparation but  values which demonstrate long term stability. 

In summary, for bare and uncapped particle types, during the first 24 hours 

after preparation, sedimentation of large nanoclusters occurs. The z-average then 

stabilises and remains constant.  However, it can be seen from the photographs that 

the degree of sedimentation is significantly less for the capped particles.   The 

APTMS molecule is very effective in binding to the copper, and even though it has a 

short chain length, it protects the copper from agglomerating and oxidising. 

3.4 Absorption spectroscopy 

To confirm the formation of a capped layer of APTMS molecules, further 

evidence was obtained by recording the absorption spectra from dispersed samples.  

Figure 7 shows spectra from (a) dispersed bare copper nanopowder (b) APTMS 

capped copper nanopowder (c) after the addition of glacial acetic acid (3.7 % by vol.) 

to the bare powder and (d-g) after the addition of glacial acetic acid  to the capped 

particles.   The absorption spectrum for the bare particles (a) showed a broad surface 

plasmon peak in the wavelength range 630 to 660 nm. The broadness of the peak was 

attributed to the presence of copper oxide [33] or the larger size / distribution of 

nanoparticles [34]. On addition of glacial acetic acid (which dissolves copper and 

copper oxides) to the dispersion of the bare particles; the surface plasmon peak 

disappeared completely in less than 1 min (c).  The absorption spectrum for the 

capped  particles was sharper and showed a blue shift in λmax  to 599 nm (b). On 
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addition of glacial acetic acid to the dispersion, the surface plasmon peak decreased 

slowly and red shifted before it disappeared after 8 minutes in the presence of the acid 

(d-g). Clearly, the APTMS molecule must be attached to the copper nanopowder and 

is providing a physical barrier to the acid through the formation of a densely packed 

layer of short chain molecules thereby, slowing down the dissolution of the core 

copper cluster. 

APTMS is known to stabilise other metal nanoparticles such as silver [35] where 

it forms a complex through its amine functionality with the silane groups pointing 

towards the solution.  For copper, it is unclear whether the group that attaches is the 

amine or the silane group, but in all probability the attachment is via the amine group. 

In previously unpublished angle resolved XPS results which investigated the 

attachment of APTMS films to copper foil, the silicon signal consistently appeared at 

the top of the sample and above the N 1s peak on the relative depth plot. So, however 

the molecule is attached, a favourable increase of particle stability and oxidation 

protection is observed [28] via the formation of a dense packed layer. 

3.5 Zeta Potential Measurements 

The zeta potential of the bare and capped particles was determined, see Figure 8. 

A positive zeta potential was recorded for both dispersions. The bare dispersions had 

an average zeta potential value of +23 mV in methanol. During repeat measurements, 

there appeared to be large fluctuations in the derived count rate which suggested the 

sample was sedimenting or changing over time.  The APTMS capped sample had 

good repeatability between measurements, and exhibited a higher average zeta 

potential of +38 mV. For a physically-stable nanoparticle suspension to be stabilized 

solely by electrostatic repulsion, a zeta potential of ±30 mV (minimum) is required 

[36]. This suggests that we can regard the capped copper nanopowders as relatively 
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stable systems, with a reduced tendency for aggregation; whereas the bare particles 

show an increased tendency for agglomeration. Dispersion stability could also be 

brought about by the APTMS molecules overlapping and sterically stabilising the 

copper clusters. 

3.6 Thermal conductivity measurements 

The thermal conductivities of different concentrations of protected copper 

nanopowder / methanol dispersions were measured.  Figure 9 shows the thermal 

conductivity of the dispersions as a function of concentration. Negligible 

enhancements were observed up to 2 % wt./vol., above which the thermal 

conductivity increased with nanopowder concentration, and the enhancement was 

observed to be 3.8 % and  9 % over the base fluid at the concentrations of  4 and 10 % 

wt./vol. (or 0.45 and 1.10 % vol.) respectively.  These values are in agreement with 

previous studies which have used Cu NPs dispersed in ethylene glycol, diethylene 

glycol [37] and hydrocarbons [24] as the base fluid. However, they are significantly 

lower than those reported by other groups that have used Cu NP water based systems 

[23]. Researchers have also reported enhancement factors for methanol based fluids 

with nanoparticles other than copper; typically aluminium oxide and silicon dioxide 

where the enhancement factors have also been similar [10] or slightly higher [11] at 

lower % vol. Also, it is known that long chain molecules such as surfactants can 

affect the thermal conductivity of nanofluids [38, 39]. For APTMS-copper nanofluids, 

the evidence suggests that the short chain molecule does not interfere with the thermal 

conductivity; the data obtained is comparable with results reported in the literature for 

unprotected particles [37]. 
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4. Conclusions 

 

This work has demonstrated that an APTMS capped copper-methanol nanofluid can 

be prepared from commercial copper nanopowders using a 20 kHz ultrasonic probe.  

With carefully controlled ultrasonic processing conditions, 80% amplitude for 30 min 

at 32 W cm-2; z-averages below 200 nm and a PdI < 0.2 can be achieved.   The 

nanofluid has improved dispersion stability and resistance to oxidation when 

compared with bare copper nanopowders . An average zeta potential measurement of 

+38 mV was recorded for the capped particles in methanol and good stability for up to 

six months was observed in some instances. The thermal conductivity of the nanofluid 

dispersions was found to increase with concentration. A maximum enhancement of 9 

% over pure methanol was observed at the highest concentration of 10 % wt./vol. 

(1.10 % vol.). This increase in thermal conductivity is comparable with oxide-

methanol nanofluids of similar particle size. Many workers have acknowledged that 

particle size and shape are important factors and play a significant role in dynamic 

heat transfer reactions. In our set of experiments, we have monitored closely the 

particle size of the capped dispersions.  Clearly, they are not monodisperse systems 

and ultrasound will not produce a uniform particle size, but the application of 

optimised ultrasonic parameters has de-agglomerated and narrowed the size 

distribution of the powders. This has allowed us to control important parameters 

which influence the thermal conductivity of the nanofluid. 
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Table 1. Properties of the materials used.  

 

 

Parameter Cu Methanol APTMS 

Molecular mass / (g/mol) 63.55 32.04 179.3 

Density / (g/cm3) 8.96 0.792 1.027 

Thermal Conductivity / (W/m K) 401 0.204 - 
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Figure Legends 
 

Figure 1. Schematic of the nanofluid preparation sequence. 

 

Figure 2. Scanning electron micrographs of ‘as received’ nanoparticles (a) supplier 1 

(b) supplier 2. 

 

Figure 3. (a) A plot of the mean particle size versus ultrasonic amplitude (20 kHz, 30 

min) for bare and capped copper nanoparticles and (b) intensity vs size distribution 

and (c) number vs size distribution plots for capped nanoparticles. 

 

Figure 4. A plot of intensity vs size distribution of capped copper nanopowders 

prepared from supplier 1 and 2, bare copper nanopowder, ultrasonic processing 

conditions (80% amplitude, 20 kHz).   

 

Figure 5. (a) A plot of the mean particle size versus time for bare and capped copper 

nanowders (b) intensity vs size distribution and (c) number vs size distribution plots 

for capped nanoparticles. 

 

Figure 6. Photographs of bare and capped dispersions (a,b) after preparation (c,d) 

after 72 h (e,f) and after six months of storage. 

 

Figure 7. Absorption spectra of dispersions of (a) bare (b) capped copper 

nanoparticles (c) bare plus glacial acetic acid, 1min (d-g) capped plus glacial acetic 

acid, 2,4,6,8 min. 

 

Figure 8. Typical Zeta potential distribution for bare and capped copper nanoparticles 

in methanol, 0.1 % wt./vol. concentration. 

 

Figure 9. Thermal conductivity of protected copper nanoparticle – methanol 

dispersions as a function of concentration, T= 22ºC. 
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Figure 2. 
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Figure 4.  
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Figure 6. 
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Figure 7. 
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Figure 8.   
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Figure 9.  
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