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Abstract—Indoor localization is a vital ingredient for many
e-Healthcare and Ambient Assisted Living (AAL) applications.
However, accurate, low power and user acceptable solutions
remain elusive. In this paper, we present a novel opportunistic
system which estimates the localization information based only on
the Doppler information from the user. The Doppler information
is collected using the passive radar technique that deploys the RF
energy transfer signal which originally intended only to deliver
energy to home IoT devices. A low complexity Extended Kalman
Filter (EKF) is also proposed to predict and track the user’s
location. A real-time system has been built based on the software
defined radio (SDR) platform to verify the proposed methodology.
Experimental results indicate that the proposed concepts can be
used for indoor localization with a high degree of accuracy.

Index Terms—Doppler Radar, Indoor Localization, Passive
Sensing, Extended Kalman Filter

I. INTRODUCTION

The indoor localization provides invaluable information for
many application such as Ambient Assisted Living (AAL)
systems for the elderly people or location-based services
(LBS) for the mobile application and optimization in complex
logistics systems, etc. Currently, one of the popular approaches
is to use cameras (or depth cameras) which able to provide all
levels of accuracy [1]. However, they attract privacy concerns
and are limited by lighting conditions. The use of Infrared (IR)
for indoor localization by collecting the angular information
has been studied in [2], but it is confined by the coverage
area which is normally within one single room (with often
limited accuracy). Alternatively, the relative distance can be
measured by the Time of Arrival (ToA) with the use of Ultra
Sound (US) [3]. Yet the temperature and humidity could affect
the system performance. In comparison, the passive radar
techniques could be used for posture recognition [4] and long-
term and large area monitoring with lower privacy concerns
and mitigating other issues as mentioned above [5].

Current passive radar systems are mostly used for outdoor
target tracking with the television signal [6] or FM radio [7].
This is because of existing commercial signals are relatively
narrowband compared to Ultra-Wide-Band (UWB) radar sys-
tem [8], which results in poor range resolution 6m for GSM
and 1.5km for FM. Although the outdoor targets (airplane or
ship) can tolerate this deviation, it cannot provide meaningful
range information for localization purposes. Previous works
[6], [7] show a moving person/subject can be localized by

measuring its Doppler information with proper tracking filters.
Similar research has been shown in [9] by using the WiFi
signal, yet it has limited discussion on the selection of Doppler
information. Also, they use high complexity filter which might
be problematic in real life applications. Another device-free
approach has been shown in [10] by analyzing the perturbation
created by a client in the wireless sensor network (WSN).
However, it suffers from poor position accuracy at 3-8 meters
error and requires more than 15 sensors for a single room.
In this work, we present the methodology of a passive radar-
based system for indoor localization using an opportunistically
signal produced by wireless energy transfer devices [11]. A
large area can be covered with only three receivers and able
to achieve a high degree of accuracy.

There are two significant challenges need to be solved in
our system. The first challenge is how to detect the Doppler
information of the target accurately. In this work, we use Cross
Ambiguity Function (CAF) [12] to generate the range-Doppler
mapping based on the variation of the reflected signal. Then
a clean algorithm has been used to remove the direct signal
interference and other stationary targets’ reflection. After that,
a Doppler spectrogram is generated based on a group of CAF
mapping. Lastly, we introduce a method to extract the precise
Doppler information from Doppler spectrogram. This method
could help to reduce the uncertainty in measurement and
improve the localization accuracy. The other challenge is the
system complexity control. Traditionally, passive radar with
tracking filter requires high computing capability and usually
a specially designed process unit is needed. In comparison,
we use a regular laptop as a processing unit which means
the complexity of signal processing needs to be minimized.
For passive radar signal processing, batching processing has
been used to reduce the computations in correlation and
short FFT transformation by cutting received signal into
several segmentation [13]. For tracking filters, we introduce
a low complexity EKF by converting the transition matrix
and observation matrix into sparse matrices instead of matrix
multiplication. The proposed method shows 12.3% reduction
in computational time.

In comparison to published work [6], [7], [9], the following
main contributions are presented:
• We demonstrate the wireless energy transfer signals,

aimed at powering energy frugal IoT, can be used op-



portunistically for indoor localization purposes.
• We propose a precise Doppler selection method to im-

prove the Doppler accuracy by examining surround mea-
surements. This method can avoid the Doppler peak due
to other parts of the body or irregular source signal.

• To enable real-time processing, we use the batching
process to reduce the CAF mapping complexity and
introduce a low complexity EKF. The experiment results
in section IV-B indicate the proposed methodology has
only minor reduction in tracking performance.

The rest of this paper is organized as follow: Section II
outlines the signal processing of extracting Doppler informa-
tion by passive radar; the model structure and mathematical
expression for low complexity EKF are presented in Section
III; system architecture, experiment result are described in
Section IV; conclusions are in Section V.

II. MEASUREMENT OF DOPPLER INFORMATION

A. Passive Radar Signal Processing

The passive radar system has bistatic geometry: the trans-
mitter and receiver are not co-located. The measurement of
Doppler shift allows it possible to estimate its location. The
bistatic geometry can be shown as in Fig 1.

Tx Rx

Object

Fig. 1. Bistatic Geometry for Passive Radar

where rTO and rOR is the distance between transmitter to
object and object to receiver. For a passive radar system, the
path rTR is considered as reference channel, the path rOR is
considered as surveillance channel. Note that, the antennas for
surveillance and reference channels do not require co-location.
But for simplicity, we assume they are in one place. While the
object is moving, the Doppler shift fd (bistatic velocity) of the
object can be shown as (1):

fd =
1

λ

d

dt
(rTO + rOR) (1)

The Doppler shift and the bistatic distance Rb can be
obtained with CAF mapping by correlating the surveillance
signal and reference signal. In this work, a batching process is
applied to CAF mapping to reduce the computational power
[12] so that the system can be run in real-time. The CAF
mapping with batching process can be expressed as (2):

CAF (Rb, fd) =

nb−1∑
k=0

Ti∫
0

Si(t)Ri
∗(t− kTB −

Rb
c

)ej2πfcfdtdt

(2)
where Si and Ri is the obtained signal from surveillance
and reference channel after batching process, k is the index
of batching, Ti is the integration time, TB is the batching
length (effect the noise level of CAF mapping) and nb is
the number of batching (indicates the maximum detectable

Fig. 2. An example of measured Doppler spectrogram.

Fig. 3. Corresponding extracted Doppler shift.

speed). The correlation between surveillance and reference
signal gives a strong direct signal interference (DSI) that could
cover the target and needed to be removed. For this purpose,
we implement a CLEAN algorithm introduced in [14] as (3):

CAF k(R̂b, f̂d) = CAF k−1(Rb, fd)−αkCAFself (Rb−Tk, fd)
(3)

where CAF k(R̂b, f̂d) represents the cleaned CAF mapping at
kth iteration, αk is the maximum absolute value of shift factor
refers to location of αk, and CAFself is the self-ambiguity
surfaces of the reference channel. Then we pick a column
that containing the maximum Doppler peak from one CAF
mapping, then combined a group of Doppler peaks to from a
spectrogram D(fd, n) with time index as (4):

D(fd, n) =

K−1∑
n=0

argfd {max(CAF (Rb, fd))} (4)

where n is the index of total K recorded CAF mapping,
argfd {max()} gives the column with maximum detected
Doppler peak. We plot an example of Doppler spectrogram of
a person walking away from the surveillance antenna in Fig
2 from eq (4). As can be seen, there is a clear Doppler trace
at 7 Hz that represent human walking speed which becomes
visually indistinct after 8 second. This is due to the strength
of reflected energy decayed as distance increased. Moreover,
although the signal from energy harvesting tends to be more
stable than WiFi signal [5], yet it still contains time gap and
power fluctuation during transmission. There are two ’bad’
time slots which have Doppler shift span across y-axis that
resulting in corrupted and unusable Doppler information.

B. Precise Doppler Selection Method

The approach described in paper [9] works effectively only
if the Doppler information could be extracted accurately.
However, from the real measurement, we observe there could



be multiple interferences that affect this process. As the
Doppler peak does represent not only the target’s velocity
but also the frequency from other parts of the bodies such
as head, arm and leg. But in this work, we only consider the
velocity of the target. Therefore those unrelated Doppler peaks
should be removed. Furthermore, we also need to consider the
interference from the irregular source signals.

Here we present a procedure to eliminate these interference
and extract the precise Doppler information. Starting with
traditional radar method by using the constant false alarm rate
(CFAR) to detect the target by generating a threshold mapping
T (i, j) based on the cleaned CAF mapping CAF (i, j) with l
range bin and m Doppler bin as (5):

T (i, j) =

NL∑
l=1

NM∑
m=1

(|CAF (i± l, j ±m)|)2 (5)

Then a target could be determined by: CAF (i, j) −
T (i, j) > 0. The corresponding extracted Doppler peak is
shown at Fig 3. As can be seen, the traditional method can
only provide a rough image about the velocity: there are
three different type of Doppler measurements that need to be
selected separately. The first type measurement is when single
velocity is captured at a certain time, this is the simplest case
as the Doppler peak is unique, therefore we can confidently
extract the velocity v(k,1) as (6):

v(k,1) = [D]
fd
n=k (6)

where ([D]
fd
n=k donates the detected Doppler peak at time k).

The second type measurement happens when no Doppler peak
is detected. There are two possible reasons: (1) the target is in
stationary or (2) CAF fails in detecting the target due to ’bad’
time slot or low reflect power. For this type measurement,
we exam the empty slot by searching forward and backward
velocity to decide most possible situation for velocity v(k,2):

v(k,2) =
1

2

(
[D]

fd
n=k−1 + [D]

fd
n=k+1

)
(7)

If consecutive measurements are zeros, we assume the target
is in stationary. Otherwise, we calculate the mean value to
replace the empty measurement. The third type measurement
includes multiple Doppler peaks in a one time-slot. It is more
complicated and much difficult to decide the object’s velocity.
As there are many possible elements cause the multiple mea-
surements, for example, the CFAR also captures Doppler shift
from other parts of a body, or the DSI process does not clean
the CAF mapping completely. In addition, we observe this
type of measurement usually span over several time-slots (Fig
3) which further increase the uncertainty. Traditional CFAR
picks the Doppler peak with the largest value, but it does
not solve the problem as the sidelobe usually contains more
power than a target. In this work, we calculate the weighed of
each peak to search the most likely velocity. The first step is
to calculate a weight vector W which consists the amplitude
value of each row in the D(fd, n) over a period of time TW
as TW as W (f) =

∑TW

n=0D(f, n). For consistency, TW is
chosen as the same length as integration time Ti. Then we

decide the velocity vk,3 by calculating the difference of each
Doppler peak compare with weight vector as (8):

v(k,3) = min(

nb/2∑
f=−nb/2

(W (f)− [D]
fd
n=k)2) (8)

where min(.) means to select the Doppler peak with the
smallest difference to weight vector. Note that the number
of batch nb also defines the size of Doppler boundary. The
effectiveness of proposed Doppler information extraction will
be shown in Section IV-A.

III. LOCALIZATION WITH DOPPLERONLY

A. Model Description

Let us define the object moving in a finite 2D space with
following parameters: xk and yk are the Cartesian coordinates
for the target position at time of k, vx,k and vy,k are the target
velocity at x-axis and y-axis. The target can then be expressed
as (9):

xk = [xk, yk, vx,k, vy,k]
T (9)

where T is the transpose operation and xk is the state vector.
The state transition function can be expressed as (10):

x(k) = Fk|k−1x(k − 1) + w(k) (10)
where Fk|k−1 is the state transition model:

Fk|k−1 =

[
I(2·2) I(2·2)∆T
0(2·2) I(2·2)

]
(11)

where ∆T is the step time or system measurement rate. w(k)
represents the processing noise for xk, according to [15], it is
modeled as uncorrelated Gaussian model w(k) ∼ N(v,Q), Q
is the covariance matrix given as (12):

Q = σ2
v

[
I(2·2)Q1 I(2·2)Q2

I(2·2)Q3 I(2·2)Q4

]
(12)

where σ2
v is the standard deviation of the model noise, and

Q1 = ∆T 4/4, Q2 = Q3 = ∆T 2/2 and Q4 = ∆T 3/2.
The noisy observation model with m-th receiver can be then
expressed with following equation (13):

Zm(k + 1) = hm(x(k)) + εk (13)
where εk is the uncorrelated measurement noise and function
hm(x(k)) is the Doppler measurement as (14);

hm(x(k)) =

{
vx,k(xk − xT ) + vy,k(yk − yT )

λrTO

}
+{

vx,k(xk − xm) + vy,k(yk − ym)

λrOR

} (14)

where xT , yT is the position of energy harvesting transmit-
ter and xm, ym is the position of mth receiver. λ is wavelength
of the signal.

B. Tracking with Low Complexity EKF

According to equation (14) the measurements are nonlinear,
therefore we cannot direct use the Kalman filter. Alternatively,
EKF process the first order of the nonlinear measurement into
linear version. Due to the bandwidth of available signal, the



measurement on xk and yk are too coarse for indoor sce-
nario. However, previous work shows the passive radar could
achieve high Doppler resolution [13], [15]. After removal the
bistatic range components, the measurement model is given
as: hm(xk) = vm(xk). The Taylor expansion introduced by
[16] has been used, and the Jacobian matrix of hm(xk) can
be expressed as (15):

Jmh (x) =

[
δhm(xk)

δxk

δhm(xk)

δyk

δhm(xk)

δvx,k

δhm(xk)

δvy,k

]
(15)

In the Doppler only EKF, an assumption has been made:
the start point of the target is known. In real application, this
could be achieved by other method, for example, the start
point could be assume at the entry of the room. The initial
state vector can be denoted as: x0 = [x0, y0, vx,0, vy,0]

T , the
prediction steps of standard EKF are:

x̂k = Fk|k−1x̂k−1 (16)
P̂k = Fk|k−1P̂k−1Fk|k−1

T +Q (17)

Kk = PkH
T
k (HK P̂kH

T
K + ξk)

−1
(18)

Then the update steps are:

xk = x̂k +Kk(zk − h(x̂k)) (19)
Pk = (I −KkHk)P̂k (20)

We propose the low complexity EKF based on the sparse
matrix calculation [17]. As we know the matrix F is a sparse
matrix with 1 in diagonal elements. Thus the multiplication of
Fk|k−1Pk−1Fk|k−1

T in eq (17) can be simplified into:

P̂k =

[
Q1 + (Q1 +Q3)∆T +Q3∆T 2 Q2 +Q4∆T

Q3 +Q3∆T Q4

]
+Q

(21)
The product in eq (21) is a sparse matrix, so that the

complexity of eq (18) is reduced due to both P̂k and Hk

are sparse matrix. The matrix calculation on HK P̂kH
T
K gives

a diagonal matrix R with size of (2 · 2), and it is much
computational efficient in the inverse matrix calculation. The
eq (18) can be then simplified as:

Kk = Pk

[
0(2·2)

(R+ ξk)−1

]
(22)

and the eq (20) can be simplified to:

Pk = (I − [0(4·2) K])P̂k (23)
We compare the complexity of standard EKF and the

proposed low complexity EKF base on the number of mul-
tiplication and addition as shown in Table I, where n is the
number of states and m is the number of variables (in our
application, n=4 and m=2). As can be seen, the low complexity
EKF significant reduces the amount in both multiplication
and addition. The total number of low complexity EKF is
104 in multiplications and 28 in additions that give 68% and
79% reduction compare to standard EKF. Then we test the
computational performance of both filters with MATLAB. The
result shows 5.45 ms is required by standard EKF for one
iteration, whereas the proposed low complexity EKF is 4.78

TABLE I
COMPARISON OF MATRIX COMPUTATION BETWEEN STANDARD EKF AND

LOW COMPLEXITY EKF

Standard EKF (17) (18) (20) total
Multiplication Number 2n3 2n2m+ 2m2n n3 + n2m 320
Addition Number 2n2 2n2m+ 2m2 2n2 136
Low Complexity EKF (21) (22) (23)
Multiplication Number 2n n2m n3 104
Addition Number n nm n2 28

ms that gives 12.3% in time reduction. The performance is
expected to be more significant when the system has more
state and variable.

IV. EXPERIMENTS & RESULTS

We have built a passive system based on our previous work
[12] with three USRP-2920 [18] for collecting the signal. A
signal distribution system [19] has been used to share the
clock for USRP for synchronization purpose. The received
signal is then transferred to a laptop (process unit) via Ethernet
port. The signal processing described in previous sections are
implemented with LabVIEWTM. To further reduce the real-
time latency, the signal processing is designed with pipeline
structure [13] so that we could divide a large task into multiple
sub-procedures. Also, a graphics control center is built to allow
the user to control the system and display result.

Y(meter)

X(meter)

Tx(5.5,0)R(5,0)S1(0,0)

S2(0,4.5)

A(0.3,0.3)

B(0.3,4.5)

C(5.5,0.3)

wall

1m

0.5mwall

Fig. 4. Experiment layout.

The experiment is carried out in a lab room. The layout is
shown in Fig 4. Point R, S1, S2 are the reference and mon-
itoring antenna with position (5,0), (0,0), (0,4.5), the energy
harvesting transmitter Tx is located at (5.5,0). Two monitoring
antenna S1 and S2 are pointed to X and Y perpendicular to the
monitoring area, whereas the reference antenna R is led to the
transmitter. We set three test point as A(0.3,0.3), B(0.3,4.5),
C(5.5,0.3), a person is asked to moving between those points,
the test path will be explained in the different experiment.

A. Experiment 1: Effectiveness of Proposed Precise Doppler
Selection

In this experiment, we present the localization performance
with & without the proposed Doppler selection. Two tests
have been carried out to validate the location accuracy with
standard EKF. In the first test, a person was asked to walk
through the path: C → A → B with same relative speed



Fig. 5. Tracking result at 0.1s step time of straight path (a) with CFAR only,
(b) with precise Doppler selection.

TABLE II
MSE RESULTS WITH & WITHOUT DOPPLER SELECTION METHOD OF

STRAIGHT PATH

Step
Time (T)

Without Doppler
Selection

With Doppler
Selection

0.01 1.1614 0.4588
0.1 1.2992 0.6134
0.3 1.5350 1.1984
0.5 1.9737 1.3958
1 2.5944 2.4056

(labeled as the black arrows). The CAF mapping is processed
with 1s of integration time and 0.1s of step time offline. The
tracking results are shown in Fig 5: (a) with CFAR only, (b)
with precise Doppler selection. As can be seen, the proposed
method largely improves the localization performance. The
tracking path in Fig 5(a) shows some Doppler information
detected by CFAR are not present the user’s velocity which
causes errors in location estimation. In both x-axis and y-axis,
estimated path are shorter than the ground truth. The tracking
path in Fig 5(b) shows much better estimation than Fig 5(a)
which proves the precise Doppler selection method is needed.
However, more noise is observed in x-axis than y-axis. This is
because the direction changed suddenly, it takes more process
to update the path for EKF, while in the y-axis, the velocity is
more constant from the beginning. Another critical factor is the
geometry of the system, as the surveillance antenna S1 points
to the Tx that receives more power than S2 which explain the
performance variation in x-axis and y-axis.

The mean-square-error (MSE) is calculated between ground
truth and estimated location to present the accuracy. The MSE
result versus step time is shown in Table II. As can be seen,
the MSE increased together with step time as expected. Also,
there is substantial MSE error difference between with &
without Doppler selection especially in small step time and
less variation in considerable step time. This is because of the
significant step time itself introduce significant MSE, whereas
the proposed Doppler selection has less effect on the tracking
when the step time is not sufficient.

The walking path in the first test is comparably simple with
0 or 90 degrees angular towards both surveillance antenna
which means the relative velocity is more persistent. In this
test, we test the tracking performance under a diagonal path
as C → B → C. For both antenna, the angle of walk-
ing path changes continuously, which increases the tracking
complexity as the measured velocity is varied through the

Fig. 6. Tracking result at 0.1s step time of diagonal path (a) with CFAR only,
(b) with precise Doppler selection.

TABLE III
MSE RESULTS WITH & WITHOUT DOPPLER SELECTION METHOD OF

DIAGONAL PATH

Step
Time (T)

Without Doppler
Selection

With Doppler
Selection

0.01 1.8508 1.1337
0.1 2.2741 1.5696
0.3 2.3968 1.8182
0.5 2.4784 1.9185
1 2.7760 2.0145

Doppler spectrogram yet the actual speed remains same. The
tracking results are shown in Fig 6. As can be seen, both
paths contain variation in direction and also shorter compare
with the ground truth. This is because the antenna receive
less signal power when the angle is small, and CFAR cannot
detect the target. However, with the Doppler selection, the
tracking path shows the user back to the start point as expected,
whereas the tracking path without Doppler selection shows
more randomness and a significant separation between the start
point and end point.

The MSE for diagonal walking is shown in Table III.
As can be seen, the MSE for the diagonal path is much
higher than that in the straight path. Even at 0.01s step
time, the MSE remains at high level. The main reason for
this downgrade in performance is because of the insufficient
Doppler measurement which can hardly correct from filter
side. One of the possible solutions is to increase the number
of surveillance channel so that we could improve the accuracy
in detection of Doppler.

B. Experiment 2: Localization over Long Period

Since our system is capable of real-time Localization. In
this experiment, we would like to exam the proposed system
over a long period. The performance of standard EKF and low
complexity EKF will also be tested. Currently, our system has
the real-time limitation at 0.3s step time with integration time
at 1s. A person was asked to walk continuously with path
C → A → B → A → C and another person recorded the
time duration of the walking path to generate ground truth.
The period of the measurement is 3 minutes. We plot the
tracking path in Fig 7 (a) standard EKF, (b) low complexity
EKF. As can be seen, both filter shows almost same tracking
path which indicates the proposed low complexity EKF has
similar performance to the standard EKF. Moreover, both
tracking path shows some reduction in x and y-axis estimation



Fig. 7. Tracking Result over 3 minutes with (a) standard EKF, (b) low
complexity EKF.
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Fig. 8. MSE versus time.

compares to Fig 5. It is because of the longer step time
increases its MSE according to Table II and III. Furthermore,
the offset of cyclical walking indicates there is an accumulated
error during the tracking process.

To better compare the tracking performance of both filter,
we plot the MSE versus time and plot in Fig 8. As can
be seen, the MSE for both filter increased over time in
general. The standard EKF shows slightly better MSE than
the proposed low complexity EKF. The reason is due to the
matrix simplification on eq (21) and eq (23) that could filter
out some information. Furthermore, a ’reset’ action is essential
for our system. Due to the MSE accumulates over the time,
the ’reset’ action could clear the MSE so that the tracking
performance can maintain at high accuracy.

V. CONCLUSIONS

In this work, a real-time indoor localization system has been
presented. It shows a different approach compare to previous
work [1], [8], [10] with advantages as opportunistic, wide
deployable and low privacy issue. For the system, two major
challenges are Doppler information extraction and system
complexity. We describe a novel procedure of using passive
radar principle to detect object’s velocity. Then we proposed
a precise Doppler selection method to improve the accuracy,
the effectiveness of this process is shown in Section IV-A.
Also, the experiment results indicate the tracking system has
good performance in zero angular path towards surveillance
antenna, however, when the angle is changed the tracking
error is increased. In addition, a low complexity EKF has
been proposed by converting state and observer matrix into
sparse matrices and shows 12.3% time reduction, yet provides
almost same tracking performance compared to standard EKF.
Moreover, the experiment results in Section IV-B illustrate
accumulative error in our system. Future work will include
the research of possible ’reset’ action by using information

fusion with other sensors which can improve the tracking
performance and make the system more robust. In the future
work, we need to investigate the performance of the system in
empty room and room with fornitures to verify the robustness
of the system in multiple environment.
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