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Abstract—A typical approach to building a feature set for a conditional
random field model is to build a large set of conjunctions of atomic tests,
all of which adhere to a small number of relatively simple templates.
Building more complex features in this way can be difficult, as the
more complex templates needed to do this can result in a combinatoric
explosion in the number of features. We use the inherent instability of
decision trees to produce a small set of more complex conjunctions that
are particularly suitable for the problem to be solved, using the same
techniques used in generating random forest ensemble classifiers, and
build a CRF on these features. We apply this method to an activity
recognition problem on a dataset from the CASAS smart home project,
in which we predict activities of daily living from sensor activations.

I. INTRODUCTION

With the increase in availability and sophistication of wireless sensor
networks allowing a constant stream of ambient data to be collected
in smart homes, activity recognition (AR) has become an actively
researched field. From data provided by sensors such as motion,
power usage, light, temperature and door sensors, it is possible
to recognise many everyday activities a resident is engaged in, as
well as recognising particularly abnormal behaviour [1]. This has
applications in many areas (e.g. healthcare, security, etc.) and could
potentially become extremely important in elderly care.
As people get older and frailer, many want help to be quickly
available if needed, but also want to maintain as much independence
as possible. Further, relatives want to know that there is a safe
place where their loved one is okay without constantly checking
up on them. Smart homes paired with activity recognition and data
analytics can provide this security while preserving independence. A
system that can provide a well-being indicator, and sound an alarm
in case of an accident or health problem, relies on AR to provide
this functionality [2]. Recognition of everyday activities carried out
as normal like making lunch, personal grooming etc. allows an
indication that the resident is alright. Also, recognising hazardous
or abnormal behaviour in daily activities (e.g. falls) can indicate the
presence of a problem and trigger an alert for a resident. Thus, such
systems require an effective AR model to function properly.
This work considers AR as a sequential prediction problem. We
assume a sequence of observations X each labelled with the action
that was being performed Y , where each xt belongs to a set of
possible sensor readings X , and each label yt to a set of possible
labels Y . The task is to predict the correct labelling of a new
observation sequence.
Conditional Random Field (CRF) is a method which has been
shown to perform well on a variety of sequential prediction tasks
of this form [3], however the performance of the method relies
heavily on the features used to build the model. Often it is not
clear how to best include features into the model which can capture
more complex dependencies, as the typical approach to generating
features involves creating all features following a certain pattern, or
template. To generate more complex features, we must define more
complex templates, which can result in a combinatorial explosion of
the number of features generated, making learning difficult. Here,
to combat this problem, an approach is introduced using features

extracted from decision trees to provide a small set of complex
features particularly tailored to the prediction problem to be solved.
This is applied to an AR dataset in a smart home setting.
The paper is structured as follows. The next Section introduces
some background and related work. In Section III, we describe the
CRF model, followed by a discussion of our approach to feature
generation for CRFs in Section IV. Subsections will motivate the
usefulness of features extracted from a random forest ensemble of
decision trees and describe the method used to do this. Experimental
work will be covered in Section V, and Section VI concludes.

II. RELATED WORK

The dataset used to test the method proposed in this paper is an
activity recognition task using data from a smart home environment.
Thus, we briefly provide some background relating to smart homes
and the Ambient assisted living (AAL) paradigm.
A smart home is an equipped dwelling where a variety of ambient
sensors monitor the state of the living space and its occupants, and
may potentially be used to control aspects of the environment. Using
such information together with communications technologies and
connected devices to improve quality of life, is the core of the AAL
paradigm [4], with AR being an important part of this approach.
Smart home setups have become steadily more sophisticated in
recent years, as sensors become smaller and more widely available,
and new technologies such as Bluetooth low energy, Zigbee and
other wireless networking standards appear. Smart home environ-
ments have been described in the literature which use a diverse array
of different sensor setups, and from which interesting datasets have
been collected. Some of these projects are briefly described here.
In the SPHERE project [5], a multi-modal sensor infrastructure that
can be deployed in a home environment is proposed. This consists
of a video monitoring component, a wrist-worn body motion sensor,
and a set of environmental sensors such as door, motion and power
usage sensors. Sensors communicate with component hubs which
connect to a home gateway for transferral of data to remote servers.
The CASAS smart home [6] is a lightweight non-intrusive suite
of sensors designed to be quickly and easily set up. It consists of
motion, door, light, temperature and water/power usage sensors. A
visualisation system is provided and an activity recognition system
trained to identify activities of daily living (ADL). A number of
datasets, some annotated, ranging from single-occupancy apartments
to medium (20 persons) workplaces are available online [7]. In this
work, we use one of these, which is further described in Section V.
Patterns of normal behaviour and ADLs can be learnt from the data
collected from smart homes like those described above, and used
for example to provide well-being indicators, potentially identify
developing health problems and critical events such as falls, or
perhaps to adjust the living environment in response to some
detected situation or event. The sensor data resulting from such
smart home setups is best represented as a sequence of discrete
events. Each event comprises a sensor ID identifying the activated
sensor, a timestamp and, in the case of non-binary sensors, a value



denoting a newly polled sensor output. The exception to this is data
from wearables, providing a stream of axial accelerations. This can
be translated to an event sequence by a processing stage identifying
particular motion patterns of interest. The Activity Recognition task
essentially becomes a sequence labelling task, assigning an activity
label to each sensor activation in a sequence of sensor readings.
Some popular sequence labelling algorithms are reviewed below.
Hidden Markov Models (HMMs) have commonly been used for
sequential modelling. The system is assumed to be a Markov process
which transitions between a number of hidden states which corre-
spond to the labels of the sequence. Each state is associated with a
distribution over the output observations allowing inference of the
probability of the state sequence given a sequence of observations.
Many variants of this method exist, such as the hierarchical HMM
described in [8], which is particularly suitable for learning sequential
patterns over multiple scales, and semi-markov HMM and CRFs [9]
in which the base methods are modified to allow better modelling
of state durations. The related but representationally more powerful
Conditional Random Fields (CRFs) are commonly used in sequence
labelling tasks, and have been used for activity recognition in [10]
and [11]. This method is covered in detail in Section III.
A Support Vector Machine (SVM) uses the Kernel trick to transform
the data to be classified into a high-dimensional space, in which a
maximum-margin separating hyperplane is learnt. In [6], an SVM
is used on features describing a window of sensor data, which
includes the time of day, duration of the event sequence comprising
the window, and the number of activations for each sensor. A
variant of the SVM called the structural SVM presented in [12]
extends the SVM by modifying the optimisation problem the SVM
solves so that a sequence pair (x,y) as a whole is considered as a
single training example, instead of treating each (x, y) pair in each
sequence as a separate training example.

III. CONDITIONAL RANDOM FIELDS

Conditional Random Fields (CRFs) are a discriminative method for
structured prediction [13]. This means that instead of modelling the
joint probability P (Y,X) (allowing us in theory to generate samples
of X,Y pairs) we model the conditional probability P (Y |X), which
allows us only to discriminate between different labellings Y given
an observation sequence X . A major advantage of this approach is
that dependencies between observables need not be modelled, an
aspect of learning generative models which can be problematic.
Structured prediction methods model a relationship between vari-
ables whose dependencies can be represented by a graph. In this
paper, we will be concerned with the special case of linear chain
CRF, where the graph structure can be represented as in Fig. 1. Each
observed sequence is an X,Y pair of observation X and label Y
sequences, with xt and yt denoting the observation and label at
position t in the sequence, respectively.

Fig. 1: Structure of Linear Chain CRF

In a linear chain CRF the conditional probability is modelled as:
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with the first sum here over all possible labellings. The features
fi are functions which represent knowledge about how desired
labellings for the model look, and can depend on the label at position
t, the label at the previous position t−1, and the whole observation
sequence X . For example, a simple feature f = I(yt = yt−1)
where I is the indicator function would, assuming positive associ-
ated weight wi, represent a continuity condition. That is, if the last
observation in the sequence at t−1 had label ’making lunch’, there
is a good reason to believe we could still be making lunch at time
t. The features are typically binary, though this is not a requirement
and some application areas do use non-binary features. The weight
wi encodes the importance of satisfying this feature (or avoid it
given a negative weight). In the case of linear chain CRFs, which
we are concerned with, inference can be done using generalisations
of the forward-backward and Viterbi algorithms used for HMMs
[13]. A CRF is usually trained by maximising the likelihood:

l(w) = p(Y (i)|X(i),w) (1)
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logZ(X(i)).

(2)
Maximising this value provides us with the parameter setting for
which the observed data has the highest probability. The optimisa-
tion of l(w) can be done using a variety of standard techniques for
numerically optimising non-linear functions. Quasi-Newton meth-
ods such as BFGS [14] are commonly used in the case of CRFs
as they are well suited in the case where the number of parameters
may be large. In practice, the likelihood is often augmented with a
regularization term which penalises overly large parameter values.
A strength of CRF is its ability to incorporate a wide variety of
arbitrary features into the model, and learn their relative importance.
But, this leaves open the question of which features are best to use.
Typically, a number of atomic tests are defined (such as I(yt =
ŷ), I(xt−1 = x̂), etc) and features are made following a number
of templates [13]. All features which adhere to this template are
generated. These templates take the form of simple conjunctions of
these atomic tests, for example

I(yt = y)I(yt−1 = y′) ∀y, y′ ∈ Y

which would generate |Y|2 features each of which is non-zero only
for one specific combination of labels at steps t and t− 1.
A major problem of this approach is that if we wish to include more
complex conjugations, we must include more complex templates
meaning the number of features can become extremely large (for
example [15] uses millions of features), making learning compu-
tationally expensive or even intractable. There is also the danger
of overfitting in a model with such a large number of paramters.
There have been some attempts at a more principled generation
of features, the most notable of which is the method presented in
[16]. There, an iterative approach is taken, where at each iteration
a set of candidate features are generated, and a number of these
are added to the model based on an estimate of the effect of
their inclusion on the log-likelihood of the correct sequence. Other
methods rely on heuristics or domain knowledge to guess at some



useful complex features. To overcome these problems, the presented
approach augments simple template features with more complex
ones extracted from an ensemble (random forest) of decision trees.

IV. FEATURE INDUCTION VIA DECISION TREES

Typically, as explained above, a CRF uses a large set of features
consisting of relatively simple conjunctions of atomic tests. If we
consider a decision tree built to predict the current label yt given
the previous label yt−1 and the most recent N observations Xt,
then a leaf of the decision tree defines a conjunction of exactly the
form we wish to generate for the CRF. The path to the leaf is a
conjunction of atomic tests on the xk ∈ Xt and yt−1. Together
with the indicator I(yt = yl), where yl is the label assigned to the
leaf node, this defines a conjunction of the desired form as shown
in Fig. 2. These conjunctions can then be extracted and used as
features for a CRF. The great advantage of this approach is that
significantly more complex features can be used, as we are not
generating them blindly, as we would via templates, but rather are
generating them based on the data, seeking useful conjunctions in
identifying relationships within the data. We can also control the
complexity of the features generated by adjusting the pruning level
applied to the tree.

Fig. 2: Illustration of tree path, generating a feature which is a
conjunction of the tests at each split and the indicator of the leaf
label, f = t1t2t3I(y = ŷ).

A. Random Forests
Decision trees are an unstable classifier [17], which means that a
very small change in the training data or learning parameters of the
model can result in a very different learned model. In extracting
features from only one tree, we may miss many other equally
good conjunctions that could have appeared had the data only been
very slightly different. In the Classifier Fusion literature, there are
methods which exploit this behaviour to produce ensemble methods
that greatly outperform any of its component models. One of these is
Random Forests [18]. In this method, a number of parameters of the
decision tree that control learning are placed in a parameter vector
θ, and an ensemble of trees is learned using a randomly generated
parameter vector θk for each tree. This learning parameter vector
usually defines a sampling of the data to use during training (often
a bootstrap sampling), and a subset of observations to be considered
for each split of the tree. These trees are combined via a majority
vote. We will use the same approach to create a diverse ensemble
of trees from which to extract features, to ensure a wide variety of
useful features are generated. When building a Random Forest for
classification, the component trees are usually fully grown [18] (i.e
no pruning applied) however we will depart from this including the
pruning level as one of the parameters in θk. The motivation for this
is that we expect including a wide variety of feature complexities
(conjunction lengths) in our feature set to be beneficial.

B. Extracting CRF features from a Random Forest

Assume we have a basic set of features B. We also have as a
base learner a decision tree whose learning is controlled by a
parameter vector θ. In our case, this vector θ = [S, β, α] consists
of a bootstrap sampling S over the training data, a sequence β of
randomly generated subsets of size M of the features in B that
will be considered for each split of the tree, and a parameter α
controlling the level of pruning. An ensemble of N trees is trained,
each using a different randomly generated θ.
Each split of a tree is a binary test t on one of these features. For an
example x at a node, if this test is true, the example passes to the
left child node, if its negation is true it passes instead to the right
child node. Starting at the root node, the sequence of tests leading to
a leaf node defines a path p = {tk}, k = 1, d of depth d, with leaf
label y(l). From this we define a feature f = I(y = y(l))

∏d
k=1 tk,

which in the CRF context is a binary feature returning one for all
labellings where an example would reach the leaf and has the same
label as the leaf. We traverse the tree and extract a feature as above
for each leaf of the tree, repeating for each tree in the ensemble.
This results in a set of conjugations F which will be used as the
features of the CRF. We also add the following simple template-
based features to F :

I(xt = x̂)I(yt = ŷ) ∀ x̂ ∈ X , ŷ ∈ Y (3)

I(xt−1 = x̂)I(yt = ŷ) ∀ x̂ ∈ X , ŷ ∈ Y (4)

I(yt = yt−1) (5)

This feature set is then used to train a CRF. The method is
summarised in pseudocode in Program 1.

Program 1 Pseudocode for proposed method
initialise empty feature set F
for each tree k of N

initialise parameter vector θk randomly
train tree hk using θk
for each leaf l in hk

extract path to leaf pl
create feature as conj. flk = pl ∗ I(yt = yl)
add feature flk to F

end
end
if desired, add additional template features to F
train CRF on F

V. EXPERIMENTS

The dataset used in this paper stems from the CASAS project
[6], and is freely available online [7]. The dataset is collected
over a period of a few months from a smart apartment housing a
single resident. The apartment is outfitted with a variety of sensors
including motion, temperature, light, and power usage sensors, door
sensors, and a small number of tagged objects. The data takes
the form of a sequence of sensor activations, with some time
intervals annotated with the activity that was being performed,
for example, Making_Lunch, Take_Medication, or Sleep.
A small excerpt of the raw data can be seen in Fig. 3. There
are 29 distinct activities recorded in total, with some appearing
significantly more often than others. The dataset consists of 127
possible sensor activations. Each activation consists of an ID, a
timestamp, and a reading, which takes either a boolean ON/OFF
(for door, motion sensors etc.) or real (for temperature, etc.) value.
Some of the sensor activations are various battery status indicators
for the sensors; we discard these as they are not useful for the



Fig. 3: Example of raw data in CASAS dataset.

classification task. This leaves us with 67 sensor activations overall.
For each sensor, we build two features at a time t:

1) Given a time window Tw, we calculate the average of the
sensor activation over Tw, xt = 1

Tw

∫ t

t−Tw
xdt

2) The time since the sensor was last on (for binary sensors) or
last changed (for real-valued sensors)

We also add a final feature, which is a time of day feature taking a
real value between 0 and 1. This gives a set of 135 basic features
on which we build our models. We parse the raw data file to build
these features, and sample them every minute, together with the
corresponding label, to give the dataset used in our experiments.
For comparison purposes, below, we present the results for both the
method proposed in Section IV and other commonly used methods.
Decision Tree: A single decision tree grown using the information
gain split criterion and pruned using cost-complexity pruning.
CRF-Template: A CRF model built using a set of simple template
based features. The features used are as described in Section IV-B.
CRF-Forest: A CRF built using features extracted from a Random
Forest as described in Section IV.
CRF-Both: A CRF built using features extracted from a Random
Forest augmented by simple template based features, i.e. using the
features from both of the above two methods.
SVM: A Multi-class SVM consisting of an ensemble of 1 vs 1
SVM classifiers. There are 1

2
K(K − 1) binary SVMs in total.

Each member of the ensemble is trained using a class i as positive
examples, and a class j as negative examples, with the remainder
ignored. A member is trained for each possible (unordered) i, j pair.
Random Forest: An ensemble of 200 fully grown decision trees,
each trained on a bootstrap sampling of the training set and splitting
on a randomly selected 40% of the available features at each split.
The optimal split is determined using the information gain criterion.

Method Accuracy
Decision Tree 65.2
CRF-Template 55.38
CRF-Forest 72.84
CRF-Both 62.7
SVM 65.42
Random Forest 70.9

TABLE I: Average accuracy (%) on activity recognition task

The results of these methods on the CASAS dataset are shown
in Table I, denoting that the use of diverse but highly relevant
complex features extracted from a random forest produces a much
better performing CRF model than one built on simple template
features. The use of a CRF on features generated from the random
forest trees provided a performance increase compared to using
the trees as an ensemble classifier, as the sequential nature of the
problem is better taken into account. Also, the ability of the CRF
to learn weightings for features provides an additional layer of
subtlety that the ensemble method cannot. Something which was a
little surprising was the lesser performance of the CRF built on the

combination of tree features and simple template features, compared
to using tree features only. This could happen if the simple template
features added contained little information that was not already
contained in the more complex features from the random forest.
In that case, the additional features would unnecessarily complicate
the optimisation process and may have also lead to some overfitting.

VI. CONCLUSION

In this paper, we have introduced an approach to feature generation
for CRFs which exploits the instability of decision trees to produce
a diverse set of complex features which are highly targeted to be
relevant to the classification problem to be solved, through the
same approach as that used in building random forest ensemble
classifiers. In contrast to complex template features which produce
large numbers of mostly irrelevant features, our method produces a
smaller number of features which are well suited to the classification
task at hand. Further, the performance was improved compared to
both the CRF built on simple template-based features and to the
decision trees used as a random forest ensemble, showing that these
two aspects of our method complement each other well. Future
work could investigate in depth how controlling the complexity of
the features extracted from the random forest using pruning of the
resulting decision trees, would affect the CRF models build on them.
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