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ABSTRACT

The multi-dimensional quasi-discrete (MDQD) model is applied to the analysis of heating and evaporation 

of mixtures of E85 (85 vol. % ethanol and 15 vol. % gasoline) with diesel fuel, commonly known as ‘E85-

diesel’ blends, using the universal quasi-chemical functional group activity coefficients model for the 

calculation of vapor pressure. The contribution of 119 components of E85-diesel fuel blends is taken into 

account, but replaced with smaller number of components/quasi-components, under conditions 

representative of diesel engines. Our results show that high fractions of E85-diesel fuel blends have a 

significant impact on the evolutions of droplet radii and surface temperatures. For instance, droplet lifetime 

and surface temperature for a blend of 50 vol. % E85 and 50 vol. % diesel are 23.2% and up to 3.4% less 

than those of pure diesel fuel, respectively. The application of the MDQD model has improved the 

computational efficiency significantly with minimal sacrifice to accuracy. This approach leads to a saving of 

up to 86.4% of CPU time when reducing the 119 components to 16 components/quasi-components without 

a sacrifice to the main features of the model. 

Keywords: Activity coefficient; Diesel; Ethanol; Evaporation; Fuel blends; Gasoline; Heating. 
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1. INTRODUCTION

Diesel engines are the main power source of passenger cars and heavy duty vehicles because of their relatively high 

efficiency.1 Due to the common greenhouse emissions (mainly carbon oxides and nitrogen oxides) associated with 

diesel engines, and the depletion of fossil fuels, many investigations have been carried out on possible replacement of 

diesel fuel with alternatives, such as ethanol.2–6 Ethanol and ethanol-gasoline mixtures have been shown to be suitable 

for blending with diesel fuels.1,7 It is known that mixtures with up to  diesel and † ethanol are used in standard 85% 15%

diesel engines without significant impacts on these engines.8 Also, it has been reported in ref 9 that ethanol can be 

blended with diesel fuel at up to 20% ethanol. For higher fractions of ethanol, additives may become essential to attain 

the needed miscibility in order to stabilize the blend, control the phase separation, and attain the required cetane 

number.4,8,10–13 

The most common blends of diesel fuel are not pure ethanol but  ethanol and  gasoline ( ) fuels.1,7,12,14 The 85% 15% E85

addition of 15% gasoline to ethanol is commonly used to improve the low temperature properties of the mixture and 

the cold start in diesel engines.12,15 The results of experimental research1 have shown that the presence of E85 in diesel 

fuel leads to a noticeable reduction in nitrogen oxides. This mixture, however, has also led to a noticeable increase in 

the ignition delay and an increase in the production of carbon monoxides. The combustion temperature decreases 

with increasing the E85/diesel fuel fraction, and the brake efficiency slightly increases for higher E85/diesel fuel 

fractions.12 These effects, however, need to be treated cautiously; for instance, the addition of 20% E85 can lead to up 

to 16% increase in nitrogen oxides.12  

So far, research on E85-diesel fuel blends has focused on the physical properties, exhaust toxic emissions and ignition 

of this fuel.1,7,12,14 The impact of such blends, accounting for full fuel compositions, and their detailed species chemical 

structure and properties, on droplet heating and evaporation has not been studied to the best of our knowledge. The 

importance of modelling multi-component fuel droplet heating and evaporation processes in automotive applications 

has been highlighted in many studies.16–19 Most of the previous studies (e.g., see refs 20–22) used either the distillation 

curve model, assuming infinite thermal conductivity and infinite diffusivity of liquid, or the single component model, 

considering the initial fraction of components and ignoring the diffusivity altogether (see ref 20 for details). However, 

rapid evaporation of light components at the surface of the droplet leads to a high gradient of component mass 

fractions inside the droplet. Moreover, the temperature gradient near the droplet surface at the initial stage of droplet 

heating is expected to be very high due to the high ambient temperature. A number of models have been developed 

† Hereafter, the percentage of substance in the mixture refers to its volume fraction, unless otherwise stated.
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within the last decade to study these processes, including the Discrete Component ( ) model.16,23,24 The version of DC

the DC model described in the latter references and used in our paper is based on the analytical solutions to the heat 

transfer and species diffusion equations. The DC model is generally applicable to cases when the number of 

components is relatively small. The application of this model, however, is expected to be computationally expensive 

when the number of components exceeds several dozen. To address this issue, the Multi-dimensional Quasi-discrete (

) model has been suggested.25 MDQD

In the MDQD model, a large number of components is replaced with a much smaller number of components/quasi-

components ( ). This approach allows one to reduce the computational time by up to 96% without substantial C/QC

loss of accuracy,26–28 which is important for the implementation of the model into commercial CFD codes (e.g., see refs 

29–31). As with the DC model, the MDQD model is based on the Effective Thermal Conductivity/Effective Diffusivity (

) models to solve the heat transfer and species diffusion equations. The latter models allow one to take into ETC/ED

account the recirculation inside the droplets, due to their relative movement, and its effect on the droplet average 

surface temperature and species mass fractions within a one-dimensional model.32,33 The DC and MDQD models have 

been applied to gasoline, diesel, biodiesel and their blends.25–27,33–38 This paper is focused on the analysis of blended 

E85-diesel fuel droplets. In contrast to most previous studies, where Raoult’s law was assumed to be valid (i.e. the 

activity coefficient (AC) was assumed to be unity), the authors of ref 39 took into account the contributions of non-

unity AC, using the universal quasi-chemical functional group activity (UNIFAC) model. In this paper, the analysis of 

ref 39 is generalized to the case of blended E85-diesel droplets, using the DC and MDQD models. The basic equations 

and the compositions of fuel, used in our analysis, are described in Section 2. The validation of the model and the 

results predicted, using the DC and MDQD models, are presented and discussed in Section 3. The main results are 

summarized in Section 4.  

2. MODEL AND FUEL COMPOSITIONS 

Our analysis is based on the DC and MDQD models assuming that all processes are spherically symmetric. The droplet 

movement relevant to ambient gas (air) is considered, using the ETC/ED model.40 The basic equations used in our 

analysis and fuel compositions are summarized in the following sections.

2.1 DROPLET HEATING

The heating of spherical droplets is described by the unsteady heat conduction equation:41,42
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,
∂𝑇
∂𝑡 = 𝜅(∂2𝑇

∂𝑅2 +
2
𝑅

∂𝑇
∂𝑅) (1)

where  is the temperature in the liquid phase,  is time,  is the distance from the center of droplet, and  𝑇 = 𝑇(𝑡,𝑅) 𝑡 𝑅 𝜅

is the effective thermal diffusivity,43–45

,𝜅 = 𝑘eff 𝑐𝑙𝜌𝑙 (2)

 is the liquid density,  is the liquid specific heat capacity, and  is the Effective Thermal Conductivity (ETC), 𝜌𝑙 𝑐𝑙 𝑘eff

defined as:43,45,46 

,𝑘eff = 𝜒𝑘𝑙

,𝜒 = 1.86 + 0.86 tanh[2.225 log10(Pe𝑑(𝑙) 30)]
(3)

(4)

,  is the droplet Reynolds number in the liquid phase,  is the maximum Pe𝑙 = Re𝑑(𝑙)Pr𝑙 Red(𝑙) =
2𝜌𝑙 𝑈𝑠 𝑅𝑑

𝜇𝑙
𝑈𝑠 =

1
32∆𝑈(𝜇𝑔

𝜇𝑙)Re𝑑𝐶𝐹

surface velocity inside a droplet,  ,  is the friction drag coefficient,  is the Prandtl ∆𝑈 = |𝑈𝑔 ― 𝑈𝑑| 𝐶𝐹 =
12.69

Re𝑑
2 3(1 + 𝐵𝑀)

 Pr𝑙 =
𝑐𝑙𝜇𝑙

𝑘𝑙

number,  is the velocity of gas,  is the velocity of the droplet,  is the liquid dynamic viscosity,  is the liquid  𝑈g 𝑈𝑑 𝜇𝑙 𝑘𝑙

 conductivity,  is the conventional Reynolds number, and  is the Spalding mass transfer number defined thermal Re𝑑 𝐵𝑀 

later.16 The initial and boundary conditions for Eq. (1) are:

,
𝑇(𝑡 = 0) =  𝑇𝑑0(𝑅)             

ℎ(𝑇𝑔 ―𝑇𝑠) = 𝑘eff
∂𝑇
∂𝑅|

𝑅 = 𝑅𝑑 ― 0
} (5)

where  is the droplet surface temperature,  is the ambient gas temperature,  is the d𝑇𝑠 = 𝑇𝑠(𝑡) 𝑇𝑔 = 𝑇𝑔(𝑡) 𝑅𝑑

 and  is the convective heat transfer coefficient, found as a function of the Nusselt number , as:roplet radius, ℎ = ℎ(𝑡) Nu

,ℎ = Nu 𝑘𝑔/2𝑅𝑑 (6)

 is the thermal conductivity in the gas phase. To account for the evaporation effect on heating, the gas temperature 𝑘𝑔

 is replaced with the effective temperature , defined as:47𝑇𝑔 𝑇eff

,𝑇eff = 𝑇𝑔 +
𝜌𝑙𝐿𝑅𝑑𝐸

ℎ (7)

 is the droplet radius change rate due to evaporation, and  is the latent heat of evaporation. 𝑅𝑑𝐸 𝐿

Within any given time step ,  is assumed constant and is updated at the end of , as , 𝛥𝑡 𝑅𝑑 𝛥𝑡 𝑅𝑑(𝑛𝑒𝑤) = 𝑅𝑑(𝑜𝑙𝑑) + 𝑅𝑑∆𝑡

where the value of  is influenced by the droplet evaporation rate and thermal swelling (see Equations (29)-(31)). 𝑅𝑑

The analytical solution to Equation (1) at the end of each time step ( ) was obtained as:48𝑡 = 𝑡1
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,𝑇(𝑅,𝑡) =
𝑅𝑑

𝑅  ∑∞
𝑛 = 1{𝑞𝑛 exp[ ― 𝜅𝑅𝜆2

𝑛𝑡] ―
sin  𝜆𝑛

‖𝑣𝑛‖2𝜆2
𝑛
𝜇0(0) exp[ ― 𝜅𝑅𝜆2

𝑛𝑡]
―

sin 𝜆𝑛

‖𝑣𝑛‖2𝜆2
𝑛
∫𝑡

0

𝑑𝜇0(𝜏)

𝑑𝜏  exp[ ― 𝜅𝑅𝜆2
𝑛(𝑡 ― 𝜏)]𝑑𝜏 }sin (𝜆𝑛

𝑅
𝑅𝑑) + 𝑇eff(𝑡) (8)

where , , , , ‖𝑣𝑛‖2 =
1
2(1 ―

𝑠𝑖𝑛 2𝜆𝑛

 2𝜆𝑛 ) =
1
2(1 +

ℎ0𝑇

ℎ2
0𝑇 + 𝜆2

𝑛
) 𝑞𝑛 =

1

𝑅𝑑 ‖𝑣𝑛‖2∫
𝑅𝑑

0 𝑇0(𝑅)sin ( 𝜆𝑛
𝑅
𝑅𝑑) 𝑑𝑅 𝑇0(𝑅) = 𝑅 𝑇𝑑0(𝑅)/𝑅𝑑 𝑘𝑅 =

𝑘eff

𝑐𝑙𝜌𝑙𝑅2
𝑑 

𝜇0(𝑡)

, .=
ℎ𝑇𝑔(𝑡)𝑅𝑑

𝑘eff
ℎ𝑙0 = (ℎ𝑅𝑑

𝑘eff ) ―1

A set of positive eigenvalues ,  > 0 (the trivial solution  is not considered), is determined from the solution to  𝜆𝑛 𝑛 𝜆 = 0

the following relation:

.𝜆cos 𝜆 + ℎ𝑙0sin 𝜆 = 0 (9)

In the limit , the prediction of Expression (8) will reduce to that of the so-called ‘Infinite Thermal Conductivity’ 𝑘eff→∞

( ) model.49  The value of Nu for an isolated moving droplet is calculated as:43ITC

,Nuiso = 2
ln (1 + 𝐵𝑇)

𝐵𝑇 [1 +
(1 + RedPrd)

1
3 max{1, Red

0.077} ― 1

2 𝐹(𝐵𝑇) ] (10)

where ,  is the Spalding heat transfer number:  𝐹(𝐵𝑇) = (1 + 𝐵𝑇)0.7ln(1 + 𝐵𝑇)
𝐵𝑇

𝐵𝑇

,𝐵𝑇 =
𝐶𝑝𝑣(𝑇𝑔 ― 𝑇𝑠)

𝐿eff
(11)

 is the specific heat capacity of the fuel vapor at constant pressure,  𝑐𝑝𝑣

,𝐿eff = 𝐿 +
𝑄𝐿

𝑚𝑑
= ∑

𝑖𝜖𝑖𝐿𝑖 +
𝑄𝐿

∑
𝑖𝑚𝑖

(12)

 is the power spent on the droplet heating,  are the evaporation rates of species , and 𝑄𝐿 𝜖𝑖 = 𝜖𝑖(𝑡) 𝑖 𝑚𝑖 = 𝜖𝑖 𝑚𝑑 

. The interactions among droplets are ignored (these are discussed in refs 44,50,51). The analysis of the (𝑚𝑑 = ∑
𝑖𝑚𝑖)

evaporation process is based on the assumption that a mixture of vapor species and air can be treated as a separate 

gas (see Equation (22)).

2.2 SPECIES DIFFUSION IN THE LIQUID PHASE

The mass fractions of liquid species  are described by the transient diffusion equations for spherical 𝑌𝑙𝑖 ≡ 𝑌𝑙𝑖(𝑡,𝑅)

droplets as:52

,
∂𝑌𝑙𝑖

∂𝑡 = 𝐷eff(∂2𝑌𝑙𝑖

∂𝑅2 +
2
𝑅

∂𝑌𝑙𝑖

∂𝑅 ) (13)

where refers to species,  is the effective diffusivity of species in liquid phase  determined as a function 𝑖 =  1,2,3,… 𝐷eff ,

of the liquid diffusivity  as: 𝐷𝑙
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 𝐷eff = 𝜒𝑌𝐷𝑙, (14)

coefficient  is approximated as:𝜒Y

,χY = 1.86 + 0.86 tanh[2.225 log10(Red(𝑙)Sc𝑙 30)] (15)

 is the liquid ,  is the Reynolds number, as in Equation (4), and  is the Pe𝑙 = Red(𝑙) Sc𝑙, Scd(𝑙) =
𝑣𝑙

𝐷𝑙
Schmidt number Red(𝑙) 𝑣𝑙

kinematic viscosity of liquid phase. The model based on Equations (13)-(15) is known as the Effective Diffusivity 

(ED) model.43,45 

The following boundary condition is considered for the solution to Equation (13):40

,𝛼(𝜖𝑖 ― 𝑌𝑙𝑖𝑠) = ― 𝐷eff
∂𝑌𝑙𝑖

∂𝑅 |
𝑅 = 𝑅𝑑 ― 0

(16)

where  are liquid components’ mass fractions at the droplet surface,𝑌𝑙𝑖𝑠 =  𝑌𝑙𝑖𝑠(𝑡)

,𝛼 =
|𝑚𝑑|

4𝜋𝜌𝑙𝑅2
𝑑 

= |𝑅𝑑𝐸| (17)

 is the droplet evaporation rate, the calculation of which is discussed in Section 2.3 (see Equation (22)). 𝑚𝑑

The initial condition is ,𝑌𝑙𝑖 (𝑡 = 0) =  𝑌𝑙𝑖0(𝑅)

Assuming no impacts of species in the ambient gas, the values of  were obtained as:52–54𝜖𝑖

.𝜖𝑖 =
𝑌𝑣𝑖𝑠

∑
𝑖𝑌𝑣𝑖𝑠

(18)

The following analytical solution to Equation (13)  at the end of each time step was obtained:52

,𝑌𝑙𝑖 = 𝜖i +
1
𝑅{ [exp [𝐷eff(𝜆0

𝑅𝑑)
2
𝑡][𝑞𝑖0 ― 𝜖𝑖𝑄0]sinh (𝜆0

𝑅
𝑅𝑑) +

∑∞
n = 1[exp [ ― 𝐷eff(𝜆𝑛

𝑅𝑑)
2
𝑡][𝑞𝑖𝑛 ― 𝜖𝑖𝑄𝑛] sin (𝜆𝑛

𝑅
𝑅𝑑)} (19)

where  and  are calculated from  and  , respectively, 𝜆0 𝜆𝑛 tanh 𝜆0 = ― 𝜆0 ℎ0𝑌 tanh 𝜆𝑛 = ― 𝜆𝑛 ℎ0𝑌 (for n ≥ 1) ℎ0𝑌 = ―

,(1 +
𝛼𝑅𝑑

𝐷eff)

,𝑄𝑛 = { 
―

1
‖𝑣𝑜‖2(𝑅𝑑

𝜆0)2
(1 + ℎ0)sinh 𝜆0               when   𝑛 = 0

1
‖𝑣𝑛‖2(𝑅𝑑

𝜆𝑛)2
(1 + ℎ0𝑌)sin 𝜆𝑛                      when   𝑛 ≥ 1} (20)

 is obtained from Equation (8), replacing  with , and:‖vn‖2 ℎ0𝑇 ℎ0𝑌

.𝑞𝑖𝑛 = {  

1
‖𝑣0‖2∫

𝑅𝑑

0 𝑅 𝑌𝑙𝑖0(𝑅)sinh (𝜆0
𝑅
𝑅𝑑)𝑑𝑅       when   𝑛 = 0

1
‖𝑣𝑛‖2∫

𝑅𝑑

0 𝑅 𝑌𝑙𝑖0(𝑅)sin (𝜆𝑛
𝑅
𝑅𝑑)𝑑𝑅          when   𝑛 ≥ 1} (21)

Solution (19) is incorporated in the Discrete Component (DC) model, which is used in our analysis.
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2.3 DROPLET EVAPORATION

For multi-component fuels, droplet evaporation depends on the diffusion rate of individual species in the gas phase; 

the evaporation rate of each component is affected by the evaporation rate of other components.50,52 Following refs 

40,55, however, the relative diffusion of individual components in the gas phase is not considered. The analysis of 

droplet evaporation rate ( ) is based on the following expression:𝑚𝑑

,𝑚𝑑 = ―2𝜋𝑅𝑑𝐷𝑣𝜌total𝐵𝑀 Shiso (22)

where  is the binary diffusion coefficient of vapor in gas (air),  is the total density of the mixture of 𝐷𝑣 𝜌𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑔 + 𝜌𝑣

vapor and gas,  is the density of the ambient gas,  is the Spalding mass transfer number defined as:56𝜌𝑔 𝐵𝑀

 𝐵𝑀 =
𝜌𝑣𝑠 ― 𝜌𝑣∞

1 ― 𝜌𝑣𝑠
=

𝑌𝑣𝑠 ― 𝑌𝑣∞

1 ― 𝑌𝑣𝑠
, (23)

 is the vapor mass fraction,  and  are densities of vapor near the droplet surface and at a large distance from 𝑌𝑣  𝜌𝑣𝑠 𝜌𝑣∞

it,  is the Sherwood number for isolated droplets approximated as:43Shiso

,Shiso = 2
ln (1 + 𝐵𝑀)

𝐵𝑀 [1 +
(1 + RedScd)

1
3 max{1, Red

0.077} ― 1

2 𝐹(𝐵𝑀) ] (24)

  is the Schmidt number for the gas phase, is the same as in (10) but with  replaced with .23  and  Scd 𝐹(𝐵𝑀) 𝐵𝑇 𝐵𝑀 𝐵𝑇 𝐵𝑀

are linked by the following formula:43

,𝐵𝑇 = (1 + 𝐵𝑀)𝜑 ―1

,𝜑 = (𝑐𝑝𝑣

𝑐𝑝𝑎)(Sh ∗

Nu ∗ ) 1
Le

(25)

(26)

 is the Lewis number, and  and  are the modified Sherwood and Nusselt Numbers, Le = 𝑘𝑔 (𝑐𝑝𝑎 𝜌𝑔 𝐷𝑣) Sh ∗ Nu ∗

respectively, calculated as:

,Sh ∗ = 2[1 +
(1 + Re𝑑Sc𝑑)1/3max{1,Re0.077

𝑑 } ―1

2𝐹(𝐵𝑀) ] (27)

,Nu ∗ = 2[1 +
(1 + Re𝑑Pr𝑑)1/3max {1,Re0.077

𝑑 } ― 1

2𝐹(𝐵𝑇) ] (28)

The ratio  is equal to 1 for stationary droplets. This ratio was sometimes assumed equal to 1 for slowly moving 
Sh ∗

Nu ∗

droplets.40,52 Such an assumption turned out to be too crude in some cases. Hence, Expressions (27) and (28) are 

used to estimate  based on Equation (26). Note that .𝜑 𝑚𝑑 ≤ 0

When calculating the value of , both droplets evaporation and thermal swelling  during the time step were taken 𝑅𝑑

into account:57
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,𝑅𝑑 = 𝑅𝑑𝑇 + 𝑅𝑑𝐸 (29)

where  is the rate of change in droplet radius, caused by thermal expansions or contractions, calculated as:57𝑅𝑑𝑇

,𝑅𝑑𝑇 =
𝑅𝑑(𝑇𝑎𝑣,0)

∆𝑡 [(𝜌𝑙(𝑇𝑎𝑣,0)
𝜌𝑙(𝑇𝑎𝑣,1))

1/3
― 1] (30)

 and  are average droplet temperatures at the beginning  and the end  of the time-step. The value 𝑇𝑎𝑣,0 𝑇𝑎𝑣,1 𝑡 =  𝑡0 𝑡 = 𝑡1

of  is controlled by droplet evaporation:40𝑅𝑑𝐸

.𝑅𝑑𝐸 =
𝑚𝑑

4𝜋𝑅2
𝑑𝜌𝑙

(31)

2.4 SPECIES AT THE DROPLET SURFACE 

To find  , the mass fractions of species in the vapor phase near the droplet surface ( ) need to be found. The 𝜖𝑖 𝑌𝑣𝑖𝑠

latter depend on the molar fractions of species  in the vapor phase near the droplet surface ( ):58𝑖 𝑋𝑣𝑖𝑠

, 𝑋𝑣𝑖𝑠 = 𝑋𝑖
𝛾𝑖𝑝 ∗

𝑣𝑖𝑠

𝜑𝑖 𝑝  (32)

where  is the molar fraction of the ith species in the liquid phase near the droplet surface, and  is the saturated 𝑋𝑖 𝑝 ∗
𝑣𝑖𝑠

vapor pressure of the  species (in the case when , ), is the ambient pressure,  is the activity 𝑖𝑡ℎ 𝑋𝑖 = 1 𝑝 ∗
𝑣𝑖𝑠 = 𝑝𝑣(𝑅𝑑) 𝑝 𝛾𝑖

coefficient (AC), and is the fugacity coefficient. It has been shown, in some studies (e.g.  ref 59), that the non-ideality 𝜑𝑖 

mainly originates from the liquid phase, while it is very low at the gas phase for the parameters used in this study. 

Hence the fugacity coefficient can be assumed equal to unity, which justifies the applicability of the ideal gas law used 

in our analysis. In the limit when , Equation (32) describes the Raoult’s law.60  𝛾𝑖 = 1 and 𝜑𝑖 = 1

In contrast to previous studies, we have calculated  without approximations, using the multi-component universal 𝛾𝑖

quasi-chemical functional group activity coefficients (UNIFAC) model.39 We have used the latter model for the 

prediction of the activity coefficients of 119 components of E85-diesel fuel blends:61,62

ln 𝛾i = ln 𝛾C
i + ln 𝛾R

i , (33)

where , ,    is ln 𝛾C
i = ln

Ф𝑖

𝑋𝑖
+

𝑧
2𝑞𝑖 ln

𝜃𝑖

Ф𝑖
 + 𝑙𝑖 ―

Фi

𝑋𝑖
∑

j𝑋𝑗𝑙𝑗 ln 𝛾𝑅
𝑖 = ∑

𝑘𝑣𝑖
𝑘(ln Г𝑘 ― ln Г𝑖

𝑘) 𝑙𝑖 =
𝑍
2 (𝑟𝑖 ― 𝑞𝑖) ― (𝑟𝑖 ― 1), 𝑍 = 10, 𝜃𝑖 =

𝑞𝑖𝑋𝑖

∑
𝑗𝑞𝑗𝑋𝑗

the area fraction of each molecule in the mixture,  is the segment (volume) fraction of each molecule,Ф𝑖 =
𝑟𝑖𝑋𝑖

∑
𝑗𝑟𝑗𝑋𝑗

 𝑟𝑖 =

 is the volume parameter,  is the surface parameter, , ∑
𝑘𝑣𝑖

𝑘 𝑅𝑘 𝑞𝑖 = ∑
𝑘𝑣𝑖

𝑘 𝑄𝑘 ln Г𝑘 = 𝑄𝑘[1 ― ln (∑
𝑚𝜃𝑚𝜓𝑚𝑘) ― ∑

𝑚

𝜃𝑚𝜓𝑘𝑚

∑
𝑛𝜃𝑛𝜓𝑛𝑚]

 is the area fraction of group ,  is the molar fraction of group , and   and  are the Van der Waals 𝜃𝑚 =
𝑄𝑚𝑋𝑚

∑
𝑛𝑄𝑚𝑋𝑚

𝑚 𝑋𝑚 𝑚 𝑄𝑘 𝑅𝑘
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surface areas and volumes for each functional group within a molecule, respectively,‡  is the residual AC of group  Г𝑘 𝑘

in the mixture and  is the residual AC of group  in a reference solution containing only molecules of type  Г𝑖
𝑘 𝑘 𝑖, 𝜓𝑚𝑛 =

 is the interaction and temperature dependent coefficient,  is the group-interaction parameter between 𝑒 ―(
𝑎𝑚𝑛

𝑇 ) 𝑎𝑚𝑛

groups  and ,  is the interface temperature. The implementation of the UNIFAC model for the vapor pressure 𝑛 𝑚 𝑇

predictions has been validated for a highly non-ideal mixture (ethanol/gasoline).39

2.5 SOLUTION ALGORITHM

The following algorithmic steps are used in our analysis:

1. The temperature distribution and species mass fractions are provided inside the droplet (initial homogeneous or 

inferred from the previous time step). The species molar fractions are converted into species mass fractions.

2. The liquid thermal conductivity and effective thermal conductivity of the droplet are calculated. 

3. The partial pressures and molar fractions in the gas phase are calculated, using Equation (32).

4. The Spalding mass transfer number is calculated, using Equation (23).

5. The liquid heat capacity and the mixture diffusivity of vapor species in air, and species evaporation rates ( ) are 𝜖𝑖

calculated, using Equation (18).

6. The Spalding heat transfer number is calculated, using the iterations of Equations (25) – (28).

7. The Nusselt and Sherwood numbers are calculated for isolated droplets, using Equations (10) and (24).

8.  and  are determined, using Equations (27) and (28).Nu ∗ Sh ∗

9. The change rate of droplet radius is found, using Equations (29)-(31).

10. The effective temperature is found, using Equation (7).

11. The temperature distribution inside the droplet is found, based on Equation (8), with 44 terms in the series.

12. The species distribution inside the droplet is found, based on Equation (19), with 33 terms in the series. 

13. The droplet radii are calculated at the end of each time step . The ratio of the calculated radius to the initial  ∆𝑡

radius should be higher than an à priori small number of  to go to the next step; otherwise, the droplet 𝜀𝑠 =  10 ―6

is assumed to be completely evaporated. 

14. The temperature and species distributions for the droplet with the new radius are found, and used in Step 1.

‡ The structure of the groups and the values of and  in E85-diesel fuel blends are the same as those shown in ref 𝑅𝑘 𝑄𝑘
39 for the ethanol-gasoline blend. Diesel fuel, however, has 5 more groups of molecules than gasoline fuel, namely, 
bicycloalkanes, naphthalenes, tricycloalkanes, diaromatics and phenanthrenes. The approximations of these 5 groups 
are discussed in Appendix A. 
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2.6 FUEL COMPOSITIONS

The EU standard diesel fuel and gasoline for advanced combustion engines (FACE C) are used in our analysis. Diesel 

fuel consists of 98 hydrocarbon components, including the following mole fractions of the components: 40.0556% 

alkanes, 14.8795% cycloalkanes, 7.6154% bicycloalkanes, 16.1719% alkylbenzenes, 9.1537% indanes & tetralines, 

8.6773% naphthalenes, 1.5647% tricycloalkanes (represented by a characteristic component C19H34), 1.2240% 

diaromatics (represented by a characteristic component C13H12), and 0.6577% phenanthrenes (represented by a 

characteristic component C14H10).25 The composition of FACE C gasoline fuel (simplified from 83 to 20 hydrocarbons 

based on the similarity in chemical structure and thermodynamic and transport properties of components)26 includes 

the following mole fractions of the components: 28.61% n-alkanes, 65.19% iso-alkanes, 4.25% alkylbenzene, 0.10% 

indanes (represented by C9H10), 1.49% cycloalkanes (represented by C8H16), and 0.35% olefins (represented by C9H18). 

Water free bio-ethanol (anhydrous) is used to represent ‘ethanol’ in the fuel mixtures. Ethanol is assumed to be 

completely miscible in diesel (this assumption is open to question, especially for high mass fractions of ethanol due to 

the differences in chemical structures and characteristics of ethanol and diesel fuel).10,11 

The following volume fractions of E85 (85% ethanol and 15% gasoline)/diesel fuels are considered: pure diesel (i.e. 

0% E85), E85-5, E85-20, E85-50, E85-80, and E85.§.  As in refs 25,26,33, we have taken into account the transient 

thermodynamic and transport properties of individual (119) components and their mixtures, which are influenced by 

their transient composition, and ambient pressure and temperature. The fuel properties in liquid phase are 

determined at the droplet average temperature , whereas the fuel properties in gas phase are  (𝑇𝑎𝑣 =
3

𝑅3
𝑑
∫𝑅𝑑

0 𝑅2𝑇(𝑅) d𝑅)
determined at the reference temperature . The ambient air density is calculated based on the ideal gas  (𝑇𝑟 =

2
3𝑇𝑠 +

1
3𝑇𝑔)

law. The latent heat of evaporation and saturated vapor pressure are calculated at . 𝑇𝑠

3. RESULTS

3.1 MODEL VALIDATION

The results of the application of the DC model to investigate the evaporation of diesel fuel were validated against 

experimental data and verified against the results of other numerical simulations.63,64 In these papers, diesel fuel was 

approximated by the following components (based on their mass fractions): 8% toluene (C7H8), 11% decane (C10H22), 

21% dodecane (C12H26), 27% tetradecane (C14H30), 17% hexadecane (C16H34), and 16% octadecane (C18H38). Droplets 

§ E85-X refers to a mixture of X% volume fraction of E85 fuel and (100-X) % volume fraction of diesel fuel.
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with initial diameters 0.86 mm (for ambient gas temperature  K), and 0.84 mm (for ambient gas temperature 𝑇 = 523

 K) and initial temperature of 300 K were suspended at the tip of a quartz fiber.64 The droplet relative velocities 𝑇 = 723

in a chamber with ambient pressure of 1 atm were 0.3 m/s. The ETC/ED model was used.63 Note that the authors of 

the latter paper state that ‘the droplet temperature and composition were assumed to be uniform’, which would 

contradict their claim that they use the ETC/ED model. We believe that this is a typo and they refer to droplet surface 

temperature and composition. 

The time evolutions of the normalized squared droplet diameters, predicted using our model, were compared with the 

numerical results presented in ref 63 and experimental data provided in ref 64. The results of the comparison are 

shown in Figure 1. As follows from this figure, the predictions of our code are reasonably close to the numerical and 

experimental data. 

Figure 1. Normalized squared diameters of diesel fuel (represented by 6 components)63,64 droplets versus time.

3.2 PREDICTIONS OF THE DC MODEL

The impacts of various volume fractions of E85-diesel fuel blends on droplet heating and evaporation were 

investigated using the DC model, where the contribution of 98, 119 and 21 components were considered for pure 

diesel, E85-diesel blends and pure E85, respectively. The partial vapor pressures of the components of the blended 

fuel were calculated taking into account the non-unity ACs for up to 119 components using the UNIFAC model. As in 

refs 35,65, the initial droplet radius was taken equal to  and its constant axial velocity in still air and 𝑅𝑑𝑜 = 12.66 μm
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initial temperature were assumed equal to  m/s and K, respectively. The ambient air pressure and 𝑈𝑑 = 10 𝑇𝑑𝑜 = 360 

temperature were assumed constant and equal to  bar and  K, respectively. The time evolution of 𝑝 = 30 𝑇𝑔 = 800

droplet radii and surface temperatures  for various E85/diesel fuel blends are shown in Figures 2 and 3, 𝑅𝑑 𝑇𝑠

respectively.  

Figure 2. Droplet radii versus time for various E85-diesel blends. A droplet with the initial radius 12.66 µm and initial 
homogeneous temperature 360 K was assumed to be moving with constant velocity of 10 m/s in still air.  Ambient 
pressure and temperature were taken equal to 30 bar and 800 K, respectively.

Figure 3. Droplet surface temperature versus time for various E85-diesel blends for the same ambient conditions 
and input parameters as in Figure 2.
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As follows from Figure 2, droplet lifetime for pure diesel is longer than that for any blend. It decreases as the E85 

fraction increases. The difference in droplet lifetime for E85-5 compared to pure diesel is 5.7%. This difference reaches 

49.5% for pure E85. This significant reduction in droplet lifetime is ascribed to the fact that E85 is more volatile than 

pure diesel and has a saturation vapor pressure of 207 kPa (at ), while it is only 2.3 kPa for pure diesel at the  𝑇 = 360 K

same temperature. 

As can be seen from Figure 3, droplet surface temperature decreases with increasing E85 volume fractions. For E85-

5, it is up to 0.78% less than that of pure diesel. This reduction is increased to 3.4% for E85-50 and reached 23.4% for 

pure E85. This difference is attributed to the fact that the heat capacity of ethanol is noticeably higher than that of 

diesel fuel. In agreement with the previous studies,27,66 droplet surface temperatures do not show plateau profiles due 

to the diffusion of components in droplets.

The temperature distribution inside the droplet is shown in Figure 4 at time instants 0.02, 0.3, 0.5 and 1 ms. As can be 

seen from this figure, the temperature difference between the droplet center and its surface can reach up to 9.2 %. The 

results shown in Figure 4 should be treated with care for the case of non-zero droplet relative velocities, since the 

ETC/ED models were primarily developed for prediction of the average surface temperatures and species mass 

fractions in moving droplets. 

Figure 4. Temperature inside droplet versus normalized distance from the center of droplet for E85-5 blend at time 
instants 0.02, 0.3, 0.5 and 1 ms.

The distillation characteristics of E85-5 and pure E85, estimated using the ETC/ED models, with the same ambient 

conditions as in Figures 2-4, are presented in Figure 5. As can be seen from this figure, the percentage volume 
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recovered as distillate, for pure E85, starts at  and ends (100% recovered) at   which is less than 𝑇 = 403 K 𝑇 = 440 K,

the average boiling point of pure E85 at . For the E85-5 mixture, the percentage volume recovered starts at  𝑝 = 30 bar

 and ends at . The sudden increase in droplet surface temperature without any volume recovered, 𝑇 = 438 K  𝑇 = 760 K

for the latter mixture, is ascribed to the fact that the lighter components (E85) are evaporated and the remaining are 

only the diesel components which start evaporating at . This behavior is similar to that described in ref 20.  𝑇 = 584 K

Figure 5. Droplet surface temperature versus percentage volume recovered as distillate for E85-5 and pure E85 using 
the ETC/ED models.

To assess the impact of the non-ideality of the liquid phase on the estimated droplet lifetimes and surface 

temperatures, a comparison between the results based on the two activity coefficients (the unity and UNIFAC) for E85-

5 and E85-20 fuel blends is shown in Figure 6. One can see from this figure that the droplet lifetime predicted, using 

the UNIFAC model, is about 3.6% shorter than that based on the assumption of a unity activity coefficient. This is 

attributed to the fact that the non-ideal mixture entails a higher vapor pressure, due to the presence of ethanol, 

compared to the ideal mixture. Hence, the faster evaporation rates and shorter droplet lifetimes.

The time evolution of selected 9 (out of 119) species mass fractions for E85-5 blend is shown in Figure 7. The selected 

components are: C10H22, C19H40, C27H56 (the alkane group), C20H40, C27H54 (the cycloalkane group), C12H18, C24H42 (the 

alkylbenzene group), C8H18 (iso-octane in gasoline) and C2H5OH (ethanol). As can be seen from this figure, the mass 

fractions of the lighter components in the blend (e.g., C2H5OH, C8H18 and C10H22) decrease monotonically with time, 

while the mass fractions of the intermediate components initially increase at the expense of lighter components and 
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then decrease with time. The mass fractions of heavy components (C27H56 and C27H54) increase until they become the 

dominant ones, although they have very small fractions initially.     

Figure 6. Evolution of droplet radii and surface temperatures for E85-5 and E85-20 blends for the same ambient 
conditions and input parameters as in Figures 2-5.

 

Figure 7. The plots of surface mass fractions of 9 representative components of the E85-5 blend versus time. The  𝑌𝑙𝑖𝑠 
plots for the following components are shown: C1012H22 (1), C19H40 (2), C27H56 (3), C20H40 (4), C27H54 (5), C12H18 (6), 
C24H42 (7), C8H18 (8) and C2H5OH (9). The same ambient conditions and input parameters as in Figures 2-6 were used.
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3.3 PREDICTIONS OF THE MDQD MODEL

The MDQD model was used to analyze E85-5 droplets. The input parameters and ambient conditions were the same 

as those used for the analysis based on the DC model. The impacts of various approximations of 119 components of 

E85-5 blends on the predictions of droplet radii and surface temperatures are shown in Figures 8 and 9, respectively. 

These approximations are: 90, 63, 45, 20 and 16 components/quasi-components (C/QC) (see Appendix B for details). 

Figure 8. Droplet radii versus time for six approximations of E85-5: 119 components using the DC model, and 90, 63, 
45, 20 and 16 C/QC (numbers near the curves) using the MDQD model, for the same ambient conditions and input 
parameters as in Figures 2-7.

Figure 9. Droplet surface temperature versus time for six approximations of the E85-5 blend: 119 components using 
the DC model, and 90, 63, 45, 20, and 16 C/QC (numbers near the curves) using the MDQD model, for the same ambient 
conditions and input parameters as in Figures 2-8.
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As can be seen from Figures 8 and 9, the errors in droplet lifetimes and surface temperatures predicted by the model 

using 90 C/QC are 0.38% and up to 0.26%, respectively, compared with those predicted using the DC model taking 

into account the contributions of all components. These errors increase to 0.99% and up to 0.39% for droplet lifetimes 

and surface temperatures, respectively, when the blend is approximated by 63 C/QC. They further increase to 7.16% 

for droplet lifetime and up to 2.90% for the droplet surface temperature, when 16 C/QC were used. These errors are 

rather large for many engineering applications. At the same time, it was found that the approximation of the blend by 

20 C/QC under-predicts the droplet lifetimes and surface temperatures by up to 3.58% and up to 2.90%, respectively, 

which is acceptable in most engineering applications. The computational efficiency of the MDQD model in terms of the 

required CPU time is illustrated in Table 1. For example, the approximation of 119 E85-5 components by 20 

components/quasi components reduces CPU time by up to 82.7%. The workstation used is fitted with i5-3337U, dual 

Core, 8 GB RAM, and 1.80 GHz processor. The time step was set as 1 µs.

Table 1. The impact of reducing the number of components on CPU time . (Diff % =
|CPU time(C/QC) - CPU time119|

CPU time119
*  100)

number of C/QC CPU time (sec) Diff %

119 1816 -

90 1360 25.1

63 955 47.4

45 687 62.2

20 314 82.7

16 247 86.4

4. CONCLUSION

The heating and evaporation of blended E85-diesel fuel droplets are investigated in conditions representative of diesel 

engines. It is shown that E85-diesel blended fuel droplets have shorter lifetimes than those of pure diesel. Higher 

fractions of E85 result in up to 49.5% shorter droplet lifetimes and up to 23.4% lower droplet surface temperatures 

than those of pure diesel. Such a significant impact of high E85/diesel fractions can be attributed to the differences in 

their saturated vapor pressure. 
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In the case of the E85-5 blend, the assumption of an ideal-mixture with a unity activity coefficient (i.e. Raoult’s law is 

valid) is shown to lead to over-prediction of droplet lifetimes by up to 3.6%, compared to the case when the UNIFAC 

activity coefficient is used. 

It is shown that replacing 119 components of the blended fuel with 20 components/quasi-components reduces CPU 

time by up to 83% with less than 3.6% and 2.9% under-predicted droplet lifetimes and surface temperatures, 

respectively, compared to the prediction of the model accounting for all the 119 components.

APPENDIX A. THE APPROXIMATION OF STRUCTURE GROUPS 

The values of parameters and for five groups in the composition of diesel fuel (bicycloalkanes, naphthalenes, 𝑅𝑘 𝑄𝑘 

tricycloalkanes, diaromatics and phenanthrenes) are not provided anywhere, to the best of our knowledge. We have 

approximated the structure of these groups of molecules to the nearest available structures for which the values of 

parameters and are known, taking into account the number of groups in each molecule. For example, when the 𝑅𝑘 𝑄𝑘 

aromatic molecule C10H14 (its structure group is available in ref 61,62) has 1 aromatic ring (C6), 3 CH2 and 1 CH3 (the 

numbers 1, 3 and 1 refer to  which is the number of groups in molecule ), the diaromatic molecule C12H16 is 𝑣𝑖
𝑘  𝑖

approximated by 2 aromatic rings (C6). Thus, the diaromatic group is approximated by 2 single aromatic groups, as 

shown in Table 2. This approximation allowed us to predict the activity coefficients for all components of the E85-

diesel fuel blend.

Table 2. The approximation of the missing structure groups for the predictions of the ACs.

Group structureGroup name

Missing group Approximation

Bicycloalkanes

The bicyclo-C10H18 is approximated by Cyclo-C6, 3 CH2 and 1 CH3.

Naphthalenes CH2CH=CHCH3

(CH2)3CH3
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The naphthalenes C10H8 is approximated by 1 aromatic C6, 1 CH2, 
1 CH=CH and 1 CH3. 

Tricycloalkanes

The tricycloalkane C14H24 is approximated by 2 cyclo C6 and 2 CH3.
Diaromatics

The diaromatic C12H16 is approximated by 2 aromatic C6.

Phenanthrenes 

The phenanthrene C14H11 is approximated by 2 aromatic C6 and 2 
CH3

Note that both  and   depend on the contact distances, bond angles, bond distances, and shapes that are 𝑅𝑘 𝑄𝑘

characteristic of the structure group.67 

APPENDIX B. APPROXIMATIONS OF THE E85-DIESEL FUEL BLEND

Table 3. The numbers of components/quasi-components (C/QC) (top line), and the compositions of C/QCs, used in 
the MDQD model for approximating E85-5. 

Group 119 90 63 45 20 16
8 8 8

Al
k

an 9 9 9
8.91 (C8–C9) 10.33 (C8–C12) 10.33 (C8–C12)

CH3CH3

CH3

CH3
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10 10 10
11 11 11

10.38 (C10–C11)

12 12 12
13 13 13

12.49 (C12–C13)

14 14 14
15 15 15

14.54 (C14–C15)

16 16 16
17 17 17

16.52 (C16–C17)

15.05 (C13–C17) 15.05 (C13–C17)

18 18 18
19 19 19

18.52 (C18–C19)

20 20 20
21 21 21

20.39 (C20–C21)

22 22 22

19.38 (C18–C22) 19.38 (C18–C22)

23 23 23
22.33 (C22–C23)

24 24 24
25 25 25

24.34 (C24–C25)

26es
 (D

ie
se

l)

27
26.42 (C26-C27) 26.42 (C26-C27) 26.42 (C26-C27)

23.84 (C23–C27) 23.84 (C23–C27)

10 10

11 11
10.74 (C10-C11) 10.74 (C10-C11)

12 12
13 13

12.43 (C12-C13) 12.43 (C12-C13)

14 14
15 15

14.47 (C14-C15) 14.47 (C14-C15)

12.56 (C10–C15) 12.56(C10–C15)

16 16
17 17

16.49 (C16-C17) 16.49 (C16-C17)

18 18
19 19

18.51 (C18-C19) 18.51 (C18-C19)

20 20
21 21

20.35 (C20-C21) 20.35 (C20-C21)

18.29 (C16–C21) 18.29 (C16–C21)

22 22
23 23

22.26 (C22-C23) 22.26 (C22-C23)

24 24
25 25

24.37 (C24-C25) 24.37 (C24-C25)

26

Cy
cl

oa
lk

an
es

 (D
ie

se
l)

27
26.42 (C26-C27) 26.42 (C26-C27) 26.42 (C26-C27)

22.98 (C22–C27) 22.98 (C22–C27)

10
11

10.60 (C10-C11) 10.60 (C10-C11)

12
11.1 (C10–C12)

13
12.40 (C12-C13) 12.40 (C12-C13)

14
15

14.43 (C14-C15) 14.43 (C14-C15)
13.86 (C13–C15)

16
17

16.57 (C16-C17) 16.57 (C16-C17)

18
17.09 (C16–C18)

19
18.60 (C18-C19) 18.60 (C18-C19)

20
21

20.32 (C20-C21) 20.32 (C20-C21)
19.31 (C19–C21)

22
23

22.41 (C22-C23) 22.41 (C22-C23)

24

Bi
cy

cl
oa

lk
an

es
 (D

ie
se

l)

25
24.42 (C24-C25) 24.42 (C24-C25)

22.92 (C22–C25)

14.74(C10–C25) 14.74(C10–C25)

8 8
9 9

8.86 (C8-C9) 8.86 (C8–C9)

Al
ky

lb
e

nz
en

es
 

(D
ie

se
l

10 10 10.15 (C10-C11) 10.15 (C10–C11)
10.207 (C8–C13) 10.72(C8–C16)
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11 11
12 12
13 13

12.26 (C12-C13) 12.26 (C12–C13)

14 14
15 15

14.42 (C14-C15) 14.42 (C14–C15)

16 16
17 17

16.45 (C16-C17) 16.47 (C16–C17)

18 18
19 19

18.38 (C18-C19) 18.38 (C18-C19)

16.23 (C14–C19)

20 20
21 21

20.41 (C20-C21) 20.41 (C20-C21)

22 22
23

)

24
23.49(C23-C24)

22.74 (C22-C24) 22.74 (C22-C24)
21.08 (C20–C24)

19.02 (C17–C24)

10 10
11 11

10.51 (C10-C11)

12 12
13 13

12.47 (C12-C13)
11.41 (C10–C13)

14 14
15 15

14.45 (C14-C15)

16 16

12.49 (C10–16)

17 17
16.46 (C16-C17)

15.34 (C14–C17)

18 18
19 19

18.39 (C18-C19)

20 20
21

In
da

ne
s &

 te
tr

al
in

es
 (D

ie
se

l)

22
21.32 (C21-C22)

20.57 (C20-C22)
19.24 (C18–C22)

18.61 (C17–C22)

13.83 (C10–C22)

10 10
11 11

10.56 (C10-C11)

12 12
13 13

12.35 (C12-C13)

14 14
15 15

14.44 (C14-C15)

11.53 (C10–C15)

16 16
17 17

16.42 (C16-C17)

18 18
19

N
ap

ht
ha

le
ne

s (
Di

es
el

)

20
19.51 (C19-C20)

18.98 (C18-C20)
17.90 (C16–C20)

12.39 (C10–C20) 12.39 (C10–C20)

Tricycloalkane 19 19 19 19 - -
Diaromatic 13 13 13 13 - -

Di
es

el

Phenanthrene 14 14 14 14 - -
4
5
6 5.24 (C4-C12)

10N
-a

lk
an

es
 

(g
as

ol
in

e)

12

5.24 (C4-C12) 5.24 (C4-C12) 5.24 (C4-C12) 5.24 (C4-C12)

4
5
6 7.37 (C4-C8)
7
8

7.37 (C4-C8) 7.37 (C4-C8) 7.37 (C4-C8)

9
10

Is
o-

al
ka

ne
s (

ga
so

lin
e)

11
9.74 (C9-C11) 9.74 (C9-C11) 9.74 (C9-C11) 9.74 (C9-C11)

7.41 (C4-C11)

8Alkylbenzenes 
(gasoline) 9

9.07 (C8-C11) 9.07 (C8-C11) 9.07 (C8-C11) 9.07 (C8-C11) 9.07 (C8-C11)
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10
11

Indane 9 - - - - -

Cycloalkane 8 - - - - -

Ga
so

lin
e

Olefin 9 - - - - -
Ethanol 2 2 2 2 2 2
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