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Abstract 
We have investigated the hardening response, residual stress generation and 

microstructural changes in aluminium alloy 2624 owing to laser shock peening. The 

alloy was studied in two heat treatment conditions, T351 and T39, that have 20% 

difference in yield strength: hence the effects of laser power density and multiple peen 

impacts on materials with nominally identical physical properties but with different 

hardening responses has been studied. Hardness was characterised by 

nanoindentation, and residual stresses were measured by incremental hole drilling. 

The magnitude and the depth of the peak compressive residual stresses increase with 

increasing power densities as well as the number of laser impacts, before reaching a 

saturation point above which loss of surface compression occurs. Maximum 

compressive residual stresses were around –350 MPa, and maximum hardness 

increase was around 22%. The treatment has a noticeable effect in changing the 

microstructures of the T351 temper while the T39 remained almost unchanged.  
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1. Introduction 
Laser shock peening (LSP) is a surface processing technology that offers life extension 

of metallic structural components for aerospace, automotive, and power generation 

industries, among others, by inducing deep compressive residual stresses that improve 

strength, hardness, fatigue life and corrosion resistance of the material [1, 2]. Fatigue 

life improvement via LSP is largely dependent on the residual stress generated, which 

in turn is dependent upon the peening parameters. A number of researchers have 

reported the effect of LSP on the mechanical properties, residual stress, and the 

resulting life improvement of various aluminium alloys. The peak compressive residual 

stresses for Al 2024 T3 were reported as around –150 MPa at a power density of 3 

GW/cm2 [3], and about –180 and –300 MPa at 1 and 4 GW/cm2, respectively [4]. Sano 

et al. [5] also reported peak residual stress of –300 MPa and hardness of about 2.4 

GPa for the same alloy, although a different laser system was used.  

Al 2624 is a newly developed alloy (to replace Al 2024) that has improved fracture 

toughness and damage tolerance compared to Al 2024. At present, developing an LSP-

based fatigue design for enhanced structural integrity relies heavily on trial-and-error 

without a detailed understanding of the correlation between the plastic deformation and 

the consequent hardening and generation of residual stress. It is therefore costly and 

time-consuming. Although efforts have been made previously to understand the effect 

of laser treated area on the residual stress and fatigue [6], a systematic study on the 

effect of single vs. multiple peen overlaps at different peening intensities, and their 

effects on the elastoplastic response is still lacking. 

The goals of the current research are to quantify the relationships between peening 

conditions, induced residual stresses, hardness, and material state for aluminium 2624. 

We investigate the effect of peening intensity and the number of impacts on the 

hardness and residual stress in Al 2624 alloy in the T351 and the T39 heat treatment 

conditions. Two heat treatment conditions were selected to study the effects of yield 

strength and hardening capacity while maintaining nominally identical elastic properties. 
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2. Materials and Experimental Methods 

2.1   Materials 
Al 2624 alloy was supplied by Alcoa in two heat treatment conditions (T351 & T39). 

T351 alloy is solution heat-treated, stress-relieved by stretching, and naturally-aged; 

T39 is cold-worked and naturally-aged after solution heat treatment.  The materials 

were received as plates with a thickness of 25 mm. The test coupons for residual stress 

measurement were 70 ´ 70 ´ 12.5 mm3 (see Figure 1). The specimens were extracted 

using wire electro-discharge machining (EDM). Since a smooth surface finish was 

required for peening, a surface finish of Ra = 1 was achieved using EDM skim cut 

settings.  

The microstructure of the Al2624 in the T351 and T39 conditions is given in Figures 2a 

and b, respectively. Both materials have elongated grains along the rolling direction.  

Figure 3 shows the quasistatic stress-strain curves supplied by Alcoa for the two heat 

treatment conditions, giving the elastic-plastic properties shown in Table 3. The 25% 

higher yield strength in the T39 as compared to the T351 is a result of the pre-

deformation before natural aging. 

Laser shock peening was conducted by Metal Improvement Company, Earby, UK using 

the peening parameters shown in Table 2. Each specimen was peened in four locations 

(Figure 1), with each location receiving identical treatment. This allowed for four 

measurement locations per specimen. Peening was applied with square spots using a 

fixed-energy laser system (13 J) resulting in different spot sizes for different laser 

intensities. A pulse duration of 18 ns was used throughout. 
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Figure 1: Schematic of the test coupon for residual stress measurement, showing four laser peen spots. All 
dimensions are in millimetres. R.D., T.D., and N.D. refer to the rolling, transverse and normal directions. 

 
Figure 2: Microstructure of Al-2624 alloy showing elongated grains in the rolling direction, (a) for T351 and 
(b) T-39 heat treatment condition. 
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Figure 3: Stress–strain curve for Al-2624 alloy in T351 and T39 conditions. Data courtesy Dr M. Heinimann, 
Alcoa Inc. (now Arconic). 

Table 1: Elastic-Plastic Properties of Al-2624 alloy in T351 and T39 conditions 

Heat Treatment Elastic 
Modulus / GPa 

Yield 
Strength 
σy / MPa 

E / σy  
Ultimate 
Tensile 

Strength / 
MPa 

Strain to 
failure / % 

T351 70 360 194 448 24 
T39 70 450 155 487 15 
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Table 2: Peening parameters used in this study 

Material 

Power Density-
Pulse duration-# 

Impacts 
/ GW/cm2-ns-# 

Spot Dimensions 
/ mm2 

Al-2624 
T351 

1-18-1  
8.5 ´ 8.5 

 
1-18-2 
1-18-4 
1-18-7 
3-18-1  

5 ´ 5 3-18-2 
3-18-4 
3-18-7 
6-18-1  

    3.5 ´ 3.5 6-18-2 
6-18-4 
6-18-7 

Al-2624 
T39 

 

1-18-1  
8.5 ´ 8.5 

 
1-18-2 
1-18-4 
1-18-7 
3-18-1  

5 ´ 5 3-18-2 
3-18-4 
3-18-7 
6-18-1  

3.5 ´ 3.5 6-18-2 
6-18-4 
6-18-7 

 

2.2 Incremental Hole Drilling 
Hole drilling is a fast, straightforward, and inexpensive method for residual stress 

measurement in the laboratory. As the name implies, in this technique a hole is drilled 

into the specimen, causing elastic stress relaxation as material is removed. The elastic 

stress relaxation causes a change in displacement in the surrounding material that is 

measured by a strain gauge array attached to the specimen. The residual stresses are 

then calculated from the measured displacements.  

Hole drilling measurements were carried out using equipment developed by Stresscraft, 

UK. For accurate measurement the UK NPL Good Practice Guide No. 53 and ASTM 

E837-13a standards were followed [7, 8]. Vishay strain gauges with the specification of 

CEA-13-062UL-120 and EA-13-062RE-120 were used. A 2-mm-diameter hole was 

drilled in an orbital motion with four increments of 32 µm, four increments of 64 µm, and 

eight increments of 128 µm, for a total of 16 increments and a total depth of 1.4 mm.  
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2.3 Nanoindentation  
The instrumented nanoindentation technique for hardness measurement has an 

advantage over traditional methods such as Vickers hardness method because it 

provides continuous load-displacement data as the indent is made. The technique also 

provides mechanical properties at a sub-millimetre level which is particularly suitable for 

characterisation of near-surface variations in property. Residual stresses can also be 

extracted, as has been shown both theoretically [9] and experimentally [10, 11]. 

In this study, the Oliver and Pharr method [12] was employed to calculate hardness 

from the load-displacement curve. From a nanoindentation test (Figure 4a) a load-depth 

curve as shown in Figure 4b is obtained, where hmax is the depth at maximum load, hf is 

the final depth of penetration and hc is the elastic contact depth. 

 

 

Figure 4: (a) Schematic of the indentation process and (b) load–displacement curve 

A maximum indentation depth of hmax is achieved at maximum indentation load Pmax. 

Upon unloading the material elastically recovers to a depth of hf (Figure 4a). The 
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difference between the depth at maximum load and the final depth after the material is 

recovered is generally defined as the elastic recovery, he = hmax – hf. Materials with 

higher yield strength will show higher elastic recovery following indentation. The ratio he 

/ hmax  is related to the elastic behaviour of the material and may be the most suitable 

parameter to study the response to different peening parameters. 

2.3.1 Indentation procedure 
All specimens were prepared by cutting using electro-discharge machining (EDM) along 

the centreline of the laser spot in the rolling (x) direction, then mounted in resin and 

ground and polished to a submicron finish using oxide particle suspension. Specimens 

were vibratory polished for eight hours to remove the plastically deformed material from 

the surface associated with polishing. Figure 5 shows a schematic representation of the 

EDM cut and the measurement line with respect to the cross-section of the specimen.  

 

Figure 5: Schematic representations of (a) nanoindentation specimen preparation and (b) measurement line 
with respect to the cross-sectional area. Axes as figure 1. 

 

 For each specimen two lines of 70 indents each were made with 100 µm spacing 

between the indents, as shown by the larger triangular indents in Figure 6a (the smaller 

indents were used for validation). Figure 6b shows the surface profile of an indent made 

by 50 gf load, and Figures 6c and d show the corresponding line profiles along the x 

and z axis respectively. The depth of the indent made by the 50 gf load ranged from 2-

3.5 µm depending on the peening parameters, and the height of the pileup material was 

between 0.2-0.5 µm (see Figure 6d).  



	

9	
	

 

 
			Figure	 6:	 (a)	 Scanning	 electron	micrographs	 showing	 the	 lines	 of	 indents;	 (b)	 surface	 profile	 of	 an	 indent	
created	at	50	gf	load;	(c)	line	profile	(along	the	x	axis)	of	the	indent	shown	in	(b);	and	(d)	line	profile	along	the	z	
axis				

The instrument was operated in basic hardness load-displacement mode, which 

records load and displacement as a function of time. The indentation measurement was 

performed with the “Continuous Stiffness Measurement’’ option that allows continuous 

measurement of the contact stiffness during loading. Specimens were tested with 50 gf 

peak load. 

2.4 Microstructural characterization 
Polished and indented specimens were etched with Keller’s reagent for optical 

microscopy. Selected unetched specimens were characterized by Electron Back 

Scatter Diffraction using a Zeiss Sigma 500 VP field-emission gun scanning-electron 

microscope.  
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3. Results  

3.1 Surface profile 
The surface deformation following laser peening was measured using a Bruker 

ContourGT interferometer microscope. The measurement accuracy was estimated to 

be about 0.3 microns. Figure 7 shows the 2D surface profiles of specimens peened with 

condition 3-18-7 (using the standard terminology for laser peening: a-b-c, where a = 

Power density in GW/cm2; b = pulse duration in ns; c= number of impacts) for T351 and 

T39. The laser spot size was 5 ´ 5 mm2.  The average depth of the peened spot is 57 

µm for T351 and 44 µm for T39. The material surfaces within the peened spots are non-

uniform for both materials.   

Line profiles for single-spot peened specimens are plotted in Figures 8a and b for T351 

and T39, respectively, to show the effect of power density (1, 3 and 6 GW/cm2) on the 

depression depth, as well as the material pile-up at the edges of the laser spot.  For 

both tempers, the average depth of the depression increases linearly with increasing 

intensity, and becomes slightly non-uniform (by ∼5 µm) at the highest intensity used in 

this study (6 GW/cm2). Compared to T351, a slightly lower deformation depth was 

found for the T39: for example, at the 3-18-1 peening condition, the maximum averaged 

depths are 10 µm and 8 µm for the T351 and the T39, respectively.  This 20% lower 

depth in the latter is almost certainly a consequence of the higher yield strength of T39.  

Figures 8c and d show the depression depth as a function of number of impacts at 6 

GW/cm2. Three features are evident in the Figure:  

1) The average depression depth, d, as well as the height of the pileups increase with 

the number of impacts, N, for both alloys; as shown in Figure 8e, a linear relationship 

was observed between d and N. 

 2) As the number of peen layers increases, the depth profiles become increasingly 

more non-uniform.  

3) The average depression depth in the T39 is 15% lower than the T351 at 6-18-7 (see 

Figure 8e). This is associated to the higher yield stress of the T39.   
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Figure 7: 2D surface profile of specimens peened with 7 hits at 3 GW cm–2 for 18 ns (3-18-7): (a) T351 and (b) 
T39. The nominal spot size is 5 ´ 5 mm2 
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Figure 8: Effect of power density on the surface profiles of single spots peened with 1, 3, and 6 GW/cm2: (a) 
T351 and (b) T39; Effect of number of impacts on the surface profile of single spots peened with 6 GW/cm2 

for (c) GW/cm2 T351 and (d) T39 alloy; (e, f) Effect of number of layers on the depth of the spots peened with 
(e) 1-18-n and (f) 6-18-n 

3.2 Residual stress distributions 
The near-surface residual stress distributions in the T351 were measured using 

incremental hole drilling in as-received and electro-discharge-machined conditions prior 

to peening. As shown in Figure 9, the near-surface residual stress in the as-received 

material was about 30 MPa tensile; after EDM the surface stress was about –80 MPa 

compressive.   
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Figure 9: Surface residual stress distribution as a function of depth in the Al2624 T351 alloy in as-received 
and EDM surfaces before peening.  

The effect of the number of laser impacts at 1 GW/cm2 is presented in Figure 10a for 

T351. Following a single shot, a maximum compressive residual stresses of –220 MPa 

was measured at a depth of 16 µm. For two and four impacts the maximum 

compression shifted deeper (100-150 µm). After 7 shots, the highest compressive 

residual stress was measured, with a surface value of –240 MPa and a peak value of 

about –290 MPa at a depth of 110 µm. The higher compressive residual stresses after 

one impact, compared to those of two and four impacts (Figure 10a and b) may be the 

result of the initial residual stresses left from the EDM process. 

Similar plots of the residual stresses in the T351 specimens at 3 GW/cm2 and 6 

GW/cm2 are shown in Figures 10b and c, respectively. At both power densities, the 

magnitude of the compressive residual stress increases as the number of shocks 

increase, up to four impacts. However, at 6 GW/cm2, near-surface residual stress 

relaxation (∼60% compared to 3 GW/cm2) was observed, which is likely to be a 

consequence of reverse yielding. This is further explained in section 4.1. 
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Figure 10: Residual stress profiles measured by incremental hole drilling showing the effect of number of 
impacts for T351 alloy at: (a) 1 GW/cm2 (b) 3 GW/cm2, and (c) 6 GW/cm2; and for T39 alloy at (d) 1 GW/cm2 (e) 
3 GW/cm2, and (f) 6 GW/cm2 . Open and closed symbols are used for residual stresses in the transverse and 
rolling directions, respectively. 

Residual stresses for the T39 are shown in Figures 10d-f. At the lowest power density 

(1-18-1) (Figure 10d), the maximum compression is at the surface, whilst for the higher 

power densities, the peak compression is sub-surface.  For the most severe peening (6-

18-7), the surface stress becomes slightly tensile.  
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3.3  Microstructural characterization 
Figure 11 shows how the microstructure of both materials is affected by laser shock 

peening. Comparison between the unpeened (Figure 11a) and peened (with 1-18-7, 

Figure 11b) T351 shows clear evidence of grain refinement near-surface in the peened 

specimen. The extent of the grain refinement zone is ∼3.5 mm from the peened surface 

and a grain size gradient exists with the smallest grain size near the surface.  In 

contrast to the T351, no grain refinement is apparent in the T39 (Figure 11d) at the 

equivalent peening condition. This may be due to the prior deformation in the T39.  

Smaller grains in the T351 condition were also found after a single impact at 1 GW/cm2, 

as shown in Figure 12a. The grains are elongated in the transverse direction but refined 

to a smaller size than in the unpeened material. The average grain size along the 

transverse direction is 175 µm whereas that for unpeened material is ∼500 µm (see 

Figure 2a). In comparison to the T351, grain size refinement is again not apparent in 

the T39 material (Figure 12c).   

Increasing the power density from 1 to 3 GW/cm2 did not result in any further grain size 

refinement in the T351. However, when the power density was increased to 6 GW/cm2 

the average grain size along the transverse direction was further reduced (Figure 12b). 

In addition, subgrain boundaries are visible within the darker grains which are likely a 

result of the increased plastic deformation.  

 



	

16	
	

  

Figure 11: Microstructural images for the (a) unpeened T351; (b) peened (1-18-7) T351; (c) unpeened T39; and 
(d) peened (1-18-7) T39. 

 

At the highest power density (6 GW/cm2) studied here, evidence of a recast layer was 

found for the T39 material as shown in Figure 12d. This means that the temperature at 

the surface of the specimens reached the melting point. The thickness of the recast 

layer is 100 µm. Formation of the recast layer can be correlated with the reduced 

compressive residual stresses near the surface (Figure 10f).   
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Laser-peening-induced grain refinement in the T351 was confirmed by the electron 

back scattered diffraction (EBSD) map given in Figure 13 for 6-18-1. The average grain 

size measured from the EBSD map is about 100 microns in the transverse direction. 

 

Figure 12: Optical images for the T351 (a-b), and the T39 (c-d) showing the effect of power density for a 
single impact. Both Vickers and instrumented indention marks can be seen in the images. 

 

Figure 13 shows optical images for the T351 (a-b) and the T39 (c-d) for specimens 

peened with 1 and 6 GW/cm2 after seven laser hits. At the lowest power density (1-18-

7) the grains in the T351 appear more equiaxed after seven shocks than was observed 

after one shock (Figure 12a).  

Similar to the case for a single shock, clear evidence of grain refinement was not found 

for the T39 material (Figure 13d) subjected to seven shocks.  At the highest power 

density with the maximum number of hits a recast layer with a thickness of about 100 

microns is found (Figure 13d).  
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Figure 13: Microstructural images for the T351 (a-c); and the T39 (b-d) showing the effect of power density 
after seven impacts. 
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3.4 Results from instrumented indentation 

3.4.1 Effect of Power Density on the Elastic Recovery 
The elastic recovery he and the ratio he/hmax are useful experimental parameters to 

assess the material behaviour in response to peening, because these parameters can 

be directly obtained from the load-displacement curve and thus are not affected by 

measurement inaccuracy in the indentation area. Small errors generally occur while 

defining the area function for hardness calculation owing to the piling-up or sinking-in 

behaviour, particularly when residual stresses are present. Therefore, he and he/hmax 

parameters are presented in Figures 14a-d to show the effect of laser intensity. The 

unpeened he values are 325 and 340 nm for T351 and T39, respectively. The standard 

deviations for the T351 and T39 (at 6-18-1) are 3 nm and 6 nm, respectively. Higher 

values of elastic recoveries are found for the T39 because of its higher yield strength 

compared to the T351 (see Figure 3). The near-surface he values are about 355 nm for 

the T351 and 360-380 nm for the T39, levelling out at about 4 mm below the peened 

surface. Increased values of the elastic recoveries near the surface resulted from 

peening-induced plastic deformation. When the power density was doubled from 3 to 6 

GW/cm2, the T39 showed lower values of elastic recovery at the surface (Figure 15b). 

This difference (360 nm versus 380 nm) may be partly attributed to the combined 

thermal and mechanical effect. The formation of the recast layer shown in Figure 13d 

confirmed that the near-surface material was subjected to temperatures as high as the 

melting point of the alloy. 
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Figure 14: Effect of laser power density on the elastic recovery, and the ratio of elastic recovery to the 
displacement at maximum load for the T351 (a, c); and for the T39 (b, d). 

Figures 14c and d show the ratio he/hmax as a function of depth for the two heat 

treatments. The slightly higher he/hmax observed for the T39 resulted from the 20% 

lower E/σy ratio (155 for the T39 and 194 for the T351, as shown in Table 1). From 

these plots we can infer: 

1) The effects of peening diminish at about 4 mm below the peened surface. 

2) The maximum increases in the near-surface values of he/hmax are 10% and 11.5% for 

the T351 and T39, respectively. The T351 showed no difference in he/hmax between 3 

and 6 GW/cm2, whilst the T39 actually showed slightly lower he/hmax values at 6 

GW/cm2. 

Figure 15 presents the hardness results, normalized by the averaged far-field hardness, 

plotted as a function of depth. The averaged far-field hardness was calculated by 

averaging the hardness values of the last 10 indents created between 6 and 7 mm from 
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the surface. Figures 15a and b show a comparison of the effect of power densities of 1, 

3, and 6 GW/cm2 after a single laser impact for the T351 and T39 conditions. At 1-18-1, 

5% hardness increase is found for the T351 which is further increased to 10% at 6-18-

1; for the T39, the hardness was increased by 12% at 1-18-1 which was further 

increased to 18% at 6-18-1. The relative standard deviation for the T351 and the T39 

were 2 and 3% respectively (calculated from the 1-18-1 hardness data points between 

6 to 7 mm). 

 

 

Figure 15: Effect of power density on the hardness of (a) T351 alloy and (b) T39 alloy 

3.4.2 Effect of number of laser impacts 
The elastic recovery plots presented in Figures 16a and b show the effect of number of 

laser impacts for the T351 and the T39 at 3 GW/cm2 for one, four, and seven impacts. It 

is evident that the elastic recovery decreases with increasing number of impacts as 

there is less additional hardening following the effect of the first shock. This can be 

correlated with the increase of residual stresses seen (Figure 10c) with increasing laser 

impacts.  

Our results were confirmed with similar measurements for the 6 GW/cm2 peening (6-18-

1, 6-18-4, and 6-18-7), as shown in the supplementary material, and additional Vickers 

hardness measurements.  
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Figure 16: Variation of elastic recovery, he as a function of distance from the peened surface for (a) T351, and 
(b) T39 peened at 3 GW/cm2 

The normalized hardness profiles as a function of depth at 3 GW/cm2 for one, four and 

seven layers are presented in Figures 17a and c for the T351 and the T39, respectively. 

For the T351, the hardness increased by 8% as compared with the unpeened material 

after one shot, and increased to 18% after four shots. No further hardness increase was 

obtained for seven shots. In contrast, the T39 showed a 14% hardness increase after 

the first shot, with no further increases evident after additional shots. Comparison 

between the two heat treatments shows that at 3-18-4 and 3-18-7 the T351 hardened 

slightly (~4%) more than the T39. 
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Figure 17: Effect of number of peening impacts on the hardness of (a) T351 alloy and (b) T39 alloy at 3 
GW/cm2; and (c) T351 alloy and (d) T39 alloy peened with a power density of 6 GW/cm2. 

When the power density was doubled to 6 GW/cm2 (Figures 15c and d), the first shot 

resulted in a 10% hardening for the T351. An 18% hardness increase was observed 

after the fourth shot, but additional shots resulted in no additional hardening, similar to 

what was observed at 3 GW/cm2. In contrast, while an 18% hardness was achieved for 

the T39 alloy (Figure 18d) after the first shot, additional hits resulted in a reduction of 

hardness near the surface. 

4. Discussion 
The correlation between residual stress generation and hardening for both heat 

treatment conditions is shown in Figure 18. From these plots, the following observations 

can be made: 

1. From Figure 18, there seems to be an optimum peening condition that yields the 

best combination of compressive residual stress with strength, with 

‘underpeening or ‘overpeening’ giving poorer outcomes. For example, peening 
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with 6 GW/cm2 results in almost 50% reduction in the surface compressive 

residual stresses as compared to peening at the lower intensities (Figure 18e). 

Corresponding hardness values are also reduced (Figure 18f). The extent of the 

surface effects is around 250 µm. The maximum hardening/residual stress 

invariably occurs beyond this depth.  

2. For both tempers, the variation in subsurface peak hardness observed between 

1, 3 and 6 GW/cm2 after a single impact is small; the only noticeable difference is  

~10% greater hardening in the T39, which can be attributed to the initial 

unpeened hardness state.  In comparison to the unpeened condition, the T351 

showed 8% hardening (see Figure 18a) which did not change even for a six-fold 

increase in laser power density. On the other hand, the T39 hardened by around 

15%. The difference in hardening between the T39 and T351 is also relatively 

small considering the 20% difference in the unpeened yield strength between 

them.  The hardening observed here is a result of plastic deformation, that 

decreases with increasing depth into the material.  

The residual stress results correlate with the hardness and microstructural 

changes caused by peening. In the T351, subsurface residual stresses are 

increased by 30% when the power density increases from 1 to 6 GW/cm2 (Figure 

18a). In contrast, for the T39, after the first impact at 6 GW/cm2, higher 

subsurface residual stresses are generated (Figure 18a) owing to the higher 

yield strength and ultimate tensile strength. Thus the T39 can sustain higher 

levels of residual stresses. Seemingly, the yield strength difference between the 

tempers plays a significant role only at higher energies.  

3. The number of laser impacts has a significant effect on the depth and the 

magnitude of the residual stress field and hardness. Both the values of maximum 

compression and the hardness gradually increase with increasing number of 

impacts in the T351 at all power densities. This is consistent with previous 

results: for example, Zhang et al. showed similar results in LSP of a magnesium 

alloy [13]. Maximum compressive residual stresses were found to be –350 MPa 

at 3-18-4 for the T351 and at 3-18-7 for the T39 (Figure 19b & e) with a small 

drop in compression near-surface.  Therefore, these peening parameters are 

deemed to be the optimum for this material: the initial yield strength difference 
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between the tempers does not noticeably affect the residual stress or hardness 

response. Although, it was explained previously that the baseline yield strength 

before peening is a predominant factor in the residual stress/hardness after one 

laser impact, when a material is successively plastically deformed by laser-

induced shock wave, it will harden until it reaches a saturation point. The T351 

and T39 can have similar hardness/residual stress but significantly different 

microstructures (seen in Figure 14). The precipitation dynamics are likely to be 

different in the T39 compared to the T351 because of the cold working prior to 

ageing. This may be the reason why grain refinement was observed in the T351, 

and not the T39. Further work is required to understand this mechanism. 

Increasing the power density to 6 GW/cm2 reduced the near-surface (up to 100 

microns) residual stresses greatly and subsurface residual stresses slightly. 

Although no hardness data was available in this region, slightly lower hardness 

values were found for the T39 up to a depth of 300 microns.  
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	Figure	18:	Correlation	of	hardness	and	residual	stresses	between	the	T351	and	the	T39:	(a)	comparison	of	the	
effect	 of	 power	 density	 after	 the	 first	 impact	 between	 1	 and	 6	 GW/cm2;	 (b)	 comparison	 of	 the	 effect	 of	 laser	
impact	between	1	and	7,	at	1	GW/cm2;	(c)	3	GW/cm2;	and	(d)	and	6	GW/cm2.	Solid	lines	plotted	on	the	primary	
axis	show	the	residual	stress	and	dotted	lines	plotted	on	the	secondary	axis	show	the	hardness	variation	through	
the	depth	up	to	1000	µm.	‘Red’	closed	markers	are	used	to	represent	the	T351	and	‘Blue’	open	markers	are	used	
for	the	T39.		
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4. Although at the lowest laser intensity (1-18-1) the T39 hardens more compared 

to the T351, with increasing power density as well as the number of impacts the 

T351 continues to harden, surpassing the unpeened hardness of the T39, and 

ultimately reaching the peened hardening state of the T39 near the surface. The 

T39 would be expected to show lower hardening compared to the T351 owing to 

its lower hardening capacity (see Figure 3). The T39 did not show any significant 

variation in residual stresses near the surface up to 500 µm (Figure 19 c‒d); 

however the peak compressive stress location was pushed to the subsurface 

with increasing number of impacts.   

Conclusions 
We have undertaken a comprehensive study of the effect of laser shock peening on two 

different tempers of aluminium alloy 2624. The two tempers, T351 and T39, have 

different yield and ultimate tensile strengths, and different hardening characteristics 

post-yield. 

1. Laser shock peening induces compressive residual stresses at the surface for 

both tempers, with the magnitude of stress increasing with power density and 

number of shocks up to a saturation point which is approximately 3 GW/cm2 for 

four to seven shocks. The magnitude of maximum compressive residual stresses 

are –350 MPa for both alloy tempers. The at-surface residual stress falls for the 

highest power density studied, 6 GW/cm2, because of reverse yielding near-

surface. 

2. In general, the hardness is increased as a result of peening. The exception is 

that for high power densities, and particularly after multiple shocks, the T39 

condition showed a drop in hardness near-surface. After a single laser 

shock, a 5% hardness increase was observed for the T351, increasing to 10% 

at 6 GW/cm2. The T39 showed a maximum hardness increase of 18% 

at 6 GW/cm2. Additional shocks increased the hardness further. For seven 

shocks, ~8% hardness increase was observed for the T351 at 1 GW/cm2, which 

increased to 18% when the power density was doubled. Whilst cyclic softening 

could be a contributing factor, it appeared that there had been thermal damage 

to the surface, resulting in the formation of a recast layer. 



	

28	
	

3. Evidence of grain refinement was found for the T351 following peening, but no 
evidence of grain refinement was found for the T39.  

4. The depth of the LSP-affected region increases with increasing power density, to 
a maximum of 4 mm depth.  
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