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Purpose. To conduct a test of the principles underpinning crime linkage (behavioural

consistency and distinctiveness) with a sample more closely reflecting the volume and

nature of sexual crimes with which practitioners work, and to assess whether solved

series are characterized by greater behavioural similarity than unsolved series.

Method. A sample of 3,364 sexual crimes (including 668 series) was collated from five

countries. For the first time, the sample included solved and unsolved but linked-by-DNA

sexual offence series, as well as solved one-off offences. All possible crime pairings in the
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data set were created, and the degree of similarity in crime scene behaviour shared by the

crimes in each pair was quantified using Jaccard’s coefficient. The ability to distinguish

same-offender and different-offender pairs using similarity in crime scene behaviour was

assessed using Receiver Operating Characteristic analysis. The relative amount of

behavioural similarity and distinctiveness seen in solved and unsolved crime pairs was

assessed.

Results. AnAreaUnder theCurve of .86was found, which represents an excellent level

of discrimination accuracy. This decreased to .85 when using a data set that contained

one-off offences, and both one-off offences and unsolved crime series. Discrimination

accuracy also decreased when using a sample composed solely of unsolved but linked-by-

DNA series (AUC = .79).

Conclusions. Crime linkage is practised by police forces globally, and its use in legal

proceedings requires demonstration that its underlying principles are reliable. Support

was found for its two underpinning principles with a more ecologically valid sample.

Crime linkage1 refers to a groupof practiceswhere the crime scene behaviour displayed in

multiple crimes is analysed for similarity and distinctiveness to assess the likelihood of

those crimes being committed by the same offender. Where similar yet distinctive

behaviour is observed, greater confidence is attributed to the crimes being thework of the

same perpetrator (Woodhams, Bull, & Hollin, 2007). The underlying principles of crime

linkage are therefore that offenderswill show a degree of consistency in their crime scene

behaviour over time (the Consistency Hypothesis; Canter, 1995) and that offenders will
show a degree of distinctiveness in their crime scene behaviour (Bennell & Canter, 2002),

allowing the crimes of one offender to be distinguished from those of another offender

committing a similar sort of crime.2

In many countries, police units exist that specialize in this behavioural analysis for the

most serious forms of crime (e.g., sexual offences and homicides) (Bennell, Snook,

MacDonald, House, & Taylor, 2012). This analysis informs police investigations and can

have several benefits such as identifying crime series where physical trace evidence is

lacking or is costly or time-consuming to process, pooling evidence from multiple crime
scenes, and enhancing victim credibility (Davies, 1991; Grubin, Kelly, & Brunsdon, 2001;

Labuschagne, 2015). However, errors in linkage prediction can misdirect investigative

efforts and unnecessarily increase public fear of a serial offender being active in the area

(Grubin et al., 2001).

Crime linkage analysis can also inform legal decision-making and has been admitted as

similar fact evidence for robbery, burglary, homicide, kidnapping, and rape prosecutions

in State v. Mogale (2012), State v. Nyauza (2007), State v. Steyn (2012), State v. Sukude

(2006), and State v. van Rooyen (2007) in South Africa, in R v. R.B. (2003) and R. v.

Burlingham (1993) in Canada (Labuschagne, 2015), and in Pennell v. State (1991), State

v. Russell (1994), People v. Prince (2007) and State v. Yates (2007) in the United States

(Pakkanen, Santtila, & Bosco, 2015). However, such evidence has also been ruled

inadmissible in some cases due to concerns about the reliability of its underlying

principles and the methods used (Her Majesty’s Advocate v. Young, 2013; State of New

1Crime linkage is also referred to as linkage analysis (Hazelwood &Warren, 2004), case linkage (Woodhams & Grant, 2006),
and comparative case analysis (Bennell & Canter, 2002).
2 The assumption of consistency is operationalized in practice and research as an evaluation of the similarity in crime scene
behaviour between two or more crimes. Consistency is used in this paper when referring to the behaviour displayed by the same
individual over time/events, and similarity is usedwhen referring to linked/unlinked crimepairs andpredicting linkage status because,
in practice, an analyst would not know for certain whether a set of crimes were committed by the same person or not.
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Jersey v. Fortin, 2000). Regarding the latter, whenmaking their assessments, these courts

have been guided by legal standards for the admissibility of scientific expert evidence

including the Daubert criteria (Daubert v. Merrell Dow Pharmaceuticals Inc., 1993) and

the Federal Rules of Evidence (2011, 702). These standards require that the testimony is
the product of reliable principles and methods and that there needs to be a known or

potential error rate for the practice. In HMA v. Young (2013), for example, a voir dire

admissibility hearingwas held to consider the empirical support for crime linkage analysis

and its principles; crime linkage analysis evidence was ultimately ruled inadmissible.

Crime linkage can, therefore, have a potentially significant impact on police

investigations and legal outcomes (whether prosecutions or appeals). As such, it is

important that research seek to test the viability of crime linkage and to test this in themost

realistic way possible.

Paradigms for assessing the principles of crime linkage

The basic tenet of studies of the crime linkage principles is to assess the accuracy with

which quantitative measures of similarity in crime scene behaviour (i.e., similarity

coefficients) canbeused topredictwhether twoormore crimes are linked.3 The similarity

coefficients are usually calculated from binary codings of offender crime scene behaviour

(e.g., Did the offender kiss the victim? – Yes/No?). These codings can be pre-existing,
having been completed by trained police staff as part of their routine practice (see

Method), or the coding is completed by researchers based on police files documenting

each offence. These data are then subject to statistical analysis.

There are two common analytical approaches used: The first rank orders crimes,

offenders, or series in order of similarity in behaviour to the ‘query’ crime and assesses the

accuracy of prediction though comparison to actual seriesmembership and compares this

level of accuracy to what would be expected by chance alone (e.g., Santtila, Junkkila, &

Sandnabba, 2005). The second approach (e.g., Bennell & Canter, 2002) assesses the
degree of behavioural similarity shared by a given pair in the data set and determines,

based on whether this is high or low, whether the pair was likely committed by the same

offender (linked), or whether the two crimes in the pair are by two different offenders

(unlinked), respectively. Both of these approaches simultaneously assess the two

principles of crime linkage – behavioural consistency and distinctiveness.

Receiver Operating Characteristic (ROC) analysis is the preferred measure of

predictive accuracy in forensic psychology (Harris & Rice, 1995) and is commonly used

to quantify the accuracy with which behavioural similarity can be used to predict series
membership or linkage status (linked/unlinked) (see Bennell, Mugford, Ellingwood, &

Woodhams, 2014;Winter et al., 2013). It has four possible outcomes: a hit (where a pair is

predicted to have been committed by the same offender and was), a false alarm (where a

pair is predicted to have been committed by the same offender but was not), a correct

rejection (where the two crimes in a pair are predicted to have been committed by two

different offenders and they were), and a miss (where the two crimes in a pair are

predicted to have been committed by two different offenders andwere committed by the

same offender). Predicting which series a given crime belongs to (same series/different
series) can be conceptualized in the same way (e.g., a hit would be where a crime is

correctly predicted to be amember of a series) (Winter et al., 2013). A ROC analysis plots

3Other quantitative metrics can also be used in linkage predictions (e.g., the inter-crime distance).
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the proportion of hits against the proportion of false alarms at every possible decision

threshold (in this case at each predicted probability value) from the most stringent

threshold to the most lenient. This produces a ROC curve, and the Area Under the Curve

(AUC) represents thepredictive accuracy of the decision task. TheAUC ranges from0 to 1,
with 0.5 representing chance level accuracy and values closer to 1.0 representing high

levels of predictive accuracy.

To assess the predictive or diagnostic accuracy of amethod or tool, the outcome being

predicted needs to be known (or become known) for the cases to which themethod/tool

is applied. In the context of crime linkage research, this equates to using a sample where

the series membership of crimes is known; for example, offender 1 is known to be

responsible for crimes 1, 2, and 3 in the data set. A robust test of the crime linkage

principles necessitates confidence in such attributions, and studies have typically used
offender conviction and/or scene-to-scene DNA hits as confirmation of series member-

ship. It follows that the conditions under which the principles are tested will never

represent the exact conditions underwhich police analysts conduct crime linkage: Police

analysts search for crime serieswithin data sets of series and one-off offences,where series

membership is known in some cases but not in others, and where their predictions of

series membership may not be confirmed due to a lack of feedback or to investigative

efforts not yielding an outcome (Davies, Alrajeh, & Woodhams, 2018). However, the

ecological validity of studies designed to test the crime linkage principles can be improved
by designing studies that more closely resemble the data searched by analysts.

A critical reflection on studies of the crime linkage principles

More than a decade of research testing the crime linkage principles exists, and the

general conclusion from this body of research is that the principles are empirically

supported to an extent (Bennell et al., 2014): Some serial offenders show sufficient

behavioural consistency and distinctiveness for their crimes to be linked; however,
some offenders and some series are characterized by inconsistent and/or indistinct

behaviour (Slater, Woodhams, & Hamilton-Giachritsis, 2015). However, most of these

research studies have sampled series confirmed by conviction. Only sampling series

confirmed by conviction does not reflect the data searched by analysts and may

artificially inflate the accuracy with which linked crime pairs can be distinguished

from unlinked crime pairs, or with which crimes can be attributed to the correct

series. This is because convicted series might have been solved and convicted, in part,

due to the distinctive and consistent behaviour of the offender (Bennell & Canter,
2002). Improving ecological validity by extending the sampling frame to include

unsolved crime series that are linked by DNA allows researchers to establish ground

truth without biasing the sample in this way (Woodhams et al., 2007). To date, a

handful of studies have adopted this design, but these remain the minority (Pakkanen

et al., 2015). Only one study exists with sexual offences: Woodhams and Labuschagne

(2012a) included in their sample of 599 linked crime pairs, 19 linked pairs that were

unsolved but linked by DNA (representing 3% of the linked pairs). Linked crime pairs

could be distinguished from unlinked crime pairs with an AUC of .88, thereby
providing empirical support for the crime linkage principles. A larger AUC was found

than had been reported in previous studies (e.g., 0.75, Bennell, Jones, & Melnyk,

2009).

Two further studies of the crime linkage principles with sexual offences have

improved the ecological validity of their samples by extending their sampling frame to

4 Jessica Woodhams et al.



include one-off sexual offences alongside serial offences. Winter et al. (2013) sampled 90

serial sexual offences and 129 one-off offences and found AUCs ranging from .80 to .89.

Slater et al. (2015) found an AUCof .86with a sample of 144 convicted serial offences and

50 convicted one-off offences.
Despite these improvements in methodological design, the sample sizes of these

studies remain small. Indeed, this criticism applies to most studies of the crime linkage

principles with sexual offences. Sample sizes range from 43 to 244 offences (Bennell

et al., 2009; Santtila et al., 2005; Slater et al., 2015; Winter et al., 2013; Woodhams &

Labuschagne, 2012a).4 This can be contrasted with the volume of sexual crimes searched

by police analysts in countries that use the Violent Crime Linkage Analysis System

(ViCLAS) (e.g., approximately 8,000 cases are on the ViCLAS database in Belgium and

30,000 in the United Kingdom; Davies et al., 2018).
The current studywas therefore designed to test the principles of crime linkage using a

research design with improved ecological validity, by, for the first time, utilizing a much

larger sample of crimes and sampling convicted and unsolved but linked-by-DNA series, as

well as convicted one-off offences. Our research questions were as follows:

(1) Are crimes committed by the same offender (‘linked’ crime pairs) characterized by

greater behavioural similarity than crimes committed by different offenders

(‘unlinked’ crime pairs), which would imply both greater behavioural consistency

and greater distinctiveness?
(2) At what level of accuracy could linked crime pairs be differentiated from unlinked

crime pairs as assessed by ROC analysis?

(3) Would the inclusion of unsolved series and one-off crimes in the sample reduce the

ability to distinguish linked from unlinked crime pairs?

Method

Data

The study utilized police crime data relating to 3,364 sexual offences committed by 3,018

offenders (mean number of crimes per series = 3.25, range = 2–32 crimes). These data

were provided by police units from five countries that specialize in crime linkage with

sexual offences: (1) the SeriousCrimeAnalysis Section (SCAS,UnitedKingdom,n = 2,579

offences); (2) the Investigative Psychology Section of the South African Police Service

(n = 245 offences); (3) the National Bureau of Investigation, Finnish National Police
(n = 123 offences); (4) the Central Unit-Team ViCLAS, Dutch National Police (n = 173

offences); and (5) the Zeden-Analyse-Moeurs unit, Belgian Federal Police (n = 244

offences). Within these data, there were solved serial crimes (n = 2,081) and solved

apparent one-off crimes (n = 1,191) that had resulted in a conviction, and unsolved serial

crimes that were linked by DNA (n = 92).5 A breakdown of the data from each country is

included in Table 1.

4 Yokota, Fujita, Watanabe, Yoshimoto, and Wachi (2007) are the exception having sampled 1,252 offences by 868 offenders.
5 In this study, unsolved crime series consisted of crimes that had been linked via DNA. Thus, while they remain unsolved, we can
be confident that the same offender was responsible. Apparent one-off crimes consisted of crimes committed by an offender who
only had one recorded conviction for sexual offending at the time of data collection. This does not preclude the possibility that the
offenders have committed other sexual offences for which they have not been convicted, but this limitation is unavoidable. No
cases in our analyses were offences ‘taken into consideration’ (TICs). In England and Wales, during sentencing procedures, an
offender can admit to other offences to ‘wipe the slate clean’ and ask that the Court take these into consideration (Sentencing
Council, 2012).

Linking serial sex offences 5



T
a
b
le

1
.
C
h
ar
ac
te
ri
st
ic
s
o
f
th
e
o
ff
e
n
ce
s
co
n
ta
in
e
d
w
it
h
in
th
e
sa
m
p
le
p
e
r
co
u
n
tr
y

C
o
u
n
tr
y

N
u
m
b
e
r
o
f

se
ri
e
s/
ca
se
s

N
u
m
b
e
r
o
f

o
ff
e
n
d
e
rs

T
im
e
fr
am

e

L
e
n
gt
h

o
f
se
ri
e
s

N
u
m
b
e
r
o
f
vi
ct
im
s,

ge
n
d
e
r,
an
d
ag
e
(i
n
ye
ar
s)

w
h
e
re

k
n
o
w
n

G
e
n
d
e
r
an
d
ag
e
(i
n
ye
ar
s)

o
f
o
ff
e
n
d
e
rs

w
h
e
re

k
n
o
w
n

So
u
th

A
fr
ic
a

3
5
se
ri
e
s

Se
ri
al

=
3
6
c

1
9
9
8
–2
0
1
2

2
–3
2

N
=
3
5
6

M
=
8
5

2
4
5
se
ri
al
ca
se
s

M
=
4
5
,F

=
2
8
5

A
ge

ra
n
ge

=
1
7
–5
5

A
ge

ra
n
ge

=
0
–6
8

M
=
1
6
b

Fi
n
la
n
d

1
6
se
ri
e
s

Se
ri
al

=
1
7
a

1
9
8
3
–2
0
0
1

2
–8

N
=
1
2
4
a

A
ge

ra
n
ge

=
1
6
–4
9
b

4
3
se
ri
al
ca
se
s

O
n
e
-o
ff
=
8
5
a

F
=
4
3
b

M
=
1
,5
4
9
,F

=
6

8
0
o
n
e
-o
ff
s

A
ge

ra
n
ge

=
1
5
–6
2

A
ge

ra
n
ge

=
1
2
–7
7

T
h
e
U
n
it
e
d
K
in
gd
o
m

5
3
4
se
ri
e
s

Se
ri
al

=
1
,6
1
2

1
9
6
6
–2
0
1
3

2
–2
0

N
=
2
6
4
3

M
=
8
9
,F

=
0

1
,5
7
9
se
ri
al
ca
se
s

O
n
e
-o
ff
=
1
,0
0
0

M
=
1
4
9
,F

=
2
,4
8
6

A
ge

ra
n
ge

=
1
3
–5
5

1
,0
0
0
o
n
e
-o
ff
s

A
ge

ra
n
ge

=
1
–9
4

M
=
1
2
4
,F

=
1

T
h
e
N
e
th
e
rl
an
d
s

3
8
se
ri
e
s

Se
ri
al

=
3
9
a

1
9
8
9
–2
0
1
4

2
–1
0

N
=
1
7
8

A
ge

ra
n
ge

=
1
5
–6
9

1
2
3
se
ri
al
ca
se
s

O
n
e
-o
ff
=
5
2
a

M
=
5
,
F
=
1
7
2

5
0
o
n
e
-o
ff
s

A
ge

ra
n
ge

=
4
–9
6

B
e
lg
iu
m

4
5
se
ri
e
s

Se
ri
al

=
4
7
a

1
9
8
5
–2
0
1
4

2
–1
2

N
=
2
5
9

1
8
3
se
ri
al
ca
se
s

O
n
e
-o
ff
=
8
0

M
=
1
1
,F

=
2
4
7

6
1
o
n
e
-o
ff
s

A
ge

ra
n
ge

=
3
–8
4

N
ot
es
.
M

=
m
al
e
,
F
=
fe
m
al
e
.
A
ge

ra
n
ge

fo
r
o
ff
e
n
d
e
rs

in
cl
u
d
e
s
th
e
o
ff
e
n
d
e
r’
s
ag
e
at

e
ac
h
o
ff
e
n
ce
,
w
h
e
re

k
n
o
w
n
,
an
d
th
e
re
fo
re

is
b
as
e
d
o
n
th
e
n
u
m
b
e
r
o
f
cr
im
e
s

ra
th
e
r
th
an

th
e
n
u
m
b
e
r
o
f
o
ff
e
n
d
e
rs
.

a
T
h
e
d
at
a
p
ro
vi
d
e
d
in
d
ic
at
e
d
w
h
e
re

th
e
re

w
e
re

m
u
lt
ip
le
o
ff
e
n
d
e
rs
(o
r
vi
ct
im
s)
p
e
r
in
ci
d
e
n
t
b
u
t
n
o
t
th
e
ac
tu
al
n
u
m
b
e
r.
T
h
e
se

w
ill
th
e
re
fo
re

b
e
th
e
m
in
im
u
m
n
u
m
b
e
r

o
f
o
ff
e
n
d
e
rs

(o
r
vi
ct
im
s)
in
th
e
su
b
sa
m
p
le
.

b
T
h
e
d
at
a
fo
r
th
e
o
n
e
-o
ff
o
ff
e
n
ce
s
w
e
re

n
o
t
av
ai
la
b
le
;t
h
e
re
fo
re
,t
h
e
fi
gu
re
s
h
e
re

ar
e
so
le
ly
fo
r
th
e
se
ri
al
sa
m
p
le
.

c
T
h
is
is
th
e
fi
gu
re

fo
r
th
e
o
ff
e
n
d
e
rs

co
n
fi
rm

e
d
to

b
e
se
ri
al
o
ff
e
n
d
e
rs

(i
.e
.,
co
n
vi
ct
e
d
o
r
D
N
A
-l
in
k
e
d
to

tw
o
o
r
m
o
re

o
ff
e
n
ce
s)
.
T
h
e
re

w
e
re

ad
d
it
io
n
al
,
u
n
ve
ri
fi
e
d

su
sp
e
ct
s
in
so
m
e
o
ff
e
n
ce
s
w
h
o
h
ad

n
o
t
b
e
e
n
id
e
n
ti
fi
e
d
.T

h
is
w
ill
th
e
re
fo
re

b
e
th
e
m
in
im
u
m

n
u
m
b
e
r
o
f
o
ff
e
n
d
e
rs

in
th
e
sa
m
p
le
.

6 Jessica Woodhams et al.



Three data sets (the United Kingdom, Belgium, and the Netherlands) were collated

from data already stored on the ViCLAS (see Collins, Johnson, Choy, Davidson, &MacKay,

1998). ViCLAS stores records of serious crimes including the crime scene behaviour

engaged in by the offender in a standardized manner. It is used to support the process of
crime linkage in Belgium, the Czech Republic, France, Germany, Ireland, the Netherlands,

NewZealand, Switzerland, and theUnitedKingdom(Wilson&Bruer, n.d.). InBelgium, the

Netherlands, and theUnitedKingdom,police investigators submit the casepapers for each

offence to be included on the database to the analytical units. The types of cases submitted

to the three analytical units include stranger sexual offences and sexual homicides. In the

United Kingdom, the data were extracted directly from ViCLAS by an analyst from the

SCAS. In Belgium and the Netherlands, crime analysts employed in the ViCLAS units

manually extracted thedata fromViCLAS andother relevant systems (e.g., crime records to
identify solved and unsolved cases). In both countries, all data retrieved fromViCLASwere

reviewed by the analysts against the original paper files to ensure the coding was in

accordance with the coding dictionary and quality control was assessed using the current

quality assurance manual. These data sets were encrypted and sent to the third author.

The data from Finland were already coded due to its use in previous research studies

(H€akk€anen, Lindl€of, & Santtila, 2004; Santtila et al., 2005). The South African data were

collected by the third author in situ at the Investigative Psychology Section of the South

African Police Service (SAPS) over a three-month period. Information was extracted
directly from hard copy case files.

The crime linkage practitioners from the United Kingdom, Belgium, and the

Netherlands assessed the comparability of a large set of variables across the different

countries resulting ina commoncodingdictionaryof 166variables that couldbe considered

comparable. For each crime in the data set, information pertaining to these 1666 binary

behavioural variables was, therefore, collated. These variables represent the type and

quality of information stored regarding crimes on ViCLAS. Our data sharing agreements

preclude the disclosure of the exact variables; however, they encompassed behaviours
designed togain andmaintaincontrol over the victim (e.g., how thevictimwas approached,

whether a weapon was used and how, the instrumental use of violence), behaviours

associatedwith exiting the crime scene or evading capture (e.g.,wearing gloves, amaskor a

disguise, giving a false name, taking forensic precautions), sexual behaviours (e.g.,whether

the victim was penetrated and how, whether the offender ejaculated, if and how clothing

was removed), target selection variables (e.g., the time and day of the offence, the age and

gender of the victim, whether the victim was physically or mentally impaired), and

behaviours thought to reflect the offence ‘style’ of the offender and that ‘are not directly
necessary for the success of the attack’ (Grubin et al., 2001, p. 26) (e.g., the offender

complimenting the victim, showing concern or revealing personal information).

To assess the reliability with which these 166 variables could be coded, the first five

series from South Africa (n = 20 cases) were dual-coded by the first and third author for

inter-rater reliability analysis (representing 3,320 discrete codes). Both are experienced

coders of crime scene behaviours. Kappa and/or percentage agreementwas calculated for

161of the 166 variables. The remaining five variables related to objective characteristics of

a crime scene/crime (day of the week and time of the day split into four categories).

6 For Finland, information on 42 rather than 166 behavioural variables was present. The data for Finland were historic and,
therefore, the case files could not be revisited to code additional variables. Instead, a 0 was entered for these additional variables
for each Finnish case. This was not considered problematic due to the use of Jaccard’s coefficient, which does not include joint
non-occurrences in its calculation of the similarity between a pair.
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Seventy variables were coded as present by at least one of the coders; therefore, it was

possible to calculate a Kappa statistic for these. Kappa values for these variables ranged

from .74 to 1.00with 52of the 70 variables achieving aKappa value of 1.00. The remaining

96 variables all achieved 100% percentage non-occurrence agreement. It is just as
important to demonstrate the reliable coding of non-occurrence since joint non-

occurrence is considered by analysts in the linking of crimes (Davies et al., 2018) and is

used in the calculation of some similarity coefficients (although not Jaccard’s coefficient).

While the researchers coded the data in South Africa, the variables had already been

coded for the other countries, preventing further tests of coding reliability; however, it

still stands that the coding of these variables was demonstrated to be reliable on South

African case files. For the United Kingdom, Belgium, and the Netherlands, a rigorous data

coding and quality assurance process is used: Data are entered onto ViCLAS by trained
analysts who work with such data on a daily basis. The training of analysts is a lengthy

process, typically lasting several months (but it can last as long as a year, or longer if

necessary), and involving close supervision by an experienced analyst. In each country,

data entry onto ViCLAS is closely supervised by senior analysts and guided by a detailed

quality control guide/coding manual, which explains the meaning of individual ViCLAS

variables and gives examples of how these variables should and should not be coded.

Consequently, all analysts entering data onto the ViCLAS system are following the same

coding rules. Furthermore, before analysis begins on any case, the case is reviewed to
ensure that the information entered on the ViCLAS system matches the original police

files. Any inconsistencies are fed back to the analyst who entered the data onto the system

and amended within the ViCLAS database itself.

Finally, inter-rater reliability (IRR) had already been assessed for the Finnish data. As is

published in the respective papers, ameanK of .77was found for Santtila et al. (2005). All

variables also yielded a K > 0.61 for H€akk€anen et al. (2004) with two exceptions and

only one of these variables featured in our datasets – that of revealing personal

information. While this did not reach an acceptable level of inter-rater agreement for
H€akk€anen et al. (2004), it was coded reliably in our assessment of IRR with the South

African data (K = .83).

Once all five datasets had been received, they were reformatted into one row per

offence7 and manually joined together by the third and eleventh authors.

Analytic strategy

Our analysis followed a method designed by Professor Craig Bennell in 2002 (Bennell,

2002), which has been used in many empirical tests of the crime linkage principles since

(see Bennell et al., 2014; for a review). Using a specially designed piece of software,
B-LINK (Bennell, 2002), four separate data sets of linked and unlinked crime pairs were

created (see Table 2).8 Using the binary coded behavioural data for each crime (the 166

variables), B-LINK calculates the Jaccard’s coefficient for every pair in the data set, thereby

providing a quantitative measure of how similar the two crimes are in terms of offender

crime scene behaviour.

7 The binary coding was at the offence, rather than the offender, level (for offences committed by groups); therefore, no attempts
were made to attribute specific behaviours to individual offenders.
8Only unlinked crimes were paired that occurred within the same country since initial analyses indicated that a significantly larger
AUCwas obtained when contrasting linked crime pairs with unlinked crime pairs that included two crimes from different countries
(AUC = .91) than when contrasting them to unlinked pairs composed of crimes only from the same country (AUC = .86)
(D = .005, p < .001).
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The approach of contrasting the behavioural similarity of linked and unlinked crime

pairs, whether using tests of difference or ROC analysis, simultaneously tests both the

assumption of behavioural consistency and the assumption of behavioural distinctive-

ness. If offenders are consistent in their crime scene behaviour, the level of behavioural

similarity for linked pairs is relatively high. If offenders commit their crimes in a

distinctive manner, the pairing of two crimes by two different, distinctive individuals

means unlinked crimes pairs share few behaviours and thus the level of behavioural

similarity is low. Therefore, to distinguish linked from unlinked crime pairs based on
relative behavioural similarity with a high degree of accuracy requires both assump-

tions to be valid.

Three stages of analysis were conducted separately on the four data sets. This allowed

us to examine whether behavioural similarity, distinctiveness, and discrimination

accuracy varied as a function of whether apparent one-off crimes and/or unsolved serial

crimes were included in the sample under analysis: (1) Mann–Whitney U-tests assessed

whether the Jaccard’s coefficients for the linked crime pairs were significantly larger than

those for the unlinked crime pairs. Significance tests were accompanied by effect size
calculations; (2) binary logistic regression using a leave-one-out classification method9

(LOOCV; Woodhams & Labuschagne, 2012a) with linkage status (linked or unlinked) as

the outcome variable and Jaccard’s coefficient as the predictor variable was used to

produce predicted probabilities that were entered into; a (3) ROC analysis. As outlined

above, ROC curves give an indication of discrimination accuracy via the AUC. The AUC is

an effect size (Harris & Rice, 1995) and is therefore independent of sample size (Sullivan&

Feinn, 2012).

The findings produced using these four data sets were then compared. A key
comparison was between data set 1 (which contained solved, unsolved, serial, and

Table 2. The composition of the four datasets subject to analysis

Data set

number 1 2 3 4

Types of

crime

included

Solved serial

crimes, unsolved

serial crimes,

and solved

apparent one-off

crimes

Solved and

unsolved serial

crimes only

(apparent one-off

offences removed)

Solved serial

crimes and

solved apparent

one-off crimes

(unsolved

serial crimes

removed)

Solved serial

crimes only

(unsolved serial

and apparent

one-off crimes

removed)

Number of

crimes

3,364 2,173 3,272 2,081

Number of

linked/

unlinked

pairs

4,569 linked

pairs and

3,401,679

unlinked pairs

4,569 linked pairs

and 1,296,211

unlinked pairs

4,006 linked

pairs and

3,363,884

unlinked pairs

4,006 linked pairs

and 1,267,648

unlinked pairs

9 A LOOCV logistic regression includes a cross-validation step and involves removing a given case from the data set and developing
a logistic regression model on the remaining cases. The model is then applied to the extracted case to yield a predicted probability
value. This process is then repeated for each case in the data set. Cross-validation such as this ensures thatmodels constructed will
generalize to new data.
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apparent one-off crimes) and data set 4 (which contained just solved, serial crimes). Data

set 1 more closely represents the data that might be used in practice when analysts

are linking crimes, whereas data set 4 is comparable to the data used in most previous

studies of the crime linkage principles, which is characterized by the limitations outlined
above.

While the proportion of linked crime pairs formed from series that were

unsolved but linked-by-DNA was much higher in this study (12%) compared to that

in Slater et al. (2015; 3%), it was possible that their removal in data sets 3 and 4

might have little impact due to the size of the samples or be obscured by the

inclusion of the one-off crimes. Consequently, meaningful differences between

solved and unsolved crime series might be obscured. An additional analytic approach

was, therefore, developed whereby a subset of linked and unlinked crime pairs were
generated from the unsolved but linked-by-DNA crime series and the three stages of

analysis repeated. This allowed for comparison in findings between crime pairs

generated from two solved serial offences (n = 4,006 linked pairs and n = 1,267,648

unlinked pairs) and from two unsolved serial offences (n = 563 linked pairs and

n = 1,467 unlinked pairs). This was an alternative way of examining whether the

principles of consistency and distinctiveness were supported when including

unsolved crime data in samples.

It is also important to note that, although a large AUC value indicates support for
the principles underpinning crime linkage, it can still be associated with a considerable

number of decision-making errors, particularly when there is an imbalance in the ratio

of ‘positive’ (linked) to ‘negative’ (unlinked) cases, which is certainly the case with

these data (see Longadge, Dongre, & Malik, 2013; for a review of the so-called ‘class

imbalance problem’).10 This issue is not unique to crime linkage and applies in other

classification domains (e.g., risk prediction, diagnosis of rare diseases). Therefore, a

final step in the analysis was to illustrate the number and type of errors made when

adopting a particular decision threshold (i.e., a specific level of similarity used to
determine when two crimes are similar and distinctive enough to warrant being

linked). Based on discussions with crime linkage practitioners, we selected the false

alarm rate of 15% for these illustrations since, in practice, it is preferable to minimize

the number of false alarms.11 With the false alarm rate fixed at 15%, the proportions of

hits, correct rejections, and misses were calculated using the full data set (i.e., solved

series, unsolved series, and one-off offences).

The ROC analysis was also repeated for each country individually using the full data set

for each country. The compositions of these samples can be seen in Table 1.

Results

Mann–Whitney U-tests for international sample

The behavioural similarity of the linked crime pairswas significantly larger than that of the

unlinked crime pairs (p < .001) across all four data sets (see Table 3), thereby
demonstrating comparable support for the principles of crime linkage across data sets.

10 It is important to note that the class imbalance problem arises from the methodology of creating all possible (linked and
unlinked) pairs; therefore, it will impact on any statistical technique used alongside this method.
11 The impact of choosing different decision thresholds is an entire research question in itself and certainly something that should
be subject to empirical study and cost-benefit analysis; however, this is beyond the scope of the current article.
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The effect size r was approximated using the formula from Pallant (2007) resulting in

effect sizes ranging from .04 to .07.

ROC analysis for international sample

For the sake of brevity, only the ROC analyses are presented here, but a summary of the

binary logistic regressions using LOOCV can be obtained from the first author upon

request. Table 4 displays the AUCvalues and Figure 1 the ROCcurves. All AUCs represent
an excellent level of predictive accuracy (Hosmer & Lemeshow, 2000). Furthermore, the

AUCswere similar across all four data sets. The inclusion of one-off offences in the sample

reduced discrimination accuracy (as measured by the AUC) significantly, D = 1.99;

p < .05, although the change in the AUC was small (from .86 to .85). The change in

discrimination accuracy (AUC of .86 to .85) when both unsolved and one-off offences

were added to the sample (data set 1) compared to when they were absent (data set 4)

approached significance, D = 1.93, p = .05.

Separate analyses for solved versus unsolved serial crime pairs for international sample

When sampling only solved series, the AUC was .86 (p < .001, SE = .003, 95%

CI = .86–.87, as per Table 4), whereas when sampling only unsolved series, the AUC

was .79 (p < .001, SE = .011, 95% CI = .77–.81) representing an adequate level of

discrimination accuracy (Hosmer & Lemeshow, 2000). The difference between these two

values was statistically significant (D = 5.47, p < .000001).

The number and types of correct/incorrect decisions at a 15% false alarm rate threshold

for international sample

Table 5 summarizes the proportion of hits, misses, and correct rejections when the

threshold of a 15% false alarm rate was applied.

ROC analysis for each country separately
A ROC analysis was also run for each country’s data separately. The results can be seen in

Table 6.

Table 3. Statistical comparisons of linked and unlinked crime pairs in terms of behavioural similarity

Dataset

Linked Crime

Pairs

Median Jaccard

(Min.–Max.)

Unlinked Crime

Pairs

Median Jaccard

(Min.–Max.) Test statistics

All Data Included .44 (.00–1.00) .24 (.00–1.00) Z = 82.36, p < .001, r = .04

Apparent One-Off

Crimes Removed

.44 (.00–1.00) .23 (.00–1.00) Z = 85.14, p < .001, r = .07

Unsolved Crimes Removed .44 (.00–1.00) .24 (.00–1.00) Z = 76.66, p < .001, r = .04

Both Apparent One-Off and

Unsolved Crimes Removed

.44 (.00–1.00) .23 (.00–1.00) Z = 79.51, p < .001, r = .07
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(3) (4)

(1) (2)

Figure 1. The ROC curves which correspond with the AUCs in Table 4 for (1) all data included; (2)

apparent one-off crimes removed; (3) unsolved crimes removed; and (4) both apparent one-off and

unsolved crimes removed.

Table 4. ReceiverOperatingCharacteristic analysis testing discrimination accuracy across the four data

sets

Data set

Area Under the

Curve (SE)

95% confidence

interval

All Data Included .85 (.003)* .84–.86
Apparent One-Off Crimes Removed (Series only) .86 (.003)* .86–.87
Unsolved Crimes Removed (Solved only) .85 (.003)* .84–.85
Both Apparent One-Off and Unsolved Crimes

Removed (Solved Series Only)

.86 (.003)* .86–.87

Note. *p < .001.
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Discussion

There is a growing trend of international courts viewing crime linkage analysis as a form of

behavioural science and thus qualifying for assessment against legal standards governing

the admission of scientific evidence (Pakkanen et al., 2015). This, alongside its use to

inform police decision-making, makes the reliability of its underlying principles an

important subject for empirical research.
We tested the reliability of its underlying principles simultaneously using ROC analysis

to assess the accuracywithwhich linked crimepairs could be distinguished fromunlinked

crime pairs based on quantitative measures of behavioural similarity. The AUCs obtained

(.79–.86) are similar in size to those seen in past, smaller scale studies (e.g., Slater et al.,

2015; Winter et al., 2013; Woodhams & Labuschagne, 2012a) and represent an adequate

(.79) to excellent (.80 and above) level of discrimination accuracy. Even the AUCobtained

when sampling only from unsolved but linked-by-DNA series (.79) was larger than AUCs

reported in previous studies (e.g., Bennell et al., 2009).
These previous studies demonstrated little impact of including either one-off crimes,

or unsolved but linked-by-DNA series, on the AUC values obtained. However, their small

samples sizes and the fact that none of these studies included confirmed series alongside

one-off offencesand unsolved crime seriesmeant less confidence could be placed in their

findings. Through the cooperation of police and academics from seven countries, a much

larger sample was collated allowing for a more rigorous and ecologically valid test of the

Table 5. Number of hits, misses, correct rejections, and false alarms using a decision threshold of 15%

false alarms

Predicted linked Predicted unlinked

Linked in Reality 71% Hit Rate (3,247 linked crime pairs

were correctly identified)

29% Miss Rate (1,322 linked crime

pairs were incorrectly classified

as unlinked)

Unlinked in Reality 15% False Alarm Rate (532,170 unlinked

crime pairs were incorrectly

classified as linked)

85% Correct Rejection Rate

(2,869,509 unlinked crime pairs were

correctly identified)

Table 6. Receiver Operating Characteristic analysis testing discrimination accuracy across the five

different countries

Country Area Under the Curve (SE) 95% confidence interval

The United Kingdoma .83 (.005)* .82–.84
Belgiumb .85 (.012)* .82–.87
Finlandc .56 (.039) .49–.64
The Netherlandsd .76 (.019)* .73–.80
South Africae .79 (.007)* .78–.80

Notes. aSerial, one-off, solved, and unsolved crimes (linked pairs n = 2,537, unlinked pairs n = 3,321,794).
bSerial, one-off, solved, and unsolved crimes (linked pairs n = 400, unlinked pairs n = 29,246).
cSerial, one-off, solved, and unsolved crimes (linked pairs n = 55, unlinked pairs n = 7,448).
dSerial, one-off, solved, and unsolved crimes (linked pairs n = 189, unlinked pairs n = 14,689).
eSerial, solved, and unsolved crimes (linked pairs n = 1,388, unlinked pairs n = 28,502).

*p < .001.
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crime linkage principles. Our findings mirror those of previous studies; the inclusion of

one-off crimes and unsolved crime series had little impact on the AUCswhen using the full

sample.

These findings are of global significance bearing in mind the use of crime linkage to
inform police decision-making around the world regarding the most serious types of

crimes (Bennell et al., 2014; Wilson & Bruer, n.d.). Our results also provide the sorts of

research findings regarding the principles of crime linkagewhich have been sought by the

courts in the past, and which will likely be sought in the future, when deciding on the

admissibility of crime linkage analysis as a form of expert evidence.

There are, however, important caveats to these generally positive findings. Our final

phase of analysis considered the scale and type of decision errors that would be made if a

decision threshold was utilized that capped the false alarm rate at 15%. This illustrated
that, despite our logistic regression models achieving high AUCs, a considerable number

of errors in linkage predictions can occur when using these statistical models. For

example, due to the relative base rates of linked versus unlinkedpairs in our data set, a 15%

false alarm rate corresponds with more than 500,000 false alarm predictions being made.

The number of misses is much smaller at just over 1,000. Such errors arise because within

the data set there are linked crime pairs that are characterized by inconsistency and

indistinctiveness, and unlinked crime pairs that are highly similar with respect to crime

scene behaviour (see the Min and Max values in Table 3). Therefore, the principles of
crime linkage do not hold for all cases.

Bearing in mind the police resources that might be put into further analytical and

investigative work with this number of false alarms, it is likely that a more stringent false

alarm rate would be needed in practice (this would, of course, result in a reduced hit

rate).12 While the paper does not provide a definitive answer as to the error rate

associated with crime linkage in practice, it still aids the courts and researchers/

practitioners by allowing them to appreciate the volume of errors that can occur even

when specific linking strategies are associated with high AUCs. An important next step
would be to establish the base rates of linked and unlinked pairs in databases such as

ViCLAS to estimate the extent of the class imbalance problem in practice.13 This,

combined with a full cost-benefit analysis that considers the human and financial savings/

costs associated with the four decision outcomes of the linkage task, would help inform

future decisions regarding the most appropriate decision threshold to use.

In addition, we found a significant difference in AUC when contrasting linked and

unlinked pairs using a sample generated from solved series versus unsolved but linked-by-

DNA series. This finding is similar to that reported by Woodhams and Labuschagne
(2012a)with amuch smaller sample. They observed that linked crime pairs first identified

as a series on the basis of DNAwere characterized by less behavioural similarity (a smaller

Jaccard’s coefficient) than those first identified on the basis of similar modus operandi.

The actual composition of crime types in databases used for crime linkage, such as

ViCLAS, is not currently known (e.g., ratios of serial, one-off, solved, and unsolved).

However, our findings highlight the importance of such studies since the trends seen in

12However, it should be noted that such large figures would only apply if you are comparing all crimes in a given database at the
same time. In practice, certain filters to reduce the number of cases retrieved would be applied in addition (e.g., offender ethnicity,
time, place, geography). For example, a case linked by DNA but where the specific DNA profile is not in the national database will
lead to the decision to exclude all cases with a known offender as a first filter (Davies et al., 2018).
13 The volume of unsolved crimes in such databases would make it impossible to know the real base rates of linked and unlinked
pairs.
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our data of decreasing discrimination accuracy with the addition of one-off offences and

with unsolved but linked-by-DNA series could be more pronounced if databases contain

many more offences of these types. One study has assessed how varying proportions

might affect the discrimination accuracy yielded from statistical analyses; Haginoya (2016)
foundno effect of varying the ratio of one-off offences to series on the ability to link crimes;

however, this analysis was limited to the linking features of geographical and temporal

proximity. The optimum approach would be to conduct a study on the entire police

database in each country. Where this is not possible, it is important in the future to (a)

conduct a study where the proportion of serial to one-off offences is systematically varied

to determine how this impacts on discrimination accuracy using offender crime scene

behaviours and to replicate Haginoya; and (b) to determine what the ratio is on existing

databases so that researchers can evaluate how much the proportions in their datasets
reflect reality. This ratiowould only be an estimate as it cannot be known for definite that a

crime is truly a one-off offence or part of an undetected series. However, an estimate with

these limitations in mind would still help inform the sampling frames of future studies

where a full database cannot be used for analysis.

It is important to note that our study is a test of the principlesof crime linkage and is not

a test of the practice of crime linkage. This does not invalidate our findings becausewe set

out to answer legal questions facing international courts surrounding the admissibility of

crime linkage evidence and to inform an evidence-based policing approach to crime
linkage (Rainbow, 2015). However, the accuracy of practitioner decision-making with

andwithout the aid of statistical models to support their decision-making is a topic in need

of study.

Finally, it is also important to recognize that the sample of crimes utilized in this study

was dominated by UK crimes as the UK analytical unit, SCAS, contributed the largest

number of cases. It was not possible to repeat all statistical manipulations conductedwith

the international data set with the data set from each country individually because the

numbers of solved versus unsolved series, or series versus one-off offences, were
insufficient. However, one overall ROC analysis was conducted on the full data set

available per country using the steps described above. The AUCs per country (.76 to .85)

were all within the range observed for previous studies of the crime linkage principles

with serial sexual offences (i.e., .75 to .89; Bennell et al., 2009; Slater et al., 2014; Winter

et al., 2013; Woodhams & Labuschagne, 2012a) for all countries with the exception of

Finland.14 The variation in discrimination accuracy across the countries is interesting, but

it is difficult to draw any firm conclusions from this. It is possible that they result from

differences in the relative compositions of the samples (e.g., solved vs. unsolved or serial
vs. one-off). There may be optimal sets ofmodus operandi behaviours per country, and

identification of these may improve discrimination accuracy. Authors have previously

commented that behaviours may vary in their relative distinctiveness from country to

country (Woodhams& Labuschagne, 2012b). Alternatively, the differences observedmay

be due to the series sampled from each country and with a different set of series the

findingsmight vary. This underscores the importance of future research studies aiming for

a large, realistic sample of crimes when investigating crime linkage within a country. As

noted above, ideally, where they exist and where permission is given, studies should

14 The AUC of .85 obtainedwith themulti-country samplewith data set 1was unchangedwith the removal of the Finland subset of
cases from the overall sample. The smaller AUC for Finland may reflect the reduction in behavioural information available for
linkage predictions with 42 versus 166 behaviours.
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utilize the entire data set of crimes on databases that assist with crime linkage in that

country (e.g., ViCLAS).

Conclusion

The paper reported a test of the reliability of the principles underlying crime linkage with

the largest andmost ecologically valid sample of sexual offences to date made possible by

international police–academic cooperation. A sample of several thousand crimes, which

included convicted series, unsolved but linked-by-DNA series, and convicted one-off

sexual offences, was collated and subject to LOOCV logistic regression and ROC analysis.

Support for the reliability of the underlying principles of crime linkage analysiswas found.

However, our calculations indicate that despite the large AUC values achieved by the
regression models, there is still the potential for a large number of decision-making errors

to be made due to the low base rate of same-offender crime pairs in the samples.
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