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Abstract: Navigation of a mobile robot under uncertainty in pose information in an unknown environ-
ment is the subject of this paper. The mobile robot is equipped limited field of view limited-range finder
and a magnetometer to infer its orientation. The target location is known, while the robot’s localization
suffers from measurement errors. The uncertainty is taken into consideration by calculation of the
Guaranteed Visibility and Guaranteed Sensed Area, where safe navigation can be assumed regardless of
the measurement error. A switching objective function initially guarantees the exploration towards the
target area and afterwards safely guides the robot towards it. Simulation results that prove the efficiency
of the proposed scheme are presented.

Keywords: Mobile robots, Pose sensing, Autonomous robotic systems, Guidance navigation and
control, Intelligent robotics

1. INTRODUCTION

Autonomous navigation of mobile robots is an area of rese-
arch with increasing interest over the years (?). Tasks such as
area coverage (??), exploration, surveillance, search and rescue
missions require that the robots move efficiently in the envi-
ronment, avoiding obstacles during motion and keeping under
consideration the robots’ physical constraints.

Motion planning for known environments has been extensively
researched over the past few decades (?), relying on principles
such as the Artificial Potential Fields (?), the vector field his-
togram (?), probabilistic roadmaps (?) and Rapidly-exploring
Random Trees (RRT) (?). Path planning methods such as the
Dynamic Window Approach (?), that rely upon local real-time
obstacle avoidance, have been implemented in uncertain or
unknown environments (?) where the information about the
environment in the vicinity of the robot is taken through on-
board sensors. These methods, while effective, prove to be
inefficient (?) in the aforementioned environments.

If the sensory information about the environment is utilized
for an on-line map building process, then the sub-problem of
exploration towards the unknown target area is included in
the navigation. One of the first methods is the frontier based
exploration (?), where a frontier is defined as the boundary
between explored and unexplored space. The frontier concept
has been widely used to research new exploration methods (?).

While recent sensors, such as LIDAR and vision based systems,
provide accurate environment information measurements, loca-
lization techniques still suffer from noisy IMU-measurements.
In the Simultaneous Localization and Mapping (SLAM) pro-
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blem (??), the estimated pose contains a bounded error. This
provides inaccurate maps, and the resulting navigation schemes
that rely upon the created map may prove ineffective.

The problem imposed by the authors is the navigation of
a mobile robot in an unknown environment with a known
target location that needs to be discovered and under bounded
pose uncertainty. A robot is equipped with a range sensor
with a limited field of view and range, while localization
information contains a bounded error. The contribution lays
within the use of a switching objective function, where initially
its optimization aims towards the exploration of the target.
Uncertainty is taken into consideration by calculating both
the Guaranteed Visibility and the Guaranteed Sensed Area,
subspaces of the initial sensed and explored areas, where safe
operation of the robot can be guaranteed in spite of these errors.
Frontier exploration selection occurs via the minimization of
a cost function. When the target position is discovered, the
control law switches to a distance based navigation function to
reach it.

The paper is structured as follows: in Section 2 some mathe-
matical preliminaries are given and the problem formulation is
presented, followed by Section 3 where the Guaranteed Visi-
bility and Guaranteed Sensed Area are defined and calculated
and the control law is given. In Section 4, simulation studies
that outline the efficiency of the proposed method are presented,
while in Section 5, conclusions are drawn.

2. PROBLEM FORMULATION

2.1 Mathematical Preliminaries

Consider a path-connected topological space A ⊂ Rn. The
boundary of A is denoted as ∂A, while {Bi}, i = 1, ..., N



denotes a collection of subsets. Spaces A,B are considered
disjoint if A ∩ B = ∅.

The Minkowski sum of two spaces A,B can be defined as the
space given by A⊕ B = {a+ b|a ∈ A, b ∈ B}.
Given the collection of all paths {γk} that connect two arbitrary
points p1, p2 ∈ A, the length of the shortest path defines the
geodesic metric dg(p1, p2) and the resulting path is called the
geodesic path.
Definition 1. Let us consider r ∈ A and a subspace B ⊆
A. Then the geodesic Hausdorff distance is defined as the
minimum geodesic distance of all points q ∈ B from r, i.e.

Hg(r,B) = min
q∈B

dg(r, q) .

Definition 2. Consider a point r ∈ A. The visibility subspace
of A from r, shown in Fig. 1 is defined as a subset Av(r;R),
containing all points q, so that the geodesic path connecting
r and q is a straight line and has length less than or equal to
R > 0, i.e.

Av(r;R) = {q ∈ A; dg(r, q) = ‖r − q‖ ≤ R} . (1)

Fig. 1. Visibility subspace definition from an arbitrary position

Regarding notations, In×m and On×m denote the n×m identity
and zero matrix respectively, while L[∂Ak] denotes the length
of the boundary segment ∂Ak.

2.2 Problem Statement

Let a path connected space, Ω ⊂ R2 be the unknown area of
interest. Let x = [ r, θ ]

T
= [ (rx, ry), θ ]

T be the robot’s
state vector, where r ∈ Ω and θ ∈ R be the position and
orientation respectively, and pt ∈ Ω be a goal position. The
robot is equipped with a range sensor of circular sector pattern
Cs(r; θ, ψ), with a sensing limit R and a field of view angle ψ,
centered around its current heading, defined as the intersection
of two semi-planes

Cs(r; θ, ψ)
4
= r +


− tan−1(θ +

ψ

2
) 1

tan−1(θ − ψ

2
) −1

 p ≤ [ 0
0

] .

At any time instance, a sector visibility subspace
S = Ωv(r;R) ∩ Cs(r; θ, ψ)

created by the range sensor is defined, while A ⊆ Ω is the
aggregated sensed area.

The following kinodynamic robot model is assumed

[
ṙ

θ̇

]
=

[
u
ω

]
(2)

where u ∈ R2, ω ∈ R.

Under the assumption of noisy position and orientation measu-
rements the robot’s state vector x̃ =

[
r̃, θ̃

]T
=
[

(r̃x, r̃y), θ̃
]T

is assumed to be within a set Ẽ defined as Ẽ = x⊕ E where

E = {x ∈ R3 : [ rx ry ]

[
rx
ry

]
≤ εd, |θ| ≤ εθ} , (3)

A switching objective function is formulated (?), where subsets
of spaces S (A) - namely S̃ (Ã) must be found that take into
account the uncertainty and ensure safe robot operation.

2.3 Guaranteed Visibility and Guaranteed Sensed Area

The imposed uncertainty affects the navigation by incorrect
estimation on the created global map of the sensed area boun-
daries {∂Sol } ⊂ ∂Ω. The aim is to define a new visibility
subspace, called the Guaranteed Visibility S̃ ⊆ S - and conse-
quently the Guaranteed Sensed Area derived from this subspace
Ã ⊆ A - where safe navigation for the robot can be ensured.
Thus, initially given sensor measurements of the area boundary
∂So, and localization uncertainty, the Boundary Uncertainty
Space C must be defined.

All range sensor measurements can be well described in the
local frame by a pair of polar coordinates (dp, ψp), dp ∈ (0, R),
ψp ∈ [−ψ2 ,

ψ
2 ]. The sensed cloud of points, expressed in a

global frame, can be given by

p = r̃ + R(θ̃)

(
dp cosψp
dp sinψp

)
, (4)

or, for brevity, p = r̃ + R(θ̃)(dp, ψp). R(θ̃) is the rotation
matrix:

R(θ̃) =

[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

]
.

Two additional spaces are introduced, namely Ẽr and Ẽθ derived
from projections of space Ẽ .

Ẽr =
{
r̃ ∈ R2 : ‖r̃ − r‖ ≤ εd

}
,

Ẽθ =
{
θ̃ ∈ [θ − εθ, θ + εθ]

}
.

The locus Cθ̃ of a sensor measurement (dp, ψp) given orienta-
tion uncertainty can be given from:

Cθ̃ =
{
r̃ + R(θ̃)(dp, ψp) | θ̃ ∈ Ẽθ

}
. (5)

Lastly, considering the additional position uncertainty creates
locus Cr̃ that can be calculated from:

Cr̃ = Cθ̃ ⊕ Ẽr . (6)

From (4) - (6) the Boundary Uncertainty Space C can be
retrieved as

Co =

l⋃
i=1

∂Soi ⊕ Cr̃ ,

C = C ∪ Co .
(7)



With the definition of C, S̃ can be derived as the sector visibility
subspace of space S \ C, that is:

S̃ = (S \ C)v (r̃;R− εd) ∩ Cs(r; θ̃, ψ − 2εθ) . (8)

Where R and ψ are reduced to R − εd and ψ − 2εθ to amend
for the uncertainty. The Guaranteed Sensed Area, Ã, can then
be derived as

Ã =
(
Ã ∪ S̃

)
\ C . (9)

With the definition of S̃ and Ã the objective function is formu-
lated as

H(x̃) =

∫
S̃

f (p)φ(p)dp , pt /∈ S̃ (10)

during exploration phase and,

H(x̃) =
1

‖pt − r̃‖
, pt ∈ S̃ , (11)

during navigation to the goal position, where a) f (p) : Ã → R
is the performance function and b) φ(p) : Ã → R the weighting
function.

3. PATH PLANNING UNDER UNCERTAINTY

3.1 Control Law Derivation

Theorem 3. Consider a robot with a sensing pattern of a circu-
lar sector with field of view angle ψ and range R, governed
by its kinodynamics (2). The control law that optimizes the
objective function (10) is given by

[
u
ω

]
=

k∑
i=1

∫
∂Sc

i

f φ
∂p

∂x̃
|p∈∂S̃cndp + (12)

m∑
i=1

1∫
0

f1φ1
∂p

∂x̃
|p∈∂S̃`υndυ +

2∑
i=1

1∫
0

f2φ2
∂p

∂x̃
|p∈∂S̃vυndυ .

where f1 = f (ai + υ(bi − ai)), φ1 = φ(ai + υ(bi − ai)),
i = 1, . . . ,m, f2 = f (r̃ + υ(ci − r̃)), φ2 = φ(r̃ + υ(ci − r̃)),
i = 1, 2 and

∂p

∂x̃
|p∈∂S̃c =

[
1 0 −R sin(ϕ+ θ̃)

0 1 R cos(ϕ+ θ̃)

]
, (13)

∂p

∂x̃
|p∈∂S̃` =

[
−‖pb − pa‖
‖r̃ − pa‖

υI2×2 O2×1

]
, (14)

∂p

∂x̃
|p∈∂S̃v =

[
0 0 −υ‖r̃ − c‖ sin(ϕ+ θ̃)

0 0 υ‖r̃ − c‖ cos(ϕ+ θ̃)

]
. (15)

Proof. For the remainder of this proof, for notation simplicity,
function variables of f and φ will be omitted. By differentiating
(10) with respect to x̃ = [r̃ θ̃]T and using the Leibniz integral
rule we obtain

∂H
∂x̃

=

∫
∂S

f φ
∂p

∂x̃

T

ndp , (16)

where n is the outward unit normal vector to ∂S̃ .

Boundary ∂S̃ can be decomposed into: a) a collection of l-
segments that belong to visible boundary uncertainty space
{∂S̃ol } ⊆ ∂C, b) a collection of k-circular arcs {∂S̃ck} created
by the limit range of the sensor, c) a collection of m-line
segments {∂S`m} created by visibility constraints that may be
denoted as {[a, b]k}, ‖a− r‖ < ‖b− r‖, and d) 2 line segments
{∂S̃v1,2} created by the limited field of view of the sensor,
denoted as {[r̃, c]k}.

Consequently, ∂S̃ may be written as,

∂S̃ =

l⋃
i=1

∂S̃oi +

k⋃
i=1

∂S̃ci +

m⋃
i=1

∂S̃`i +

2⋃
i=1

∂S̃vi . (17)

Equation (16) is thus transformed to

∂H
∂x̃

=

l∑
i=1

∫
∂S̃o

i

f φ
∂p

∂x̃

T

ndp +

k∑
i=1

∫
∂S̃c

i

f φ
∂p

∂x̃

T

ndp+ (18)

m∑
i=1

∫
∂S̃`

i

f φ
∂p

∂x̃

T

ndp+

2∑
i=1

∫
∂S̃v

i

f φ
∂p

∂x̃

T

ndp .

Following this boundary analysis, the Jacobian ∂p/∂x̃ =

[∂p/∂r̃ ∂p/∂θ̃] can be now calculated for each term of (18),
by considering that we are dealing with a static boundary and
computing the relative movement of an arbitrary point in the
remaining free boundaries with respect to the robot position,
which results in the Jacobians given from (13), (14) and (15).

As mentioned in subsection 2.2, this control input is applied
to the robot until the target area is discovered, at which point
the control law switches to a navigation function based on the
shortest distance to target, ‖r̃−pt‖ and the gradient descent law
constructs the final segment of the path.

3.2 Frontier Cost, Performance and Weighting Functions

Having calculated the control law, functions f (p) and φ(p)
should be appropriately selected taking into account the frontier
based exploration process of the overall scheme.

Boundary ∂Ã is initially decomposed into two collections, part
of the Boundary Uncertainty Space, {∂Aol } ⊆ C and free
boundaries {∂Afk}. It should be noted that from the moment
that Ã is partly the aggregated union over time of S̃, a single
free boundary ∂S̃fk can be any or a combination of the various
boundaries mentioned in subsection 3.1. The various line seg-
ments (visibility constraints or field of view limits) are treated
as possible frontiers, resulting the frontiers given by {∂Afk}.
Frontier selection should take into account the proximity of the
frontier to the target, the proximity of the robot to the frontier
and the accessibility to new unexplored areas. To implicate
the proximity to target the introduction of the complimentary
unexplored spaceW , defined as

W =
[
R2 \

(
Ã ∪ C

)]
∪ Ã ,



that comprises from a collection of simply connected disjoint
subsets. The frontier search is limited to frontiers that are
boundaries of the disjoint subset Wd ⊂ W that contains the
target. The geodesic Hausdorff distance of a frontier from the
target within Wd is then eligible to be used Hg(pt, ∂Ãfk).
Furthermore in space Ã the geodesic Hausdorff distance of the
robot from a frontier Hg(r, ∂Ãfk) is calculated. Lastly, frontier
length is taken into account in the cost function which takes the
following form

∂Ãfc = arg min
j

(
w1L

[
∂Ãfj

]−1
+

w2Hg(pt, ∂Ãfj ) + w3Hg(r, ∂Ãfj )
)
, (19)

where wi ∈ [0, 1], i = 1, 2, 3 are weights assigned to each part
of the cost function.

Performance function f (p) implicates the exploration process
into the objective given by (10) and weighting function φ(p)
implicates the navigation towards the desired position. The
performance function will be defined as:

f (p) =
1

Hg(p, Ãfc ) + 1
. (20)

This selection ensures that areas near the exploration frontier
have greater importance. To give even greater importance in
areas near the target, the weighting function φ(p) is defined as

φ(p) =
1

dg(y, pt) + 1
, (21)

y = arg min
y∈Ãf

c

Hg(pt, ∂̃A
f

c ) . (22)

It must be noted that dg(y, pt) refers to spaceW .

4. SIMULATION STUDIES

The efficiency of the proposed scheme is verified through a
simulation scenario. The area for navigation that was created is
depicted in Fig. 2, where for visualization purposes the initial
(green dot) and the target position (black dot) is illustrated.

Fig. 2. Ω-sample area for navigation

The rectangle encapsulating the convex hull of Ω is of 14 m ×
12 m. The robot has a range sensor of R = 1.6m and ψ =
1.047rad, while the error space (3) has parameters εd =
0.05m, εθ = 0.087rad. At each iteration step, the robot
moves along the direction and towards the orientation given
by equation (12) with a constant translational velocity of ν =
0.1m/sec and angular velocity of ω = 0.1rad/sec. The weights
of equation (19) are selected as w1 = 1, w2 = 0.9 and w3 =
0.4. Boundaries of C̃ and Ã at each step are archived using an

OctoMap (?) like method with a grid resolution of 0.02m. In
Fig. 3, the evolution of the navigation towards the target area
is seen, where the ’light grey’ area depicts the unknown space,
the guaranteed sensed area corresponds to ’light blue’ and the
Boundary Uncertainty Space C is depicted from the ’dark grey’
area. Boundaries of the Boundary Uncertainty Space ∂C are
depicted with black, while with red the frontiers are depicted,
and blue depicts the selected frontier given from equation (19).
As may be seen in Figs. 3(a) - (b) given the limited field of view
of the sensor and the orientation of the robot, it is able to move
efficiently in exploring the selected frontier. As may be seen
in Figs. 3(b) - (d), equation (19) is able to select the optimal
frontier to explore and is capable of adapting to changes in the
existing frontier. In Fig. 3(e) the switching to the shortest path
towards target takes effect as the target is within the explored
space. As seen in Fig. 3(f) the resulting path is sufficiently far
from the Boundary Uncertainty Space to account for safe and
fast navigation, without danger of collision, despite localization
errors.

5. CONCLUSIONS

In this paper a novel method for navigation in unknown en-
vironments by a mobile robot with pose (position/orientation)
uncertainty is presented. The robot is equipped with a ranged
sensor with limited sensing range and field-of-view and posi-
tion/orientation measurements contain a bounded error. Taking
into account a target location in the unknown area and the
sensed boundaries, the robot proceeds to find the Guaranteed
Visibility S̃ and Guaranteed Sensed Area Ã, areas where safe
navigation is ensured given the bounded localization error and
the sensed boundaries of the area. Within it, it selects via mini-
mization of a cost function a suitable frontier for exploration. A
control law is implemented that moves the robot along the di-
rection that maximizes an objective function that implicates the
exploration towards the unknown area near the target. As soon
as the target area is found, the motion control law switches over
to the shortest length navigation function. Simulation results
that prove the efficiency of the proposed scheme are presented.
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