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Mobile Robot Navigation in Unknown Environment

based on Exploration Principles

Ioannis Arvanitakis, Konstantinos Giannousakis and Anthony Tzes

Abstract— This article focuses on the mobile robot’s au-
tonomous navigation problem in an unknown environment.
Considering a robot equipped with an omnidirectional range-
sensor a map of the discovered area is constructed in an iterative
manner. Given a target position located in the unexplored
territory, initially a motion planning scheme is employed that
relies on exploration-principles of the area near the target.
This is achieved by assigning an exploration cost function that
indirectly attracts the robot close to target. Upon discovery of
the target, the robot moves to it following the shortest-distance
path. Simulation studies that prove the efficiency of the overall
method are presented.

I. INTRODUCTION

Autonomous navigation of mobile robots is an area of

research with increasing interest over the years due to recent

technological advances [1]. Tasks such as area coverage [2–

4] and exploration, surveillance, search and rescue missions

require that the robots move efficiently in the environment,

avoiding obstacles during motion and keeping under con-

sideration the robots’ physical constraints. Motion planning

for known environments has been extensively researched

over the past few decades [5]. Popular motion planning

solutions for known environments include, but not limited

to, the Artificial Potential Fields method [6], the vector

field histogram [7], probabilistic roadmaps [8] and Rapidly-

exploring Random Trees (RRT) [9].

In the latest years a paradigm shift towards motion plan-

ning in uncertain or unknown environments has been noted.

In these scenarios, the robot is equipped with a sensor –

in most cases a sonar, lidar, or stereo vision based system

– that provides information about the environment, resulting

in an online map building process. These sensors have either

limited sensing range capabilities or the sensor readings may

be considered unreliable after a specific limit. One of the first

proposed methods, to account for this sensing-scenario, was

the Dynamic Window Approach [10] combining concepts

from real time obstacle avoidance and motion planning to

calculate the admissible velocities that steer the robot towards

the target. In [11] the authors propose a partially closed loop

receding horizon control algorithm to navigate in dynamic

and uncertain environments, while in [12] a gap sensor that

tracks discontinuities in depth information for the creation

of a gap navigation tree for efficient navigation is utilized.

In terms of entirely unknown environments, most methods

focus mainly on local real time obstacle avoidance as they

try to reach the unknown target area. These methods may be
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effective but tend to produce paths that lead the robot close to

obstacles [13], leading in robot configurations that are ineffi-

cient both in terms of area sensing and avoiding potential new

obstacles. Furthermore, from an exploration point of view,

the target area is an unknown segment of the environment

that the robot needs to discover. Motion planning in these sit-

uations may be closely connected with exploration process;

the robot should utilise the existing information about the

discovered environment and plan an optimal path towards the

unknown target area. One of the first methods is the frontier

based exploration, where a frontier is defined as the boundary

between explored and unexplored space. The robot attempts

to move towards the closest frontier to its position [14],

referred to as the MinDist approach in the literature. The

DisCoverage algorithm [15] utilizes the concept of frontier

based approach by selecting appropriate target points along

the frontiers for convex environments and then the authors

extend it for non-convex environments [16] by transforming

the non convex domain to a star shaped domain. The authors

in [17], solve the coverage problem on non-Euclidean spaces

through the generalization of Lloyd’s algorithm, by proper

selection of coverage functional, and present the application

of this method for exploration. In most scenarios, a group

of robots is deployed within the unknown area. The problem

though may be degenerated into a single robot exploration

problem by utilising a Voronoi tessellation algorithm for

subspace exploration assignment [18] and then applying

single robot exploration methods.

The novelty of the present work is the navigation of a

mobile robot in an unknown environment towards a goal

position based on frontier exploration principles. A robot

equipped with a limited range omnidirectional sensor is

located in an unknown environment, where only the goal

location is known. To discover the goal location and plan a

path towards it, the robot takes into account the explored

area to find a frontier for exploration by minimizing a

cost function. The proposed control law then aims to guide

the robot towards the frontier strictly within the feasible

explored space, via a gradient ascent method of an objective

function. This process is executed until the target location is

found, where then the robot creates a simple geodesic based

navigation function to create the final path segment.

In Section II mathematical preliminaries and the problem

formulation is given, followed by the authors’ suggested

algorithm in Section III. In Section IV simulation results

that prove the efficiency of the proposed scheme are offered,

while in Section V conclusions are outlined.



II. PROBLEM FORMULATION

A. Mathematical Preliminaries

Consider a path-connected topological space A ⊂ Rn. The

boundary of A is denoted as ∂A, while {Bi}, i = 1, ..., N
denotes a collection of subsets. Spaces A,B are considered

disjoint if A ∩ B = ∅.

For connected spaces, the Euclidean metric d(p1, p2) =
‖p1−p2‖ is not an optimal norm for defining the distance be-

tween two points. Instead, the geodesic metric is introduced;

that is given the collection of all paths {γk} that connect two

arbitrary points p1, p2 ∈ A, the length of the shortest path

defines the geodesic metric dg(p1, p2) and the resulting path

is called the geodesic path. With the help of the geodesic

metric, the geodesic Hausdorff distance is introduced which

a special case of the Hausdorff metric [19].

Definition 1: Let us consider p ∈ A and a subspace B ⊆
A. Then the geodesic Hausdorff distance is defined as the

minimum geodesic distance of all points q ∈ B from p, i.e.

Hg(p,B) = min
q∈B

dg(p, q) .

Definition 2: Consider a point p ∈ A. The visibility

subspace of A from p is defined as a subset Av(p;R),
containing all points q, so that the geodesic path connecting

p and q is a straight line and has length less than or equal

to R, i.e.

Av(p;R) = {q ∈ A; dg(p, q) = ‖p− q‖ ≤ R},

where R ∈ R+ ∪ {∞}.

In Fig. 1 an example for a path-connected (non-simply

connected) space and its visibility subspace from an arbitrary

position is depicted.

(a) (b)

Fig. 1: Path connected space (left) and visibility subspace from an
arbitrary position (right)

Regarding notations, In and On denote the n×n identity

and zero matrix respectively, while L[∂Ak] denotes the

length of the boundary segment ∂Ak.

B. Problem Statement

Let Ω ⊂ R2 be the unknown area of interest, which may

be considered as a path connected space. Let r ∈ Ω be

the position of a robot and pt ∈ Ω be a goal position.

The robot is equipped with an omnidirectional range sensor

of circular pattern, with a sensing limit R. We assume

perfect knowledge of the position of the robot and noiseless

measurements from the sensor. At any time instance, a

visibility subspace S = Ωv(r;R) created by the range sensor

is defined, while A ⊆ Ω is the aggregated sensed area; it is

apparent that S ⊆ A.

The robot’s kinodynamic model is

ṙ = u , (1)

where r ∈ Ω and u ∈ R2.

Initially, the target belongs to the unknown area and is

to be discovered. To account for this discovert, an objective

function is formulated

H(r) = max

∫

S

f (p)φ(p)dp , (2)

where, a) f (p) : A → R is a performance function that

describes the performance in terms of exploration – gain of

information – of different areas in A, and b) φ(p) : A →
R is a weighting function that describes the importance of

different areas in terms of a specific task assignment. In pure

exploration missions,φ(p) = 1. Since in this work, we are

primarily interested in the navigation towards a target area in

unknown space, then this function takes its maximum value

at pt, ot maxφ∈Ω = φ(pt).
It is apparent, that within the noted cost in (2) describe in a

concurrent manner exploration (through f(q)) and navigation

(through φ(q)) aspects. If pt ∈ S, and henceforth being

‘visible’ from the current location of the robot, then the cost

function switches to

H(r)|pt∈S = max
1

‖pt − r‖
, (3)

and the robot uses the shortest path towards the ‘visible’

target point.

III. PATH PLANNING

A. Control Law Derivation

The task goal initially is to find a control law that

maximizes at each time step the objective function (2).

Differentiating H(r) with respect to r yields,

∂H

∂r
=

∂

∂r

∫

S

f (p)φ(p)dp ,

and by utilizing the Leibniz integral rule we obtain,

∂H

∂r
=

∫

∂S

f (p)φ(p)
∂p

∂r
ndp , (4)

where n is the outward unit normal vector to ∂S.

Fig. 2: ∂S-boundary decomposition



The boundary ∂S can be decomposed into: a) a collection

of l-segments that belong to visible area boundaries {∂So
l } ⊆

∂Ω , b) a collection of k-circular arcs {∂Sc
k} created by

the limit range of the sensor, and c) a collection of l-line

segments {∂Sℓ
m} created by visibility constraints that may

be denoted as {[a, b]k}, ‖a− r‖ < ‖b − r‖. A visualization

depicting the above is illustrated in Fig. 2, where the visible

boundary edges {∂So
l } ⊆ ∂Ω (solid black lines), the circular

arcs {∂Sc
k} (green curves) and the line segments {[a, b]k}

(red lines) are distinguished. It should be noted that segments

{[a, b]k} have no immediate physical interpretation as there

is no direct visibility, thus it can be either a free boundary or

be part of ∂Ω . The utilized control law though should take

these segments into consideration, and treats them as free

boundaries. Consequently, ∂S may be written as,

∂S =

l
⋃

i=1

∂So
i +

k
⋃

i=1

∂Sc
i +

m
⋃

i=1

∂Sℓ
i . (5)

Equation (4) is thus transformed to

∂H

∂r
=

l
∑

i=1

∫

∂So
i

f (p)φ(p)
∂p

∂r
ndp + (6)

k
∑

i=1

∫

∂Sc
i

f (p)φ(p)
∂p

∂r
ndp+

m
∑

i=1

∫

∂Sℓ
i

f (p)φ(p)
∂p

∂r
ndp .

Each term of (6) implicates the need to compute ∂p/∂r.

The first term is zero, since ∂p/∂r|r∈∂Ω = O2. For the

second term, ∂p/∂r|r∈∂Sc
i

= I2, since all point on the

boundary of the circular arcs move with the same velocity

as the robot. For the last term, p can be expressed as

p = aℓ + υℓ(bℓ − aℓ) , υℓ ∈ [0, 1] . (7)

Differentiating (7) leads to

∂p

∂r
= υℓ

∂bℓ
∂r

, υℓ ∈ [0, 1] . (8)

Considering ∂bℓ/∂r, further elaboration is required. Infinites-

imal movement of point r will give point bℓ a velocity

νb that can be analysed into an angular component νab
created by a possible rotation of r around point aℓ and a

translational component νtb along the direction of vector
−−→
aℓbℓ.

The translational component νtb is neglected as the boundary

is mainly affected from the rotational movement around aℓ.
Regarding component νab it is proven that

νab = ω × (pb − pa) = −
‖pb − pa‖

‖r − pa‖
νar .

From the above it can be deducted that

∂p

∂r
|r∈Sℓ = −

‖pb − pa‖

‖r − pa‖
υI2 . (9)

Taking the previous analysis into consideration, equation (6)

takes the form,

∂H

∂r
=

k
∑

i=1

∫

∂Sc
i

f (p)φ(p)ndp + (10)

m
∑

i=1

1
∫

0

f ′(υ)φ′(υ)

(

−
‖pb − pa‖

‖r − pa‖

)

‖bi − ai‖υndυ .

where f ′(υ) = f (ai+υ(bi−ai)) and φ′(υ) = φ(ai+υ(bi−
ai)) respectively.

Using u = ∂H
∂r

from (10) as the control input of the robot

results to the maximization of (2), since

dH

dt
=

∂H

∂r

dr

dt
=

∥

∥

∥

∥

∂H

∂r

∥

∥

∥

∥

2

≥ 0 . (11)

As mentioned in subsection II-B, this control input is applied

to the robot until the target area is discovered, at which point

the control law switches to a navigation function based on the

shortest distance to target, dg(r, pt) and the gradient descent

law constructs the final segment of the path.

B. Exploration Frontier Selection

In the previous subsection it was proven that u = ∂H
∂r

maximizes over time the objective function (2), a navigation

optimality criterion that relates to the selection of f (p) and

φ(p), while the overall scheme is based on a frontier based

exploration process.

In a manner similar to the collection decomposition of

boundary ∂S, boundary ∂A is decomposed into two collec-

tions, {∂Ao
l } ⊆ Ω and free boundaries {∂Af

k}. It should be

noted that from the moment that A is the aggregated union

over time of S, a single frontier ∂Sf
k may either be a curve

created by the sensing limit, a line created by the visibility

constraint or a combination of both. The line segments as

mentioned in the previous subsection, have no immediate

physical interpretation, should be treated ideally as a different

kind of frontier as in ∂S as in the case of equation (5);

in this case however there is an inherent complexity of

this distinction so curve segments and line segments for

simplicity are considered to belong to the same collection.

Frontier selection should take into account the proximity

of the frontier to the target, the proximity of the robot to

the frontier and the accessibility to new unexplored areas.

To implicate the proximity to target the introduction of

space A =
(

R2 \ A
)

∪ ∂A is required initially which

unlike A is not connected, but comprises from a collection

of simply connected disjoint subsets. The frontier search

is then limited to those frontiers that are boundaries of

the disjoint subset Ad ⊂ A that contains the target. The

geodesic Hausdorff distance of a frontier from the target is

then eligible to be used Hg(pt, ∂A
f
k). This distance given

the existing information about the explored area relates

with the distance the robot will need to traverse in the

unknown area to reach the target. Furthermore in space A
the geodesic Hausdorff distance of the robot from a frontier

Hg(r, ∂A
f
k) is calculated, which estimates the cost of moving



towards a frontier. Frontiers with relatively small values

of Hg(pt, ∂A
f
k) and Hg(r, ∂A

f
k) can initially be selected,

but their length may be relatively small compared to other

frontiers, which make them unsuitable for exploration as

they potentially offer less accessibility to unexplored areas

compared to frontiers with larger lengths. This is taken into

account into the cost function responsible for the frontier

selection, which takes the following form:

∂Af
c = argmin

j

(

w1L
[

∂Af
j

]−1

+

w2Hg(pt, ∂A
f
j ) + w3Hg(r, ∂A

f
j )
)

, (12)

where wi ∈ [0, 1], i = 1, 2, 3 are weights assigned to each

part of the cost function. Equation (12) is evaluated con-

stantly in conjunction with the control law, as more suitable

frontiers might emerge from the ongoing exploration such

in the case when a frontier reduces in length significantly

or breaks into two or more new frontiers – referred as the

‘crossroad situation’.

C. Performance and weighting functions selection

As mentioned in subsection II-B, the performance function

f (p) implicates the exploration process into the objective

given by (2) and weighting function φ(p) implicates the

navigation towards the desired position. The performance

function will be defined as:

f (p) =
1

Hg(p,A
f
c ) + 1

(13)

The aforementioned performance function ensures that areas

near the exploration frontier will be of greater importance

than areas further away from it. In an intuitive manner, the

robot will move towards the closest neighbourhoods of the

frontier, which would potentially lead it away from the target

area. To avoid this the weighting function φ(p) is defined as

φ(p) =
1

dg(y, pt) + 1
, (14)

y = argmin
y∈A

f
c

Hg(p,A
f
c ) . (15)

It must be noted that dg(y, pt) refers to space A. This

selection gives greater importance in neighbourhoods of Af
c

that are closer to the target than neighbourhoods further away

from it.

IV. SIMULATION STUDIES

The efficiency of the proposed scheme is verified through

two different simulation scenarios. Two different areas for

navigation were created that are depicted in Fig. 3, where

for visualization purposes the target position (black dot) is

also illustrated.

In the first scenario (Fig. 3(a)) the rectangle encapsulating

the convex hull of Ω is of 14m × 12m. The robot has

a range sensor of R = 1.3m and at each iteration step

the robot moves along the direction given by equation (10)

with a constant velocity of ν = 0.1m, while the weights

of equation (12) are selected as w1 = 1, w2 = 0.9 and

(a) (b)

Fig. 3: Ω-sample areas for navigation

w3 = 0.4. The boundary at each step of the explored area

is archived using an OctoMap [20] like method with a grid

resolution of 0.05m.

In Fig. 4, the evolution of the navigation towards the

target area is seen, where the grey area depicts the unknown

space and the explored space corresponds to ‘light blue’.

Discovered area boundaries are depicted with black, while

with red the frontiers are depicted, and blue depicts the

selected frontier given from equation (12). As may be seen

in Figs. 4(b) and (c), equation (12) is able to select the

optimal frontier to explore and is capable of switching

efficiently to new frontiers whenever the existing frontier

gives a suboptimal cost function (Fig. 4(d)). In Fig. 4(e) the

switching to the shortest path towards target takes effect as

the target is within the explored space. As seen in Fig. 4(f)

the resulting path is sufficiently far from the discovered area

boundaries to account for safe and fast navigation, without

danger of collision with obstacles.

In the second scenario (Fig. 3(b)) the area under investi-

gation is of 14m × 14m. The robot has a range sensor of

R = 2m while the velocity is the same as the one in the

first scenario. In this case the weights of equation (12) are

selected as w1 = 0.8, w2 = 0.6 and w3 = 0.4, while the grid

resolution is kept the same at 0.05m.

Similarly, in Fig. 5 the evolution of the navigation towards

the target area is seen. In this scenario the effect of the

exploration function into the control law given by equa-

tion (10) is better understood. Instead of simply avoiding

obstacles, the robot selects a path to lead it towards the

selected frontier in configurations away from the boundaries

of the area as seen in Figs 5 (b) and (c). Giving greater

importance to frontier length in equation (12) results in the

frontier selection depicted in Fig. 5(d), which might create a

lengthwise larger path and potentially guide it initially further

away from target. Despite this, as seen in Fig. 5(f), the robot

manages to effectively discover the target and guide towards

it.

V. CONCLUSIONS

In this paper a novel method for navigation in unknown

environments by a mobile robot is presented. The robot is

equipped with a ranged omnidirectional sensor with limited

sensing range and having accurate knowledge of its position.

Taking into account a target location in the unknown area

and the area that it has discovered so far, it selects via

minimization of a cost function a suitable frontier for explo-



(a) (b) (c)

(d) (e) (f)

Fig. 4: Evolution of the robot navigation towards the target location [1st scenario]

(a) (b) (c)

(d) (e) (f)

Fig. 5: Evolution of the robot navigation towards the target location [2nd scenario]

ration. A control law is implemented that moves the robot

along the direction that maximizes an objective function that

implicates the exploration towards the unknown area near

the target. As soon as the target area is found, the motion

control law switches over to the shortest length navigation

function. Simulation results that prove the efficiency of the

proposed scheme are presented.
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