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SlamTracker Accuracy under Static and 
Controlled Movement Conditions
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Huw D. Summers3,4 • Gareth Stratton 2,3

Accelerometry is the de facto standard in objective physical activity 
monitoring. However traditional accelerometer units undergo pro-

prietary pre-processing, resulting in the ‘black-box’ phenomenon, where re-
searchers are unaware of  the processes and filters used on their data. Raw ac-
celerometers where all frequencies related to human movement are included 
in the signal, would facilitate novel analyses, such as frequency domain analy-
sis and pattern recognition. The aim of  this study was to quantify the mean, 
standard deviation and variance of  the SlamTracker raw accelerometer at a 
range of  speeds. Four tri-axial accelerometers underwent a one minute static 
condition test nine movement condition tests. Accelerometers were assessed 
for mean, standard deviation, sample variance and coefficient of  variation 
throughout in all axes for all experimental conditions. The sample variance 
was <0.001g across all speeds and axes during the movement condition tests. 
In conclusion, the SlamTracker is shown to be an accurate and reliable device 
for measuring the raw accelerations of  movement.
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Accelerometry is the most commonly applied method for objective 
assessment of physical activity in epidemiological studies (van Hees et al., 2012). 
Traditional accelerometer devices predominantly store a summary measure of 
the raw acceleration signal, termed an “activity count” (Corder et al., 2008). A 
count is a dimensionless unit aimed to be proportional to the average overall 
acceleration of the human body in a specified period of time, referred to as 
an “epoch” (Chen and Bassett, 2005). However, this relationship has been 
questioned due to the restrictive dynamic range of commercial accelerometers, 
the downstream signal processing and band-pass filtering (van Hees et al., 
2012, Clark et al., 2016a). Such processing and filtering is designed to remove 
components of the signal unrelated to human movements (Brage, 2003, Rothney 
et al., 2008), however high frequency movement and noise information can 
escape the bandpass filter, which in turn adds unexplained variation in activity 
counts and incorrectly removes frequencies directly from human movement 
(Brond and Arvidson, 2015, Clark et al., 2016a).

There are a plethora of methods that exist to filter and summarise a raw 
acceleration signal, the choice of which has profound implications on the 
interpretation of the final output (Rowlands et al., 2007, van Hees et al., 2012). 
However, as traditional accelerometers are limited in memory and battery 
capacity to store raw signal data, data processing stages are performed on the 
device itself, and this process is irreversible once the count has been stored 
in local memory. This irretrievable conversion prevents re-analysis of the raw 
accelerometer signal using novel analytics and data processing techniques.

Although a detailed synopsis of the signal processing protocol employed 
would be vital to enable replication of empirical data, most manufacturers of 
accelerometer devices state that pre-processed raw data is proprietary information. 
This lack of transparency on the calculation of “activity counts” prevents a 
comparison between different accelerometer brands, or even between versions 
of the same brand (Corder et al., 2008, Rothney et al., 2008). On the other 
hand “activity counts” derived from a raw accelerometer have concordance with 
commercially developed devices (r=0.93, P<0.05), demonstrating the versatility 
of utilising the raw accelerometer signal (van Hees et al., 2012).

Using a raw accelerometer signal, where all frequencies related to human 
movement are included in the signal, would allow novel analyses, such as; 
pattern recognition, feature extraction, machine learning, cluster analysis, data 
mining to be undertaken, aided by the fact the Nyquist-Shannon sampling 
theorem is not violated  (van Hees et al., 2012, Mannini and Sabatini, 2010). 
Further, given there is no hidden signal processing, researchers may maintain 
control and confidence in their outputs. So as raw accelerometers become 
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more commonplace, it will be increasingly important to test their accuracy 
and variance during human movement, so device and human noise may be 
differentiated, and accuracy quantified (Clark et al., 2016a, Clark et al., 2016b). 

The SlamTracker is a device that captures raw accelerometer signals without 
pre-processing the data, but has not been assessed in a controlled manner. 
Therefore, the aim of this study was to quantify the mean, standard deviation 
and variance of the SlamTracker device at a range of speeds.

Methods

Instruments and procedures

Four tri-axial accelerometers (ADXL345 sensor, Analog Devices) with a +/- 
16g dynamic range, 3.9mg point resolution and a 13 bit resolution underwent a 
one minute static condition test and were subsequently tested at nine movement 
conditions (three speeds at three radii), for one minute, on a motorised turntable 
(GPO Stylo, Manchester, UK), with speeds verified by digital tachometer (RS 
Digital Tachometer Model 445-9557, Corby, UK) (table 1).

Table 1. Movement test conditions

*27, 56, 83 denote the possible radii in millimetres, 33.7, 45.3, 77.1 denote the possible 
speed in revolutions per minute.

For the static condition each device was tested at 20, 40, 100 and 200 Hz, 
and only the sensitive axis (Z) was analysed due to the only force acting upon 
the accelerometer being gravity. All motorised turntable tests were performed 
at 40 Hz, with X, Y and Z axes being analysed. The decision to use 40 Hz was 
based on the results of the static condition test.

Data analysis

Raw acceleration data was uploaded into a comma separated values 
spreadsheet where all analyses took place. For the static condition, mean, standard 
deviation and coefficient of variation over the one-minute measurement were 
calculated for the Z axis amplitude, g.

33.7 rpm 45.3 rpm 77.1 rpm
27 mm 0.09 m.s-1 0.13 m.s-1 0.22 m.s-1

56 mm 0.2 m.s-1 0.27 m.s-1 0.45 m.s-1

83 mm 0.29 m.s-1 0.39 m.s-1 0.67 m.s-1
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For the movement test conditions; mean, standard deviation and coefficient 
of variation over each one minute test was assessed for all axes. Because axes 
can be subject to negative and positive g during movement, sample variance was 
calculated as the squared differences from the mean (equation 1).

Equation 1. Sample variance

Where μ is the mean and N is the number of scores.

Results

Static condition

The static condition test demonstrated that the Z-axis amplitude coefficient 
of variation improved as recording frequency reduced (table 2). The mean Z-axis 
amplitude, offset to zero, across recording frequencies is shown in figure 1.

Table 2. Static condition test

Mean (g), standard deviation and coefficient of variation (%) values for recording 
frequencies; 20, 40, 100 and 200 Hz, respectively.

Frequency Mean SD CV
200 0.918 0.009 0.01
100 0.923 0.004 0.005
40 0.904 0.004 0.004
20 0.913 0.004 0.004
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Figure 1. Amplitude for accelerometer Z-axis under no movement condition for different 
sampling frequencies.

Crosses denote device recordings at 20 Hz; closed triangles denote device recordings 
at 40 Hz, closed squares denote device recordings at100 Hz, closed diamonds denote device 
recordings at 200 Hz.

Movement conditions 

The mean (SD) and sample variance for the X, Y and Z axes during all 
movement condition tests are detailed in table 3.

Table 3. Movement condition tests at nine speeds.

0.09 0.13 0.2 0.22 0.27 0.29 0.39 0.45 0.67
Axis m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1 m.s-1

X (g) -0.046 
(0.02)
<0.001

-0.025 
(0.01)
<0.001

-0.03 
(0.01)
<0.001

-0.001 
(0.01)
<0.001

-0.021 
(0.01)
<0.001

-0.028 
(0.02)
<0.001

-0.006 
(0.02)
<0.001

-0.007 
(0.01)
<0.001

-0.048 
(0.02)
<0.001

Y (g) 0.019 
(0.01)
<0.001

0.017 
(0.01)
<0.001

0.019 
(0.01)
<0.001

0.018 
(0.02)
<0.001

0.016 
(0.01)
<0.001

0.019 
(0.01)
<0.001

0.02 
(0.03)
0.001

0.017 
(0.02)
<0.001

0.019 
(0.01)
<0.001

Z (g) 0.855 
(0.02)
<0.001

0.858 
(0.02)
<0.001

0.856 
(0.02)
<0.001

0.855 
(0.02)
<0.001

0.857 
(0.02)
<0.001

0.857 
(0.02)
<0.001

0.856 
(0.02)
<0.001

0.855 
(0.02)
<0.001

0.853 
(0.02)
<0.001



Sport Science Review, vol. XXV, No. 5-6, December 2016

379

Mean accelerometer amplitude (g) (standard deviation) and sample variance 
(g) values are reported for all speeds and all axes.

Discussion

The aim of this study was to quantify the accuracy of the SlamTracker 
accelerometer at a range of speeds. This study found that during the static 
condition test 40 Hz had joint lowest CV and joint lowest SD (table 2). For the 
movement condition tests, the sample variance was <0.001g across all speeds 
and axes (table 3).

The static condition test was performed at a range of recording frequencies 
suitable for assessing physical activity (van Hees et al., 2012, Brage, 2003). It was 
found that as recording frequency was decreased, the coefficient of variation 
concomitantly improved, as did deviation from the mean. The highest recording 
frequency with the lowest coefficient of variation and lowest standard deviation 
was found at the 40 Hz recording frequency. 

The movement condition tests found that, for all axes, the sample variance 
was less than 0.001 g across all speeds. This indicates that, irrelevant of speed, 
the SlamTracker accelerometer is reliably accurate and consistent, indicating no 
artefacts of the device are present during movement. This is an important finding 
as any artefacts or anomalies recorded during human movement assessment 
can be attributed to researcher error (i.e. affixing problems), tampering (i.e. 
participant moving device) or accidental damage (i.e. participant falling on 
device), as opposed to device error. Slaven et al. (2006) determined the quality 
of accelerometer data by applying k-means clustering to the raw acceleration 
signal mean and variance across specific, consecutive time points and reported 
data quality as ‘good’ or ‘poor’ by how the clustering algorithm grouped the 
data. Data were retained in the ‘good’ cluster if they were within ~6% of the 
cluster mean. The present study variance from the mean was under 1% for all 
axes and speeds, indicating all data points would be considered ‘good’. Further, 
Tawk et al. (2013) reported accelerometer amplitude variance of <0.001 g during 
a static condition test, the present study, however, found similar low levels of 
variance in static and movement conditions. 

This study comprehensively investigated the SlamTracker acceleration 
signal amplitude at predominantly slow speeds, ranging from static to slow 
ambulation. It has been suggested that in some previous studies with a 
mechanical calibration or validation component (i.e. (Brage, 2003, Ried-Larsen 
et al., 2012)), the mechanical device used only allowed very limited acceleration 
amplitude in the low frequency area (Brond, 2014). It was further suggested 
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that utilising a device that can smoothly rotate at low speeds is of paramount 
importance when calibrating/validating accelerometers (Brond, 2014). The fact 
this study focussed predominantly on slow speeds is therefore a strength, as 
finding confidence in slow speeds demonstrates that subtle movements may be 
accurately attributed to human ambulation and not an artefact of device noise. It 
may be considered a limitation that the fastest speeds of human movement were 
not assessed in this study, however this device was subject to a broad band pass 
filter, up to 12 Hz, which has been vindicated by Wundersitz et al. (2015), who 
identified that filters at this frequency were most suitable to process accelerations 
in human running tasks, and filter out non-human motion. Further, although 
this is the first time the SlamTracker device has been mechanically validated, 
prior to human use, the SlamTracker has been extensively tested in biological 
tracking studies of multiple mammals, birds and ocean dwelling creatures of 
varying sizes (see; Wilson et al. (2007)).

Conclusion

This empirical investigation has quantified sample variance and deviation 
from mean values for the SlamTracker. This variance may be factored in to future 
analyses when using raw acceleration data. The SlamTracker demonstrates low 
variance and minimal deviation from mean values across an extensive range of 
slow speeds, and processes acceleration frequencies up to 12 Hz, and is therefore 
suitable for assessing human movement at very slow and fast speeds. Given the 
accuracy in static and movement tests for raw accelerometry, combined with its 
capability for novel analytics (Clark et al., 2016a), it is recommended that raw 
accelerometry be utilised over commercial devices that irretrievably pre-process 
data.
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