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Abstract—The sub-Gramian method allows individual nu-
merical estimation of inner interactions in large-scale systems.
However, it may give results that appear difficult to interpret.
In this paper we apply the sub-Gramian method to a low-order
system with active inner interactions - a vehicle suspension model.

Index Terms—sub-Gramian, Lyapunov differential equation,
vehicle suspension, inner interaction

I. INTRODUCTION

The simplest version of the sub-Gramian method is based on
the spectral decomposition of a square H2 norm of the transfer
function. This case applies when a system can be described
as an LTI dynamic one and therefore has a corresponding
algebraic Lyapunov equation. In order to facilitate specific
studies, e.g small-signal stability analysis, even large-scale
systems like power grids can be considered as LTI systems [1].
The finite sub-Gramian method uses the spectral decomposi-
tion for the differential Lyapunov equation solution instead of
algebraic one. Potentially it may allow its application to time-
variant and certain types of non-linear systems. However, its
results appear to be difficult to interpret and use [2]. This
created a need to find a relatively simple, yet highly variable
and containing multiple feedbacks technical system in order
to study practical features of the finite sub-Gramian method.

A vehicle suspension appears to fit this role as it has all the
needed physical properties. Its model has low order and can be
modified with time-variant, non-linear and controlled elements
if needed. Modern literature contains detailed description of
its dynamics as well. Vehicle suspension parameters tuning
problem is still not fully formalized and its solution mostly
exist as a set of empirically derived rules, even despite this
problem exists for a long time and has a certain economical
significance [3], [4]. Modern handbooks and studies provide a
variety of tuning and control strategies for passive and semi-
active suspension systems, both regular [5] and heuristic [6],
[7], but there is no universal approach yet. This leads to
another task of this study - to investigate the suitability of
the sub-Gramian method as a base for the formal automotive
suspension tuning problem statement.

The authors would like to thank the Russian Foundation for Basic Research
(RFBR) for supporting this research by project No.17-08-01107.

II. PROBLEM STATEMENT

Let us consider a vehicle suspension model with four
wheels, springs, dampers an tires, absolutely rigid body and
no sway bars. The following forces affect front right (FR, fr)
wheel and suspension:

Ffr = Kfr(−Lfθd + Lfrθl + z − zfrU)+

+ Cfr((−Lf θ̇d + Lfr θ̇l + ż)− żfrU )

z̈frU =
1

MfrU
(Ffr −KfrU żfrU − CfrUzfrU )

(1)

where Ffr is a force of FR suspension, Kfr - FR suspension
stiffness, Lf - a distance from the center of gravity (COG) to
the front axle, θd - vehicle body pitch, Lfr - lateral distance
from COG to FR suspension, θl - vehicle body roll, z - COG
vertical position, zfrU - FR unsprung mass position (m), Cfr
- FR suspension damping, MfrU - FR unsprung mass, KfrU

- FR tire stiffness (N/m), CfrU - FR tire damping. Note that
vehicle body and unsprung masses positions are in different
coordinate systems. Similar equations define other (FL, RR,
RL) suspension and tire forces.

The vehicle body dynamics is the following:

Mbz̈ = Ffr + Ffl + Frr + Frl

Iy θ̈d = Lf (−Ffr − Ffl) + Lr(Frr + Frl)

Ixθ̈l = LfrFfr + LrrFrr − LflFfl − LrlFfl,
(2)

where Mb is a body mass, Ffl - FL suspension force, Frr - RR
suspension force, Frl - RL suspension force, Iy - body moment
of inertia about y-axis, Lr - distance from COG to rear axle,
Ix - body moment of inertia about x-axis (lateral), Lrr - lateral
distance from COG to RR suspension, Lfl - lateral distance
from COG to FL suspension, Lfl - lateral distance from COG
to FL suspension. Figure 1 clarifies arms L and angles θ in
this model.

Such physical system being described by (1) for each wheel
and (2) can be modeled as a space-state LTI system

ẋ = Ax+Bu, y = Cx, (3)

where state vector x ∈ Rn represents body and suspension
relative positions and velocities, as well as body pitch and roll,
u ∈ R1 is an external force caused by road bumps, vehicle
acceleration and steering, y ∈ R1 is an output signal like
body position or roll. A[n×n], B[n×1], C[1×n] are real matrices
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Fig. 1. Vehicle body dimensions and angles.

defining the system dynamics. While further equations would
be given for a SISO system, the method description and case
study suggest implicit SIMO and MIMO systems analysis by
presenting their transfer functions as sets of SISO ones with
different matrices C.

The solution of a road vehicle suspension tuning problem
is finding an optimal set of adjustable chassis parameters
resulting in both minimal transient time and peak body accel-
erations. Both are important for passenger comfort and vehicle
steering but require opposite technical solutions, e.g. soft
shock absorbers are good for keeping lower body acceleration
values but lead to longer transients.

Considering a suspension system as an LTI system with a
body position as its output allows using its transfer function
to build comfort and handling functionals. Such functionals
can be sensitive both for high peak values and long transient
durations. A transfer function square H2-norm represent total
output energy after a δ-function input. The controllability
Gramian can express it in the following way [1]:

||W ||22 = tr(CTPC) (4)

A controllability Gramian is defined as a solution of the
following Lyapunov equation:

0 = AP + PAT +BBT (5)

P =

∫ ∞
0

eAτBBT eA
T τdτ (6)

A controllability Gramian on finite time interval is a solution
of the following differential Lyapunov equation:

dP

dt
= AP + PAT +BBT , P (0) = 0. (7)

While transfer function ||H2||-norm is defined only for an
infinite time interval, by Parseval’s theorem it coincide with its
time-domain counterpart - impulse response function ||H2||-
norm. This allows building finite time version of (4) and
potentially adapt the proposed method for linear time-variant
systems.

The sub-Gramian method is based on the decomposition of
Lyapunov equation solution as a sum of parts corresponding
to system eigenvalues and their pairs, therefore to certain
suspension components and component sets. Elements of such
decomposition are called sub-Gramians. This allows to decom-
pose energy-based functionals proposed above and possibly
make them more descriptive.

III. SUB-GRAMIANS

One way to define the finite controllability sub-Gramian
corresponding to a particular eigenvalue involves the solution
of the Sylvester differential equation [8]

d

dt
P ck (t) = skIP

c
k (t) + P ck (t)A

T +A(k)BB
T ,

P ck (0) = 0n.
(8)

Its general solution is

P ck (t) =
∫ t
0
A(k)BB

T eskτeA
T τ dτ, (9)

A(k) = Res (Is−A)−1|s=sk . (10)

The infinite sub-Gramian Pk trace for a diagonalized SISO
LTI system:

||W ||22 =

n∑
k

trPk =

n∑
k

tr(CTP ckC), (11)

trPk = tr(CTP ckC) =

n∑
l

pk,l, (12)

pk,l = −
n∑
l

1

sk + sl
bkblckcl, (13)

where sk is k-th eigenvalue of A, bk is k-th element of vector
B and ck is k-th element of vector C. The finite sub-Gramian
trace for a diagonalized SISO LTI system:

tr(CP c(t0, t)C
T ) =

n∑
k=1

n∑
λ=1

bkbλckcλ
1

sk + sλ
(e(sk+sλ)t − e(sk+sλ)t0).

(14)

IV. CASE STUDY

A. Model Description and Methodology

Table I shows the default values of all model parameters.
COG position is typical for compact front wheel drive cars
with only a driver onboard.



TABLE I
DEFAULT MODEL PARAMETERS

Parameter Value Unit

Lf 0.84 m

Lfr, Lrr 0.88 m

Lr 1.26 m

Lfl, Lrl 0.72 m

Kfr,Kfl 28000 N/m

Cfr, Cfl 2500 N/(m/s)

Krr,Krl 21000 N/m

Crr, Crl 2000 N/(m/s)

MfrU ,MflU 35 kg

KfrU ,KflU 10Kfr N/m

CfrU , CflU 10Cfr N/(m/s)

MrrU ,MrlU 25 kg

KrrU ,KrlU 10Krr N/m

CrrU , CrlU 10Crr N/(m/s)

Mb 1200 kg

Iy 2100 kgm2

Ix 900 kgm2

TABLE II
SYSTEM MODES

Mode Dominant States Mode Dominant States

M1, M2 θd, θ̇d M6 zflU , zfrU
M3 zrlU , zrrU M7, M8 θl, θ̇l, z, ż

M4 zrlU , zrrU M9, M10 θl, θ̇l, z, ż

M5 zflU , zfrU M11-M14 ˙zrlU , ˙zrrU , ˙zflU , ˙zfrU

The input is front right unsprung mass instantly moving
1cm down. Such input signal represents an idealized case of
front right wheel falling into a 1cm deep road dent with instant
tire deformation. Outputs are body COG position z, pitch θd
and roll θl angles. Studying these outputs allows analyzing
basic suspension-dependent comfort and handling properties
of a vehicle.

The following experiments involve linearizing the model
with input and outputs defined above while continuously
changing rear suspension damping in the interval from 0.5
to 2 of the default value (1000-4000 N/(m/s)). We repeat
this procedure for three different front damping values: 1,
1.2 and 1.4 of the default value (2500, 4200 and 5880
N/(m/s)). Table II shows dominant connections between
system modes and state variables acquired using matrix A
eigenvector analysis [9].

B. Numerical Results

At first we study square H2-norms of the acquired transfer
functions in order to clarify the energy-based approach. Figure
2 shows corresponding dependencies and allows to conclude
that too low and too high damping values result in undesir-
ably high energy estimations due to long-duration or highly
accelerated transients respectively. It is notable, that optimal
by the means of energy estimation rear damping values get

Fig. 2. Transfer functions square H2-norms for different outputs.

proportionally higher as similar values for front dampers rise.
The situation differ for transfer functions with body roll as
output. As the input perturbation is localized in front, firmer
rear dampers provide better roll resistance almost without local
minimums, and vice versa for the front dampers.

Every mode M1-M10 has a significant impact on the
resulting energy estimation as seen on Figure 3 for a transfer
function with body bounce as output. At the same time
the ratios of their impact are very variable. It is expectable
since COG doesn’t coincide with the geometrical center of
the chassis, so any process in the suspension leads to COG
movement.

Figure 4 shows dominant sub-Gramian traces for a transfer
function with body roll as output. They correspond to modes
M3 and M5 connected to rear and front unsprung masses
relative positions respectively. In order to minimize body roll
after hitting a road obstacle with one of forward wheels the
methods advices for softer front dampers and firmer rear ones.
Probably it will work the opposite way if only one rear wheel
would hit a dent or bump on a road.

Figure 5 shows that the energy functional has a visible
minimum in case of body pitch as output. Additionally,
modes M4 and M9 start to take bigger part in forming the
energy estimation as front damping values go higher. We may
interpret this as more energy being not absorbed by too firm
front suspension then going through the body to softer rear
suspension.



Fig. 3. General view of the spectral decomposition of transfer functions
square H2 norms. Body bounce output. cf = 2500.

Fig. 4. Dominant Sub-Gramian traces. Body roll output. cf = 2500.

Let us study two cases from the transfer function set
mentioned above using the finite sub-Gramian method. Let
the case A correspond to the values Cfr, Cfl = 4200 N/(m/s)
and Crr, Crl = 1900 N/(m/s), it is suboptimal in terms of
proposed energy-based criteria. Let the case B correspond to
the values Cfr, Cfl = 5880 N/(m/s) and Crr, Crl = 1000
N/(m/s), it is clearly unbalanced and far from optimal. Figure
6 presents finite sub-Gramian traces dynamics for modes M1
and M6 as well as infinite sub-Gramian trace for M1 as
a reference. It shows that a finite sub-Gramian trace value
can temporarily exceed an infinite one. That does not strictly
comply with earlier interpretation of finite sub-Gramians as
total accumulated energy and likely means that the energy
can pass from mode to mode, so it will be accounted in other
modes on the infinite time interval.

The nature of physical processes indirectly proves such

Fig. 5. The most changing Sub-Gramian traces. Body pitch output.

Fig. 6. Finite M1 and M6 sub-Gramian traces, infinite M1 sub-Gramian trace.

interpretation. After initial hit the suspension converses several
types of kinetic and potential energy of the body, the springs
and the unsprung masses into each other, which doesn’t



Fig. 7. Force, generated by the FR damper.

Fig. 8. Vertical body movement.

happen instantly. Figure 7 shows that in case B the damper
generates greater force in shorter time during the first 400ms.
Its main goal is to slow down the spring, therefore the vertical
movement of the body was reduced both by amplitude and
speed during the first 600ms, as seen on Figure 8. However,
after these 600ms the delayed reaction from underdamped rear
suspension takes place, which Figure 6 also does reflect.

As the spring and damper exert their forces on both the body
and unsprung mass, it is inevitable for certain modes finite-
time energy estimations to temporarily exceed their final value.
Therefore, the time to reach this value for the first time may be
criterion for estimating the process speed. In the future work
the system can be improved by the adding adaptive controller.
And such additional process speed criterion may be of use
for off-line adaptation algorithm tuning or short-term perfor-
mance assessment. This may lead to further improvements in
the adaptive control abilities to compensate the parameters
change of the vehicle suspension system due to the change
of the environmental conditions or the fault of the system’s

components [10].

V. CONCLUSION

Both versions of the sub-Gramian method provide results
that agree with engineering practice under given conditions.
In particular, the method recommends correct parameters
changes. The finite sub-Gramian analysis allows to locate
undesirably fast or slow processes and to monitor energy
conversion inside the system.

This will allow to connect finite sub-Gramian traces with
physical energies in the system in further studies. More
importantly, the results of this study provide a base for the
formal suspension tuning problem statement using presented
energy functionals.
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