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A transient and non-unit-based protection technique for DC grids based on the 
rate-of-change (R-o-C) of the fault induced travelling wave components 

 

This paper presents a transient and non-unit-based protection scheme for 

consideration in DC grids of the future.  The technique utilises the rate-of-change (R-

o-C) of the associated travelling wave components following the occurrence of a fault 

to determine whether the fault is internal or external. For an internal fault, the product 

of the magnitude of the R-o-C of the fault induced voltage and current travelling wave 

following fault inception must exceed a predetermined setting, otherwise the fault is 

external. The DC inductor located at the cable ends provides attenuation for the high 

frequency contents resulting from an external fault. The ratio between the forward 

voltage travelling waves and the backward voltage travelling wave provides directional 

discrimination. This ratio is less than unity for a forward directional fault and greater 

than unity for reverse directional faults. The protection algorithm has been validated 

using PSCAD/EMTDC simulations based on full scale modular multilevel converter 

(MMC) - based HVDC grid.  The simulation results presented, including the 

performances indices compared to existing and proposed methods available in 

literature shows the suitability and reliability of the proposed technique in 

distinguishing between internal and external faults. Key advantages of the proposed 

technique is that it simple, easily implemented, and does not rely on complex signal 

processing technique; and therefore it can easily be implemented to provide 

autonomous tripping for all relays located on the DC grid. 

 

Keywords: DC grid protection; internal and external fault; transient based protection; 

fault induced travelling wave; rate-of-change (R-o-C) of travelling wave. 

 

 

 

 

 



1.0 Introduction 

Fault vulnerability and protection issues are major challenges in realising voltage 

source converter (VSC) - based multi-terminal DC grids [1-4]. Existing protection 

techniques for two terminal High voltage DC (HVDC) transmission systems utilising 

AC side circuit breakers (Figure 1.1) are not suitable for the primary protection of DC 

grids since it will require the de - energisation of the whole grid thereby bringing the 

entire grid and other sub-grids to a standstill [1,2]. Studies have also shown that 

transient based protection algorithms are most suitable for DC grids if the protection 

scheme must be dependable and reliable. In all the travelling wave-based protection 

(TWBP) principles presents the best solution since it utilises the higher frequency 

contents of the fault induced components, hence making it a reliable and one of fastest 

means of protection in power systems. Generally, the main fault characteristics are 

embedded in the travelling wave components.  
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Fig. 1.1 Existing protection scheme for two terminal HVDC systems [1] 

 

Several TWBP principles have been developed and proposed for power transmission 

systems, such as those proposed for DC grids [3-12], those developed for AC power 

transmission systems [13-23] and those proposed for two-terminal HVDC systems 

[24 - 27].  Generally, TWBP techniques relying on multiple reflections between the 

fault and the local relay terminals would results in delay. Furthermore, the travelling 

wave components could decay and therefore resulting in an inability to detect it at the 

relay terminal. This is an undesirable condition for such a scenario for the relay. In the 

same way, TWBP principle relying on communication between the local and remote 

end relays would also results in communication delay noting that the wave propagation 

delay time may be more than the time required to detect, discriminate and clear the 

fault. Those relying on complex DSP techniques will involve computational burden and 



incur delay. In all, the trends and breakthrough as well recent advances made in the 

development of DC grids, such as the development of prototypes HVDC breakers [28, 

29], still create opportunities for further research in DC grid protection. 

 

The study reported in this paper utilises the rate-of-change (R-o-C) of the associated 

travelling wave components following the occurrence of a fault to determine whether 

a fault has occurred on a particular section or branch of the grid. For an internal fault, 

the product of the magnitude of the R-o-C of the fault induced voltage and current 

travelling wave following fault inception must exceed a predetermined threshold, 

otherwise the fault is external. The DC inductor located at the cable ends provides 

attenuation for the high frequency contents resulting from an external fault. The ratio 

between the forward voltage/current travelling waves to the backward voltage/current 

travelling wave provides directional discrimination. This ratio is less than unity for a 

forward directional fault and greater than unity for reverse directional faults. The 

protection algorithm has been validated using PSCAD/EMTDC simulations based on 

full scale modular multilevel converter (MMC) - based HVDC grid.  The simulation 

results presented, including the performances indices presented, compared to existing 

and proposed methods available in literature shows the suitability and reliability of the 

proposed technique in distinguishing between internal and external faults.  

 

The rest of the paper is structured as follows. In section two (2), the TWBP principle 

is presented, and thereafter the proposed protection algorithm presented in section 

three (3). The simulation studies carried out to validate the proposed protection 

principle are presented in four (4), whilst the complete protection scheme including the 

sensitivity analysis are presented in section five (5). Section six (6) concludes the 

paper, with some proposals and recommendations for future research direction. 

 

2.0 Travelling wave-based protection principle 

In general, the occurrence of a fault on a transmission line will result in a voltage 

collapse and initiate a travelling wave [15 - 19], as shown in Figure 2.1  
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Fig. 2.1 Travelling Wave on Transmission Lines 

v+
A  and v -A are the forward and backward travelling wave with respect to the relay A 

v+
B  and v -B are the forward and backward travelling wave with respect to the relay B 

 

The term forward or backward are arbitrary and depends on the assumed reference 

direction of current flow in the relay. Those waves travelling from the bus bar into the 

line are regarded as forward travelling wave (FTW); whilst those travelling from the 

line into the bus are regarded as backward travelling wave (BTW). Generally, v+
A and 

v -A are also accompanied by a forward and backward current travelling wave, i+
A and 

i -A respectively (not shown in the diagram).  

 

The current associated with the forward travelling wave has positive polarity whilst that 

associated with the backward travelling wave has negative polarity. From Figure 2.1 

and with R12 as a reference relay, the following equations can be defined.  

 

∆𝑣𝑑𝑐 = 𝑣+
𝐴(𝑡) + 𝑣−

𝐴(𝑡)          (2.1) 

∆𝑖𝑑𝑐 = 𝑖+
𝐴(𝑡) + 𝑖−

𝐴(𝑡)               (2.2) 

 

The voltage and current travelling wave are related by the surge impedance of the line, 𝑍𝑐 ; 

thus 

𝑖+ =
𝑣+

𝐴

𝑍𝑐
               (2.3) 

𝑖− = −
𝑣−

𝐴

𝑍𝑐
             (2.4) 

 

ΔvDC and ΔiDC  are the superimposed components of the voltages and currents following 

an abrupt injection on the line. Under steady state conditions, ΔvDC and ΔiDC  are   ideally 

zero and no travelling wave is present. Combining Equations (2.1) - (2.4) results in:  

 



𝑣+(𝑡) = ∆𝑣𝑑𝑐+ 𝑍𝑐∆𝑖𝑑𝑐

2
                  (2.5) 

𝑣_(𝑡) =  
∆𝑣𝑑𝑐− 𝑍𝑐∆𝑖𝑑𝑐

2
                (2.6) 

𝑖+(𝑡) = ∆𝑣𝑑𝑐+ 𝑍𝑐∆𝑖𝑑𝑐

2𝑍𝑐
                    (2.7) 

𝑖_(𝑡) = − 
∆𝑣𝑑𝑐− 𝑍𝑐∆𝑖𝑑𝑐

2𝑍𝑐
                (2.8) 

 

3.0 The protection principle 

The fundamental principle of the proposed protection technique presented in this 

paper is based on Equations (2.5) – (2.8). 

3.1 Conditions for forward and reverse fault 

For a forward directional fault, the ratio of v+ and v- or i+ and i- is less than unity; 

whereas this ratio is greater that unity for reverse directional fault. The principle is 

explained below.  

Considering Figure 3.1, (the inductor located at the cable ends are representative of 

the inductive effect of HVDC breaker) [3][4]. When the BTW arrives at bus A (Figure 

3.1), the FTW will be generated due to the reflection coefficient at the bus where the 

surge impedance is discontinuous. In the case of F1 and with respect to R12, 

v+
A = KA* v-

A,                                                 (3.1) 

 

Where KA is reflection coefficient. (KA < 1) 

 

Therefore, v+
A <  v -A for all internal fault.  

Generally, part of the travelling wave components will refracted at the boundary (not 

shown in the diagram), however this is not a major concern in this study, as energy 

balance is always maintained at the boundary. 
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Fig. 3.1 Forward fault showing forward and backward travelling wave.  
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Fig. 3.2, Reverse fault showing forward and backward travelling wave 

In Figure 3.2, the first incident wave arriving at relay R12 is a FTW, and thereafter a 

BTW; following a reflection at terminal B as shown. Therefore in this case,  

v+
A > v-

A 

From Figures 3.1 and 3.2, for a forward fault, say F1,  

v+
A / v-

A   < 1 

and for a reverse fault say F2,   

v+
A / v-

A   > 1 

 

3.2 Conditions for forward internal and forward external fault (FIF and FEF) 

In Figure 3.3, relay R12 sees a much-attenuated FTW and BTW, due to the 

discontinuity at the boundary of terminal B.  
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Fig. 3.3   Travelling wave propagation based on forward external fault (FEF) 

This is largely due to the DC inductor located at each of the line ends, which provides 

attenuation to the high frequency components resulting from an external fault. 

However, the attenuation of a travelling wave due to a FIF such as F1 of Figure 3.1, is 

much smaller. Therefore the R-o-C of the travelling wave components for a FIF would 

be significantly larger than that for the FEF. This characteristics provides the 

discriminative criteria between a FIF and a FEF and forms the basis for the protection 

principle presented in this paper.  



It can therefore be said that for a FIF, the magnitude of the R-o-C of the forward and 

backward travelling wave components (voltage and current) must exceed a 

predetermined setting, otherwise, the fault is a FEF. For the sake of convenience, the 

following are used in this paper: 

dv+/dt =rate of change (R-o-C) of the forward voltage travelling wave 

dv-/dt =rate of change (R-o-C) of the backward voltage travelling wave 

di+/dt =rate of change (R-o-C) of the forward current travelling wave 

di-/dt =rate of change (R-o-C) of the backward current travelling wave 

 

Therefore the following can be written,  

For a FIF,  

                                        
𝑑𝑣+

𝑑𝑡
>

𝑑𝑣+

𝑑𝑡
(𝑠𝑒𝑡) ;            

𝑑𝑣−

𝑑𝑡
>

𝑑𝑣−

𝑑𝑡
(𝑠𝑒𝑡) 

                                         
𝑑𝑖+

𝑑𝑡
>

𝑑𝑖+

𝑑𝑡
(𝑠𝑒𝑡) ;            

𝑑𝑖−

𝑑𝑡
>

𝑑𝑖−

𝑑𝑡
(𝑠𝑒𝑡) 

For a FEF,                

        
𝑑𝑣+

𝑑𝑡
<

𝑑𝑣+

𝑑𝑡
(𝑠𝑒𝑡) ;            

𝑑𝑣−

𝑑𝑡
<

𝑑𝑣−

𝑑𝑡
(𝑠𝑒𝑡) 

                                         
𝑑𝑖+

𝑑𝑡
<

𝑑𝑖+

𝑑𝑡
(𝑠𝑒𝑡) ;            

𝑑𝑖−

𝑑𝑡
<

𝑑𝑖−

𝑑𝑡
(𝑠𝑒𝑡) 

 

However, multiplying the derivative of the voltage travelling wave with that of the 

current travelling wave would significantly improve the sensitivity. The proposed 

protection algorithm is therefore based on this principle, and it is further explained 

hereunder. 

 

3.1 Proposed travelling wave-based protection principle 

The proposed TWBP principle is based on the magnitude of the product of the 

magnitude R-o-C of the backward voltage and current travelling wave. For an internal 

fault, the magnitude is significantly greater than a pre-predetermined settings; whereas 

the magnitude is less than a predetermined setting for forward external faults.  



 For a FIF,  

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
>

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
 (𝑠𝑒𝑡) 

For a FEF,  

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
<

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
 (𝑠𝑒𝑡) 

 

 

 

4.0 Simulation studies and validations of the proposed protection algorithm 

Simulations were carried out in PSCAD based on a four terminal full-scale DC grid 

[30] to investigate the proposed TWBP principle for its suitability as a primary 

protection for DC grid.  As shown in Figure 4.1, a DC side inductor has been 

incorporated to represent the inductive effect of HVDC breaker or fault current limiters 

or both. These inductors also serve as fault current limiters and provide attenuation 

for the high frequency components resulting from an external fault.  

 

All fault scenarios indicated were assumed to be a pole-to-ground (P-G) fault, and 

were applied at 2ms following the occurrence of the fault; with all measurements taken 

on the positive pole terminal of the DC link. Generally, faults in DC grids could either 

be a pole-to-pole (P-P) or pole-to-ground (P-G), or a double pole-to-ground; however 

considering the fact that the transmission medium will be based mainly on submarine 

cables, the P-G faults are more prominent, and therefore forms the basis for the 

validation of the proposed protection principle.  The following critical conditions for the 

reference relay were assumed. This was a low resistance remote internal faults versus 

a high resistance external faults. Thus F1= 300Ω forward internal fault; F2 = 0.01 Ω 

reverse fault, F3=0.01 Ω forward external fault. 
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Fig. 4.1 Four terminal DC grid showing critical conditions for relay 
 

(F1= 300Ω forward internal fault; F2 = 0.01 Ω Reverse fault, F3=0.01 Ω forward external) 
 

 

4.1 Forward and reverse faults 

The plots of the voltage and current traveling wave for a forward fault and reverse 

faults (F1 and F2) produced using Equations (2.5) – (2.8) are shown in Figures 4.2 and 

4.3 respectively. As shown, during pre-fault conditions, no travelling wave is present; 

however soon after the occurrence of the fault, travelling waves are developed. In both 

voltage and current travelling waves of Figure 4.2, the magnitude of the BTW 

components, v- and i- respectively   are significantly larger than those of the FTW 

components, v+ and i+ respectively during the first few milliseconds following the 

application of the fault. This is consistent with the conditions established in Section 3.1 

for forward directional faults. The converse is the case for reverse directional fault, F2 

(Figure 4.3), with the magnitude of v+ and i+ exceeding those of v- and i- during the 

measurement period. These characteristics provide the discriminative criteria between 

a forward and reverse fault. Therefore, the ratio between the forward travelling wave 

component (v+ or  i+) and the backward travelling wave component (v- and i- ) provides 

directional discrimination between a forward and reverse fault.  



 

 

Fig. 4.2 Plots of voltage and current travelling wave for a forward fault (F1) 
(a) Voltage travelling wave  (b)Current travelling waves 

 
 

 

 

Thus,  

For a forward directional fault,  

                                                v+  <   v -  therefore,    v+/ v -    < 1; 

                                                                                i+  <   i -  therefore,     i+/ i -   < 1; 

For a reverse directional fault, 

 v+  <  v -  therefore,    v+/ v -    >  1; 

                                                                                 i+  >   i -  therefore,   i+/ i -    >  1; 
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Fig. 4.3 Plots of voltage and current travelling wave for a reverse fault (F2) 
Voltage travelling wave  (b)Current travelling waves 

 

However, and for the sake of convenience, this study adopts the ratio of the forward 

and backward voltage travelling waves for directional discrimination. 

 

 

 

4.2 Forward internal versus forward external fault 

Figure 4.4 and 4.5 shows the plots of the R-o-C of the voltage and current travelling 

wave for a forward internal and forward external faults with respect to relay R12. As 

shown, the magnitudes of the R-o-C of the travelling wave components for a forward 

internal faults are significantly larger than those for forward external fault; and hence 

would provide a good discriminative criterion. This characteristic is also consistent with 

that established in section 2; and it’s largely due to the DC inductors at the boundaries.   

-200

-150

-100

-50

0

50

1.995 2 2.005 2.01V
o

lt
ag

e 
tr

av
el

lin
g 

w
av

e 
(k

V
)

time (s)

v+ v-

(a)

-10

-8

-6

-4

-2

0

2

4

6

8

1.995 2 2.005 2.01

C
u

rr
en

t 
tr

av
el

lin
g 

w
av

e 
(k

A
)

time (t)

i+ i-

(b)



Generally, either the forward or backward travelling wave components provide a 

discriminative criterion between a FIF and FEF. The subscripts “int” and “ext” 

represents internal and external faults respectively. 

 

            Fig. 4.4 Rate of change (R-o-C) of voltage travelling wave for internal and external fault 

 

 

Fig. 4.5 Rate of change (R-o-C) of current travelling wave for internal and external fault 
 

However, the plots of Figure 4.6 utilising 
𝑑𝑣+

𝑑𝑡
×

𝑑𝑖+

𝑑𝑡
  and 

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
 indicates an improved 

sensitivity compared to those of Figures 4.4 and 4.5 utilising 
𝑑𝑣+

𝑑𝑡
,

𝑑𝑣−

𝑑𝑡
,

𝑑𝑖+

𝑑𝑡
  and  

𝑑𝑖−

𝑑𝑡
.  The 

calculated results are presented in Table 4.1.  

In this paper, the sensitivity of the proposed technique was arrived at by considering 

the ratio of the relay quantity for an internal fault compared to that for internal fault. 

This is denoted as the sensitivity index, Si  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥, 𝑆𝑖 =
𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑙𝑎𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  for internal fault 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑟𝑒𝑙𝑎𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  for external fault
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Fig. 4.6 Plots of the product of (R-o-C) of voltage and current travelling wave  
 

 
 

Table 4.1 Calculated magnitude of the travelling wave quantities for internal and external  

Quantity Internal fault External fault Sensitivity Indices 

dv+/dt 59620  10512 4.67 

dv-/dt 60072 10864 5.53 

di+/dt 2551 412 5.19 

di-/dt 2490 445 5.60 

dv+/dt * di+/dt 149686200 3502723 41.7 

dv-/dt * di-/dt 156902473 3649149 43.0 

 

Table 4.1 indicates a higher sensitivity index obtained utilising the product of the 

magnitude of the R-o-C of the forward and backward travelling wave components 

(
𝑑𝑣+

𝑑𝑡
×

𝑑𝑖+

𝑑𝑡
  and 

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
  respectively). However, the magnitude 

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
   presents the 

highest sensitivity index, Si. Generally, a higher sensitivity index indicates a better 

relay performance, which ultimately results in an improved network security. Based on 

this, the proposed protection principle in this paper utilises the magnitude of  
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
 

 

4.3 The Protection scheme 

The proposed protection strategy adopted in this study utilises the magnitude of the 

product of the R-o-C of the backward travelling wave components (
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
) for fault 
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discrimination. The complete protection scheme is shown in Figure 4.7. As shown, 

following PSCAD simulations, the resulting data which are representative of the DC 

voltages and currents recorded at the relay terminals are extracted for post 

processing. (Figure 4.8).  

As shown in Figure 4.7, following the detection of the transient, the travelling wave 

components are computed using Equations (2.5) – (2.8). Thereafter, the directional 

comparison unit checks whether the fault is a forward directional or reverse directional 

fault as explained in section 3.1. Once a forward directional fault is declared, the 

internal fault detection units computes the R-o-C of the travelling wave components. 

A forward internal fault is declared once the product of the R-o-C of the reverse current 

and voltage travelling wave components exceeds a predetermined setting. The 

window length was taken as 0.5ms; therefore the decision of whether or not to declare 

an internal fault is taken during this time frame following the occurrence of fault. 
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Fig. 4.7 Block diagram of the proposed protection scheme  



                                     

                                   Fig. 4.8 Schematic diagram of the protection scheme 

 

The protection logic is given as 

          If     
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
>

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡  (𝑆𝑒𝑡)
; 

 
                          Relay operates 
         Else           
                         Relay remains stable 

 

 

5.0 Sensitivity analysis  

To investigate the sensitivity of the protection scheme, the relay response with respect 

to a 500Ω fault resistance was investigated. This was assumed to be the most critical 

condition for the relay.  As shown in Figure 4.9, the magnitude of  
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
 for FIF for a 

500Ω fault resistance is significantly larger than that of the FEF with a fault resistance 

of 0.01 Ω, hence the relay will operate for all internal faults.  
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Fig. 4.9 Sensitivity analysis considering 500Ω fault resistance internal fault versus 0.01 Ω external 

fault 

The sensitivity of the protection scheme was also investigated against proposed 

protection techniques available in literature. These are the R-o-C of the DC current 

and voltage (the current derivative, 
𝑑𝑖𝐷𝐶

𝑑𝑡
  and voltage derivative, 

𝑑𝑉𝐷𝐶

𝑑𝑡
 respectively). 

These are shown in Figures 4.10 and 4.11 respectively. 

 

Fig. 4.10 Calculate R-o-C of DC current following the inception of fault 

As shown in Figure 4.10, for say after 1ms following fault inception, the  
𝑑𝑖𝐷𝐶

𝑑𝑡
  for low 

resistance external fault is significantly larger than that for high resistance internal 

fault. This is an undesirable condition for the relay and must be avoided to prevent 
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spurious trips during relay operations. Therefore, the integrity of the 
𝑑𝑖𝐷𝐶

𝑑𝑡
  technique for 

DC grid applications is largely dependent on how quickly the initial 
𝑑𝑖𝐷𝐶

𝑑𝑡
  is measured 

following the application of fault. Although the sensitivity of the 
𝑑𝑉𝐷𝐶

𝑑𝑡
 (Figure 4.11) is 

improved compared to the  
𝑑𝑖𝐷𝐶

𝑑𝑡
 ; a much high sensitivity is obtained by adopting the 

proposed protection technique (
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
). These are evident in the performance indices 

shown in Table 4.2 and Figure 4.12 respectively. The values shown are the maximum 

value of the R-o-C of the measured quantity during the first 500µs following the 

application of the fault? 

 

Fig. 4.11 Calculate R-o-C of DC voltage following the inception of fault 

 

Table 4.2 Relay Performance Indices for different protection principle. 

 

Product of the RoC of 

forward travelling wave 

components 

 

dv-/dt * di-/dt Internal fault 60000000 

External fault 2530000 

Sensitivity index (Si)(Si) 23.7 

  Product of the RoC of 

backward  travelling 

wave components 

 

dv+/dt * di+/dt 

Internal fault 60032249 

External fault 4293156 

Sensitivity index (Si) 13.98 

DC Voltage derivative 

technique 

 

dv_DC /dt 

Internal fault 74039 

External fault 13595 

Sensitivity index (Si) 5.45 

DC Current derivative 

technique 

 

di_DC/dt 

Internal fault 62 

External fault 41 

Sensitivity index (Si) 1.51 
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Fig. 4.12 Magnitude of sensitivity index (Si) for proposed and existing protection techniques 

 

Clearly from Figure 4.12, the use of 
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
  presents the highest sensitivity index 

compare to other techniques, such as the 
𝑑𝑖𝐷𝐶

𝑑𝑡
  and 

𝑑𝑉𝐷𝐶

𝑑𝑡
.  

 

5.1 Determination of relay setting, computational requirements and speed of the 

proposed TWBP principle 

In this study, the magnitude of  
𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
  for a high resistance remote internal fault for 

a high resistance fault was taken as the threshold for an internal fault since this 

scenario gives the most critical condition for the relay. This was theoretically taken as 

6 × 107
 and it corresponds to the 

𝑑𝑣−

𝑑𝑡
×

𝑑𝑖−

𝑑𝑡
  for a 500Ω long distance remote internal 

fault. However, the practically application is still largely dependent on the availability 

of commercially available relay having the ability to sample as 96kHz or more as well 

as the speed of the current and voltage transducers.  

With an assumed measurement time window of 0.5ms, this corresponds to 48 samples 

of the measured travelling wave components. In this study, the arrival time of the 

travelling wave at the relay terminal (R12) for FIF and FEF are 2.00102s and 2.00112s 

respectively. Although the fault occur at 2s, however a significant amount of time is 

required for the travelling wave to arrive to arrive at the relay terminal. Generally, this 

does not matter because the arrival time of the travelling wave at the relay terminal is 
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assumed to be to; whereas the decision of whether or not to declare an internal fault 

is made at td. 

tw = td - to 

tw = window length = 0.5ms 

The results presented shows that this was achieved during this time frame, and as 

such is acceptable for DC grid protection. Generally, the operating speed of the HVDC 

breaker as well as the capability of the current and voltage transducers also has 

significant effects on the overall performance of the protection algorithm. 

 

6.0 Conclusions 

A transient based protection technique utilising the R-o-C of the fault induced travelling 

wave components is presented. The simulation results presented shows the suitability 

of the proposed protection scheme in discriminating between internal and external 

fault. The DC inductors located at the cable ends provide attenuation for the high 

frequency components of the transient signal resulting from an external fault. 

Generally, large inductors would results in higher sensitivity, however, the choice for 

this would be a matter of compromise since increasing the size of the inductor will 

results in increased cost.  The results obtained demostrated the reliability and 

effectivenetss of the protection algorithm. The presented results also revealed that the 

main fault characteristics are embedded and dominant in the travelling wave 

components. This is evident in the sensitivity analysis presented in the paper. From 

the results presented, the proposed protection scheme satisfies the requirement of 

selectrivity, stability, sensitivity, speed of operation and reliabilty as per protection 

requirement for future DC grid.  Although the protection algorithms were formulated 

based on lossless cable parameters, the results presented based on validation against 

a frequency dependent full-scale DC grid models shows the suitability. Key 

advantages of the proposed algorithms includes the non-reliance on communication, 

better speed of operation and its simplicity in terms of computational burden and from 

implementation stand point. 

Although, the discriminative criteria between a forward internal fault and a forward 

external fault is largely due to the bus bar and DC inductors. However, as the trend in 



HVDC breakers continue to develop, the need for a protection algorithm without 

reliance on the DC link inductor is therefore pre-eminent. This brings opportunities for 

further research in DC grid protection. 
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Appendix 

Table  A.1.1  Converter and AC side Parameters [30] 

                Item  Ratings 

Rated Power of Converter 800MVA 

Rated DC Voltage of Converter 400kV 

Converter arm inductance 29mH 

Cell DC Capacitor  10000µF 

Nominal Frequency 50Hz 

Transformer nominal voltage (L-L) RMS 380kV 

Nominal voltage at VSC side (L-L) RMS 220kV 

Leakage reactance of transformer 0.18pu 

Rated real power per phase of Load 33MW 

Rated reactive power per phase of Load 0.0MW 

Rated load voltage(L-G) RMS 83.72kV 

 

 

 

 

Fig. A1.1   Cable configuration of the HVDC grid [30] 



Table A 1.2 Conductor and Insulation Parameters [30] 

                 Item Ratings 

Resistivity of core conductor 2.2 ×10-8
  Ωm 

Resistivity of 1st  conducting layer (sheath) 27.4 ×10-8 Ωm 

Resistivity of 2nd   conducting layer 18.15 ×10-8 Ωm 

Outer radius of core conductor 2.51 ×10-2
  m 

Thickness of 1st conducting layer 2 ×10-3
  m 

Thickness of  2nd conducting layer 5.5 ×10-3
  m 

Thickness of 1st  insulation layer 2 ×10-2
  m 

Thickness of 2nd     insulation layer 3.1 ×10-3
  m 

Thickness of 3rd      insulation layer 5 ×10-3
  m 

Relative permittivity of all insulation layer 2.3 

All relative permeability 1 

Ground resistivity 100 Ωm 

Length of Cable 200km 
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