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ABSTRACT 

 

Background: Arm crank ergometry (ACE) has been shown to elicit marked improvements in 

lower body exercise capacity among older individuals. It is currently unknown whether ACE 

is effective in alleviating functional consequences of aging, such as balance and physical 

function. Objective: To determine the efficacy of ACE training on balance, mobility and 

cardiorespiratory fitness in older people. Design and Participants: Two-arm, randomised 

parallel trial; assessment at baseline and post-intervention. Participants who were aged >65 

years and community-dwelling. Exclusion criteria included neurological and musculoskeletal 

disease, cognitive problems and/or cardiovascular/pulmonary diseases. Interventions: 

Participants were randomly assigned to six weeks of seated ACE (n = 10) or stationary 

cycling (control group) (n = 10) training, 3 times per week. Main outcome measures: The 

outcomes were functional balance and mobility, postural sway, upper body strength and 

cardiorespiratory fitness. Results: ACE training resulted in increased functional reach 

distance (d= 0.83 – 1.28), faster timed-up-and-go execution (d= 1.36) and reduced 

mediolateral postural sway (d= 0.8 - 1.3). Both ACE and CYC interventions elicited similar 

increases in mode-specific (%∆ ~25) and cross-transfer (%∆ ~13) peak oxygen uptake 

(P<0.05). Conclusions: The findings highlight that ACE training is effective in alleviating 

functional consequences of ageing, such as balance and mobility.  

 

Keywords: Fall-risk ∙ neuromuscular performance ∙ postural balance ∙ aerobic exercise ∙ 

upper-body exercise ∙ cardiovascular 

 

Highlights 

 Arm crank ergometry training can improve lower body cardiorespiratory fitness 

 Seated arm training also improved physical function, such as balance and mobility 

 This type of exercise may offer a safe alternative training mode for older adults 

 

 

 

 

 

 



1. INTRODUCTION 

The ability to perform activities of daily living (ADL) declines with advancing age (Stamm et 

al. 2016; Hortobagyi et al. 2008). Although the aetiology of age-related functional decline is 

complex, primary contributors include a loss of muscle mass and/or strength (Hairi et al. 

2010), reduced postural balance (Horak et al. 1989) and declines in cardiorespiratory fitness 

(Buskirk & Hodgson, 1987), all of which are potentially reversible with exercise 

interventions. Although cycling (CYC) training facilitates muscle strength/power (Lovel et 

al. 2010; Macaluso et al. 2003) and cardiorespiratory fitness in older people (Oja et al. 2011), 

this type of exercise elicits relatively small benefits to balance and mobility performance 

among older adults (Buchner et al. 1997a; Buchner et al. 1997b).  

Considering that many daily activities require sustained arm work to a greater extent 

than leg work (Hellerstein 1978), it seems reasonable to encourage healthy older adults to 

train the arms as well as the legs. Although CYC is more commonly studied and prescribed 

than upper-body exercise, this alternative exercise mode has many important practical 

applications. For example, it has been demonstrated that arm-crank ergometry (ACE) is a 

well-tolerated alternative mode of exercise for improving walking distance in patients with 

peripheral arterial disease (Tew et al. 2009; Zwierska et al. 2005). However, the benefits of 

ACE training are not limited to individuals with clinical disease and appear to extend to 

otherwise healthy older adults. Pogliaghi et al. (2006) reported that ACE and CYC training 

elicited similar “cross-transfer” training effects (i.e. improved fitness effect of ACE resulted 

in functional improvements during CYC and vice versa) among healthy older males. These 

findings suggest that from an aerobic fitness perspective, ACE could be an effective 

alternative form of training for healthy older adults. However, the broader applicability of 

ACE training in alleviating functional consequences of aging in otherwise healthy older 

adults, such as muscle strength, balance and mobility performance, is less clear. Indeed, ACE 

training has been shown to elicit improvements in walking ability and balance in stroke 

patients (Kaupp et al. 2017). These findings suggest potential for upper body exercise 

training to improve use of the both the arms and legs during every day activities.  

In the absence of a pertinent literature base examining the effects of ACE training on 

physical functional performance among healthy older people, the objective of this 

preliminary study was to test the efficacy of ACE training compared to a CYC training to 

combat functional performance indices among inactive older men and women. As the effects 

of CYC training have been previously demonstrated in older adults, and no study to date, has 

examined ACE training, we sought to use the CYC group as a form of control group. We also 



sought to determine the cross-effect of specific training induced cardiorespiratory adaptations 

to a different exercise modality (Pogliaghi et al. 2006). Based on the available literature, we 

hypothesised that ACE and CYC training would elicit favourable adaptations in balance and 

mobility performance. We additionally hypothesised that ACE and CYC training would elicit 

similar mode-specific and cross-transfer cardiorespiratory training adaptations.  

 

2. MATERIALS AND METHODS 

 

2.1 Participants and screening 

We initially invited 37 participants to the first screening stage following recruitment via word 

of mouth. Following explanation of the study procedures, 16 participants declined to 

participate. In this stage, 21 participants volunteered to be screened. All adults were screened 

using a general health screening and physical activity questionnaire (PAR-Q). Initial 

screening involved a preliminary examination to evaluate potential contraindications to 

exercise, which included a pulmonary function test (peak expiratory flow) (Mini Wright, 

Clement Clark international, UK) and measurement of resting systolic and diastolic blood 

pressure (Emron, M3, Japan). Inclusion criteria were community-dwelling men and women 

aged >65 years who had no history of falling, determined by self-report and Berg Balance 

Scale (BBS) (Berg et al. 1992) score of > 52/56. Given the pragmatic and exploratory nature 

of the present trial, we chose to include only healthy abled-bodied individuals without high 

risk of falling. All participants could walk without the use of an assistive device and reported 

that they were not meeting exercise recommendations (three times per week for 20-min at an 

intensity corresponding to at least 50% of maximal heart rate [Nelson et al. 2007]) but were 

independently living and engaging in daily activities (i.e., cooking, cleaning, shopping etc). 

Exclusion criteria were prior stroke, heart attack or heart failure, individuals diagnosed with 

neurological (e.g., stroke, Parkinson’s) (n = 1), musculoskeletal (e.g., tendinitis), severe 

cognitive problems (e.g. dementia) and/or cardiovascular or pulmonary diseases (e.g., 

coronary heart disease, chronic obstructive pulmonary disease), residents in nursing homes 

and those with an inability to ambulate independently. None of the recruited participants 

reported to any other contraindications to exercise nor did they report to taking any 

medication which may affect their balance or ability to exercise safely. After providing 

information relating to the design of the study and potential risks and discomfort experienced 

during the measurements, participants provided written and informed consent prior to 

inclusion. The study was carried out in accordance with the guidelines outlined in the 



declaration of Helsinki (1964) and the study procedures were approved by the institutional 

ethics committee. 

 

2.2 Study design 

We conducted a two-arm randomised parallel trial (Fig. 1). The first two weeks of the study 

(weeks - 2 to 0) were used as a pre-training control period. During this time participants 

continued with their habitual physical and recreational activities. During the pre-training 

period participants visited the laboratory on three separate occasions in the following order; 

(1) postural stability and physical performance measurements (within session randomisation), 

(2 and 3) a maximal ACE and a CYC test, in a counterbalanced order, to determine training 

intensities and aerobic fitness. The pre-training period was followed by an endurance training 

period consisting of six weeks (0 to 6 weeks) of ACE or CYC, three times per week, 

separated by at least one full day of rest. Following baseline assessments, twenty participants 

were assigned in a randomised order to either an ACE (n = 10) or CYC (n = 10) training 

group. Randomisation was done using Research Randomizer (www.randomizer.org). During 

the final two weeks of the study (weeks 7 to 8), pre-training assessments were repeated. 

Outcome measures (i.e., aerobic fitness, balance, physical performance) and training 

interventions, were carried out by the principal investigator. A minimum of 80% of exercise 

program compliance was required for participants to be included in the final statistical 

analyses.  

 

2.3 Outcome measures 

2.3.1 Postural stability 

Postural sway was assessed while standing on a compliant (Balance-pad Plus, Alcan Airex 

AG, Switzerland) and fixed surface (without Balance-pad) on a force platform (AMTI, 

AccuGait, Water Town, MA). Data were sampled at 100 Hz (AMTI, Netforce, Watertown, 

MA) and the total displacement of centre of pressure (COP) in the anteroposterior (COPAP; 

cm) and mediolateral (COPML; cm) directions and the average COP velocity (COPV; cm·sec-

1) were subsequently calculated using the accompanying balance analysis software (AMTI, 

BioAnalysis®, Version 2.2, Watertown, MA). Participants stood in a bipedal stance, with 

their feet 3 cm apart as measured from the medial extremity of the posterior side of the 

calcaneus. Continuity of foot position between trials was ensured by drawing a stencil around 

the unshod feet while standing on the force platform. To avoid unnatural postural sway, 

internal focus of attention and restriction of exploratory behaviour, participants were not 

http://www.randomizer.org/


specifically asked to stand as still as possible. Participants’ arms were left to hang freely by 

their sides and were instructed to look straight ahead at a target 1.5 m away, which was 

adjusted to the eye level of each individual, thus preventing vestibular disturbance. 

Participants performed three 30 s trials for each condition of eyes open (EO) and eyes closed 

(EC), in a counterbalanced order. A mean of these trials were used in subsequent analysis. 

Participants practiced each postural task three times prior to recorded trials. Throughout all 

tests, the investigator stayed close to the participants to prevent falling but without interfering 

with balance performance. 

 

*** FIGURE 1 ABOUT HERE *** 

 

 

2.3.2 Physical performance tests 

Fast walking velocity was recorded using photoelectric timing gates set a height of 0.5 m 

(SmartSpeed, Fusion Sports, Australia). Participants were asked to walk as quickly as 

possible from the start position which was 0.5 m from the photoelectric line to the end point 

which was 8-m away from the first photoelectric line. Furthermore, participants were also 

asked to complete the Timed Up and Go Test (TUG) at their preferred walking speed 

(Podsiadlo and Richardson 1991). The time taken to complete the test was recorded using a 

stopwatch. Participants were instructed to stand up from a chair without using their hands, 

walk 3-m as quickly and safely as possible, walk around a cone, walk back to the chair and sit 

down. The multi-directional functional reach test (MDRT) (Newton 2001), was used to 

investigate upper body reach distance in the anterior, posterior, right and left directions. A 

meter stick was fixed to a wall at the level of each participant’s acromion process. The 

instructions given to the participants were “without moving your feet or taking a step, reach 

as far as you can and try to keep your hand alongside the meter ruler” (Newton 2001). The 

preferred reaching arm was used for the anterior and posterior directions and the non- 

preferred arm for right and left directions. The start and end position of the most distal part of 

the hand were recorded and the distance represented total reach distance for a given direction.  

 

2.3.3 Functional upper body strength assessment 

A one-arm bicep curl test (Rikli and Jones 1999) was used to assess functional upper body 

endurance. Participants were asked to perform as many bicep curls as possible in 30 s while 

maintaining proper form. Male participants performed arm curls using a 4kg dumbbell while 



females performed arm curls with a 2.5kg dumbbell. Dominant and non-dominant trials were 

performed in a randomised order. Maximal hand grip strength was measured using a standard 

adjustable hand dynamometer (Lafayette Instrument Company, USA) during upright 

standing. The shoulder was initially flexed to 180°, the elbow was fully extended, and the 

wrist was pronated. Participants were asked to squeeze the hand as hard as possible while 

returning the shoulder back to 0º. The best measurement of three was recorded for each hand. 

The dominant hand was used for both assessments.  

 

2.3.4 Cardiorespiratory fitness assessment 

All participants completed graded incremental exercise tests on an arm-crank ergometer 

(Lode Angio BV, Groningen, Netherlands) and cycle ergometer (Monark 824E Ergomedic, 

Monark, Varberg, Sweden) to determine ergometer specific peak oxygen uptake (V̇O2PEAK) 

and peak power output (WPEAK). Participants completed the tests before and after the training 

programme in a counterbalanced order and were separated by a minimum of 72 hours. 

Following a 5-min warm up (ACE; 25 W, CYC; 50 W) intensity was increased in a stepwise 

manner by 5 W·min-1 and 10 W·min-1 for ACE and CYC protocols, respectively. Cadence 

was set at 60 rev·min-1. For both modes, expired gas was analysed using a breath-by-breath 

online gas system (MetaMax, Cortex Biophsik, Borsdorf, Germany) for oxygen uptake 

(V̇O2), minute ventilation (V̇E) and respiratory exchange ratio (RER). Heart rate (HR) was 

continually monitored (Polar Electro, Oy, Finland) and recorded in the final 10 s of each 

incremental stage and immediately at volitional exhaustion. A rating of perceived exertion for 

both local (working muscles; RPEL) and central (cardiorespiratory; RPEC) effort using the 6–

20 point Borg scale (Borg 1982) was obtained at the same time as HR.   

 

2.4 Classification of responders and non-responders 

Using previous criteria from exercise intervention trials (Bonafiglia et al. 2016), the 

interindividual variability in the responses to exercise interventions was categorised as 

responders or non-responders using the typical error of measurement (TE). The TE was 

calculated for all physical function and mobility outcome measures using the equation TE = 

SDdiff/√2 (Hopkins, 2000). Given that participants completed only one mode specific 

incremental exercise test before training, TE is not reported for peak physiological responses 

(e.g., V̇O2PEAK). A non-responder to the exercise interventions were defined as an individuals 

who did not demonstrate an increase that was greater than two times the TE away from zero 



for anterior (ACE; 3.2 cm, CYC; 2.6 cm), posterior (ACE; 3.8 cm, CYC; 3.4 cm), right, 

(ACE; 3.1 cm, CYC; 3.5 cm) and left (ACE; 2.4 cm, CYC; 1.9 cm) functional reach distance, 

TUG (ACE; 0.4 s, CYC; 0.5 s), gait velocity (ACE and CYC; 0.16 m/s-1), hand grip strength 

(ACE; 1.4 kg, CYC; 2.4 kg) and arm endurance (ACE and CYC; 2 arm curls). A change 

beyond two times the TE means there is a high probability (i.e. 12:1 odds) that the response is 

a true physiological adaptation beyond what might be expected from technical and/or 

biological variability (Hopkins, 2000). Non-responders are illustrated as dashed lines in 

figures 2 – 4.  

 

2.5 Interventions 

Participants underwent a supervised exercise training program three times per week for 6-

weeks. We chose a 6-week intervention period to maximise adherence and because this 

period of training has been shown to elicit marked improvements in physical function, 

aerobic capacity, and muscular strength among older adults (Falck et al. 2017). The exercise-

training interventions were based on the basic principles of training including overload, 

progression, individualisation and specificity (Table 1). The first exercise class began one 

week after the baseline measures were administered. Throughout training, participants were 

encouraged to continue their normal diet and to maintain habitual activity levels. All exercise 

sessions were performed at a similar time of day (±1h). Training sessions were separated by 

at least 24 hours (i.e., Monday, Wednesday, Friday). The training was completed at 

intensities corresponding to 50, 60 and 70% of the pre-training mode specific WPEAK. 

Exercise durations were progressively increased in three cycles throughout the training 

period; (1) 20-min during weeks 1-2, (2) 25-min during weeks 3-4, (3) 35-min during weeks 

5-6 (Table 1). Training intensities and durations were similar to those previously used in 

otherwise healthy older adults (Pogliaghi et al. 2006) for both arm and leg training and aligns 

with exercise recommendations for older adults (i.e., 50 – 70 WPEAK for 20 – 45 mins) 

(Nelson et al. 2007). Prior to each session, participants were asked to complete a 5-min warm 

up on the unloaded ergometer at a cadence of 60 rev·min-1. Heart rate and both RPEL and 

RPEC were monitored throughout each session.  

 

*** TABLE 1 ABOUT HERE *** 

  

2.6 Statistical analyses 



Data were analysed using IBM version 20.0 (SPSS Inc., Chicago, IL). Outcome measures are 

reported as mean ± SD. All outcome measures (e.g., postural sway, functional reach distance) 

and peak aerobic fitness were analysed by two-way mixed-model multivariate analysis of 

variance (MANOVA) (group; ACE vs. CYC  training status; pre vs. post training). All 

cardiorespiratory and perceptual variables for submaximal exercise trials were analysed by a 

three-way MANOVA (e.g., time; 0, 5, 10, 15, 20;  mode; ACE and CYC  training status; 

pre and post training). Dependent variables in each MANOVA relate to those presented in 

Tables 1 – 3. For all analyses, normality (Shapiro–Wilk test) and homogeneity of 

variance/sphericity (Levene test) were checked prior to parametric tests. Post hoc analyses 

with the Bonferroni-adjusted α were conducted to determine comparisons which were 

statistically significant. When ANOVA was used, effect sizes are reported as partial eta-

squared value (ηp
2) and reported where appropriate. Cohen’s d effect sizes are reported for 

pairwise comparisons. Effect sizes of 0.2, 0.6, 1.2 and 2.0 indicate small, medium, large and 

very large effects, respectively. Statistical significance level was set at P< 0.05 for all tests.  

As part of our initial exploratory analyses we conducted MANCOVA and used pre-

assessment scores as the co-variate to adjust for potential baseline differences. These analyses 

did not change the outcomes of the original MANOVA therefore are not reported further.  

 

3 RESULTS 

 

3.1 Adherence and adverse events 

Two older males withdrew themselves from the CYC training group after three and four 

weeks of training, respectively (Fig. 1). Both participants cited a loss of interest in the 

intervention. All 18 participants included in subsequent statistical analyses achieved 100% 

adherence (36 training sessions) to training which was set a priori at > 80%. Baseline 

demographic and outcome measures were not different between groups (P> 0.05) (Table 2). 

There were no exercise related adverse events. As expected, all participants in the ACE 

training group experienced delayed onset of muscle soreness of the arms and shoulders in 

week 1, but these complaints had diminished by week 2 and required no further attention. No 

participants reported trips, slips or falls resulting from a loss of balance during the training 

period.  

 

*** TABLE 2 ABOUT HERE *** 

 



3.2 Postural stability 

Before training there were no differences in postural sway measures between ACE and CYC 

groups (all P < 0.05). The two-way MANOVA indicated a group  training status 

interaction (F(12,21) = 2.227, P = 0.050, ηp
2 = .560). Post hoc analysis showed that participants 

in the ACE training group showed significantly reduced COPML post-training when standing 

on a firm (EO; P = 0.009) and compliant (EO; P = 0.002, EC; P = 0.039) surface (Table 3). 

However, participants in the CYC group showed significant reductions in COPAP post-

training when standing on a firm (EO; P = 0.018) and compliant (EO; P = 0.004, EC; P < 

0.001) surface. 

 

*** TABLE 3 ABOUT HERE ** 

 

 

3.3 Physical performance tests 

Two-way ANOVA showed a significant group  training status interaction for anterior 

(F(1,32) = 8.163, P = 0.007, ηp
2 = .203) and right (F(1,32) = 5.183, P = 0.030, ηp

2 = .139) 

functional reach distance. There was also a main effect of training status for posterior reach 

distance (F(1,32) = 2.589, P = 0.024, ηp
2 = .150). Post hoc analyses revealed that anterior (P = 

0.001, d= 1.28, mean diff = 8.4 cm), posterior (P = 0.004, d= 1.19, mean diff = 9.25 cm) and 

right (P = 0.001, d= 0.83, mean diff = 5.1 cm) functional reach distance were greater post 

ACE training (Fig. 2). No changes in functional reach distance were observed following CYC 

training (P > 0.05). Following ACE training there were 2 to 3 non responders for each reach 

direction (Fig. 2); however, in all cases these non-responders improved in at least one of the 

four reach directions following ACE training. Between 1 and 3 responders were observed 

following CYC training (Fig. 2).  

 

*** FIGURE 2 ABOUT HERE *** 

 

Although the group  training status interaction for TUG was not significant (F(1,32) = 1.225, 

P = 0.812, ηp
2 = .002), there was a main effect of training status (F(1,32) = 14.138, P = 0.001, 

ηp
2 = .306). TUG times were significantly reduced following ACE (P = 0.005, d = 1.36, mean 

diff = 1.5 s) and CYC (P = 0.024, d = 0.98, mean diff = 1.30 s) training (Fig. 3). All 

participates were classified as responders following both ACE (n = 10) and CYC (n = 8) 

training (Fig. 3A). Despite improved TUG time, no significant group  training status 



interaction (F(1,32) = .283, P = 0.599, ηp
2 = .009) or main effects (P > 0.05) were found for gait 

speed, although a small and moderate effect size was observed following ACE (d = 0.27, 

mean diff = 0.11 m/s) and CYC (d = 0.75, mean diff = 0.20 m/s) training, respectively (Fig . 

3). Following ACE training there were two participants classified as responders for gait 

velocity. A total of five participants were classified as responder following CYC training 

(Fig. 3B).  

 

*** FIGURE 3 ABOUT HERE *** 

 

3.4 Functional upper body strength 

 Two-way ANOVA showed a significant group  training status interaction for hand grip 

strength (F(1,32) = 16.531, P < 0.001, ηp
2 = .341) and 30 s bicep curl test (F(1,32) = 60.089, P = 

0.025, ηp
2 = .148). Post hoc analyses showed that ACE training elicited improvements in grip 

strength (P < 0.001, d = 2.49) and number of curls performed in 30-s (P < 0.001, d = 2.24). 

No changes in grip strength or bicep curl performance were observed following CYC training 

(P> 0.05). All participants in the ACE (n = 10) group were classified as responders for grip 

strength and arm curl performance. One participants was identified as a responder for arm 

curl performance in the CYC group.   

 

*** FIGURE 4 ABOUT HERE *** 

 

3.5 Cardiorespiratory fitness  

Training adaptations are reported in Table 4. For ACE training, there were main  effects of 

training status for absolute V̇O2peak (F(1,9) = 6.206, P = 0.034, ηp
2 = .408), relative V̇O2peak 

(F(1,9) = 24.643, P = 0.032, ηp
2 = .415), Wpeak (F(1,9) = 108.347, P = 0.001, ηp

2 = .923), V̇E 

(F(1,9) = 24.256, P = 0.001, ηp
2 = .729) and HRMAX (F(1,9) = 10.726, P = 0.010, ηp

2 = .544). 

Post hoc analysis showed that ACE training elicited mode specific improvements in absolute 

and relative V̇O2peak (P = 0.001), Wpeak (P = 0.001), V̇E (P = 0.002) and HRMAX (P = 0.028). 

ACE training also elicited cross-transfer (i.e. CYC) increases in absolute V̇O2peak (P = 0.009), 

relative V̇O2peak (P = 0.005), Wpeak (P = 0.001), HRMAX (P = 0.019), while alpha approach 

significance for V̇E (P = 0.053).  For CYC training, there were main time effects for absolute 

V̇O2peak (F(1,7) = 17.543, P = 0.004, ηp
2 = .715), relative V̇O2peak (F(1,7) = 24.643, P = 0.002, ηp

2 

= .779), Wpeak (F(1,7) = 18.410, P = 0.004, ηp
2 = .725), V̇E (F(1,7) = 16.213, P = 0.005, ηp

2 = 



.698) and HRMAX (F(1,7) = 5.361, P = 0.054, ηp
2 = .434). Post hoc analysis showed that CYC 

training elicited mode specific improvements in absolute V̇O2peak (P = 0.004), relative V̇O2peak 

(P = 0.001), Wpeak (P = 0.003) and V̇E (P = 0.009). CYC training also elicited cross-transfer 

(i.e. ACE) increases in absolute V̇O2peak (P = 0.006), relative V̇O2peak (P = 0.003), Wpeak (P = 

0.004), V̇E (P = 0.009) and HRMAX (P = 0.028). When participants were tested on the same 

ergometer used for training (specific effect), comparable changes were observed in V̇O2peak 

(ACE; 25.6 ± 9.94 %, CYC; 26.3 ± 8.90 %). Similarly changes in V̇O2peak were also observed 

when participants were tested on the non-training ergometer (cross-effect) (ACE; 15.7 ± 18.4 

%, CYC; 15.4 ± 12.7 %).  

 

*** TABLE 4 ABOUT HERE *** 

 

 

4 DISCUSSION 

The primary objective of this exploratory trial was to test the efficacy of seated ACE training 

in improving physical performance and cardiorespiratory fitness in a healthy older 

population. Both ACE and CYC training elicited potentially beneficial effects on postural 

stability, physical performance, mobility and aerobic fitness. The moderate to large 

magnitude of effects in outcome measures following both interventions would suggest that 

familiarisation due to repeated testing is unlikely to have influenced the results. Although 

ACE training is more commonly prescribed in the clinical setting, we show for the first time 

that ACE training could be used as an effective alternative mode of exercise to improve 

physical functional performance among healthy older people. As such the data presented here 

is novel and extends the current literature base regarding exercise training for older adults. 

 

4.1 Physical functional performance 

Overall, ACE training elicited changes in functional walking performance. There was a 1.36 s 

reduction in TUG performance following ACE training, which was similar to the change 

observed in the CYC control group (1.30 s). Although this corresponds to a large magnitude 

statistical change in the time taken to complete the test, our participants were already well 

above (faster) the normative values for community dwelling-older adults aged 60 – 69 years 

(7.1 – 9.0 m/ s) (Bohannon, 2006), confirming that our sample were of good health. For the 

8-meter walking test, speed improved by 0.11 m/s following ACE training, which reflects a 

clinically meaningful, albeit non-significant change (Perera et al. 2006). Normative data for 



healthy older people (60 years) is 1.93 and 1.77 m/s for men and women, respectively 

(Bohannon, 1997). Therefore, the change in gait speed is notable considering the ACE group 

(2.01 m/s) were already above (faster) the normative values for community-dwelling older 

adults. The improvement in gait speed following ACE training is in accordance with recent 

meta-analytical evidence which demonstrated that exercise interventions can improve fast 

gait speed by 0.12 m/s (9%) among healthy older people (Hortobagyi et al. 2015). It should 

be noted that our CYC control group improved their fast gait speed further still (0.20 m/s). 

Although the improvements in gait speed are smaller for ACE training, they are likely true 

changes and suggest that it is possible to slow the loss of gait speed with advancing age. 

Given that 8-meter walking speed was not significantly faster after ACE training, the faster 

execution of the TUG following this type of training suggests that the upper body muscles 

(trunk and arms) assist during one or more of the tasks of standing up, turning or sitting. It is 

also possible that normal walking is a more practice movement than the TUG and therefore 

less sensitive to change. Indeed, Milosevic et al. (2011) showed that TUG time was 

significantly faster among older people when the arms were used freely, compared to limited 

arm movement. Although methodological restraints preclude us from providing direct 

adaptive mechanisms for the improved lower body functional performance following ACE, it 

is clear that arm movements contribute to generating torques in the upper body (Pijnappels et 

al. 2010). In particular, for challenging balance regulation, upper body activity appears to 

support ankle and hip movements by bringing the centre of mass back over the base of 

support (Bostrom et al. 2018; Marigold, 2002). Although it is not appropriate to generalise 

the findings from neurologically impaired individuals to those in the present study, some of 

the adaptive mechanisms to explain functional improvements following ACE training might 

be gleaned from studies which have examined arm cycling in stroke patients. For example, 

the present findings correspond to recent evidence which indicates that ACE training is 

effective in improving both TUG and 10-m walk time in stroke patients (Kaupp et al. 2017). 

ACE training might exploit the inherent neural and mechanical linkage between the arms and 

legs that are active during locomotion tasks (Zehr et al. 2009; Zehr et al. 2007). Indeed, 

Kaupp et al. (2017) suggested that ACE training may have activated interlimb networks that 

contribute to the coordination of rhythmic walking in stroke patients.  

Arm-crank training also produced global changes in functional reach distance. The 

improvements in functional reach reported here are of practical importance indicating that the 

risk of falling while leaning or reaching for objects would be reduced in older adults following 

ACE training. Trunk strength gains, an indirect result of ACE training, likely contribute to the 



increased reach distance seen here. Mean MDRT scores of individuals who reported a trip or 

fall in the last 6 months are 22.5 (±8.6), 11.8 (±7.9), 17.4 (±7.6) and 16.9 (±7.4) cm for forward, 

backward right and left directions, respectively (Newton, 2001). As with the walking indices, 

pre-intervention, our participants were significantly better than the norms, indicating ACE may 

be effective in balance impaired adults, who have more room for improvement.  

 

4.2 Postural stability  

For tasks with relatively low requirements for balance control, such as quiet bipedal standing, 

the ankle strategy is assumed to predominate for maintaining balance (Winter et al. 1996). 

The reductions in mediolateral postural sway during quiet bipedal standing following ACE 

training are surprising and the mechanism responsible for the reduced postural sway is 

unclear. One possible explanation is that ACE places demands on the trunk musculature for 

stabilisation and posture during torsional movements of the trunk due to the pushing and 

pulling of the ergometer handles (Di Blasio et al. 2009). Therefore, ACE training may have 

induced adaptive processes in the neuromuscular system and allowed better use of 

somatosensory inputs from the trunk musculature to transfer to lateral postural stability. The 

lower body musculature is also used to stabilise the torso and provide balance during ACE 

(Sawka, 1986). Recently, Kaupp et al. (2017) reported that 5-weeks of seated ACE training 

improved plantarflexion and soleus activation on the more affected side on stroke patients. 

Although it is not possible to generalise these findings to otherwise healthy individuals, we 

cannot rule out the possibility that ACE training improved trunk and ankle muscle strength 

through stabilisation activities. In contrast, CYC training elicited reductions in 

anteroposterior sway. Potentially, CYC training, which mainly involves lower limb 

contractions in the sagittal plane (e.g., flexors and extensors of the ankles, knees and hips) 

(Ericson et al. 1985), would favour improvements in postural musculature that act primarily 

to control movement in the anteroposterior direction (Winter et al. 1996). This is to be 

expected, as the anatomy of the lower limbs allow more movement in the anteroposterior, 

compared to the mediolateral direction. These adaptations may allow antigravity muscles to 

detect sway more quickly and respond with a shorter latency thus improving the control of 

sway in the sagittal plane.  

Reductions in postural sway may hold important implications for older people 

because mediolateral aspects of postural stability have predictive value for fall incidence (Era 

et al. 2006; Maki, Holliday and Topper 1994). Older people tend to switch to from a distal 

(i.e. ankle muscles) to proximal (i.e., hip muscles) postural strategy during standing. This is 



important because the hip strategy is predisposed to lateral movements (Winter et al. 1996), 

thus making mediolateral sway more susceptible. Although the overall reductions in the COP 

displacement in the frontal plane (d= 1.0 – 2.0) are interpreted as a favourable adaptation, the 

reductions in sway ranged from ~0.5 cm (firm) to 1.0 cm (foam) which is unlikely to 

represent a clinically relevant reduction in postural sway among health older people.  

 

4.3 Cardiorespiratory fitness 

In the present study, both ACE and CYC training elicited marked improvements in maximal 

exercise capacity. Specifically, ACE and CYC training elicited an improvement in mode 

specific V̇O2peak by ~25 %, which confirms previous literature for healthy older adults. Both 

modes of exercise also elicited a ~12% increase in cross exercise tolerance (i.e. the untrained 

muscle mass). These findings are similar to previous research in older people. Pogliaghi et al. 

(2006) reported that 12-weeks of aerobic training using either arms or legs elicited similar 

potential in increasing mode-specific as well cross-transfer exercise tolerance of ~20% and 

~10%, respectively, at both maximal and submaximal intensities. These data suggest that 

about half of the increase in peak exercise tolerance and/or reduction in submaximal 

cardiorespiratory strain are transferable to a different type of exercise, while the other half of 

the adaptation is mode-specific. The cross-transfer effects are generally interpreted as indirect 

evidence of the central nature of the training adaptation, possibly reflecting improved cardiac 

output and stroke volume in naïve participants (Loftin et al. 1988). In contrast, the mode-

specific improvements in exercise tolerance are likely due to peripheral factors such as 

increases in capillarisation, conversion of type IIb muscles fibres to type IIa, decreases in the 

activity of some glycolytic enzymes, increased blood flow and marked increases in 

mitochondrial respiratory enzyme levels (Meredith et al. 1989).  

From a fall-risk perspective, the increased aerobic fitness may contribute to decreased 

efforts during recreational, occupational and daily activities. Indeed, older adults perform 

many activities of daily living near their maximal capabilities (Hortobagyi et al. 2003). 

Substantial evidence shows that acute bouts of lower body exercise can transiently impair 

balance in older people (Egerton et al. 2009a;b; 2010). In contrast, we previously reported 

that acute ACE does not impair balance when performed at a similar intensity as CYC or 

treadmill walking (Hill et al. 2015). This is important because fatigue is a common complaint 

in older adults, with 50% of those aged 70 years and over reporting fatigue during every day 

activities (Avlund, 2010). Thus, the adaptations reported here may contribute to delay the 

skeletal muscle anaerobiosis during physical activity by enhancing resistance to fatigue.  



 

4.4 Practical implications 

There are a number of important practical implications to emerge from the present study. It 

appears that ACE training is effective in alleviating functional consequences of ageing, such 

as mobility, balance and aerobic fitness. Given that the upper body is used during many daily 

activities, we think it is reasonable to encourage healthy older adults to train the arms as well 

as the legs, with the expectation of improving real-life exercise capacity as well as general 

fitness. Apart from functional reach distance, the CYC control group was generally equally as 

effective in improving physical functional performance. Therefore, the authors recommend 

that ACE training is used as an adjunct to traditional exercise interventions (strength and 

balance training) and may be valuable in acting as a safe starting point as part of a continuum 

of exercise to progress to more challenging standing programmes (i.e. walking) for those who 

lack general fitness or individuals recovering from a previous fall (i.e. hip replacement 

rehabilitation patients).  

 

4.5 Limitations 

The current study has some limitations that need to be considered. Firstly, the assessor was 

not blind to treatment allocation, which may have led to biased effect of treatment estimates 

for some outcome measures (Wood et al. 2008). Further, our sample size was limited (n = 

18), but is similar to the sample sizes used in other exercise training studies among older 

people (~10 – 20 participants). The small sample size precludes us from exploring potential 

moderator variables and generalising our findings to the wider older population. Although we 

acknowledge that studies with low statistical power may overestimate magnitude of effects 

(Button et al. 2013), this exploratory study will provide the impetus for further trials 

involving a larger sample size to more accurately quantify exercise-induced adaptations 

following ACE. Additionally, we lacked a true no-exercise control group. We are aware that 

this approach may preclude observations being drawn relating to ACE versus a non-training 

control group and therefore we are unable to determine causality in our interpretation of the 

adaptations bought about by the training interventions. However, comparing ACE to CYC in 

the way we have enables better understanding of whether ACE adds value as an exercise 

intervention given that stationary CYC training is often prescribed to older adults as a safe 

and appropriate way to exercise. A further limitation was the relatively short training period 

(i.e. 6-weeks). Longer training periods may be required to reveal differential effects in 

outcome measures between ACE and CYC. The choice of a 6-week training intervention was 



based on training durations used in other studies that elicited significant improvements in 

physical function and cardiorespiratory fitness and due to practical considerations, such as 

maintaining adherence. Despite the short training period, we observed large magnitude 

improvements in outcome measures and longer training periods would likely achieve even 

better results. Finally, we did not include any assessments determine cross transfer effects of 

ACE on lower extremity muscle strength.  

 

5 CONCLUSION 

To our best knowledge, this is the first study to show that seated ACE can improve physical 

functional performance, such as mobility, balance and fitness among healthy older people. 

Although ACE and CYC training were equally as effective in eliciting mode-specific and cross-

transfer cardiorespiratory training benefits, ACE training was able to elicit additional benefits 

(i.e. functional reach). The findings highlight that ACE might be an effective alternative 

modality of training alleviating functional consequences of ageing.  
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Table 1: Overview of the training program 

 
Training session  Duration (min)  

 Weeks 1 – 2 Weeks 3 – 4 Weeks 5 – 6 

Monday and Friday    

50% Wpeak 10 12 15 

60% Wpeak 5 7 10 

50% Wpeak 5 6 10 

Total duration 20 25 35 

Wednesday    

50% Wpeak 10 10 15 

60% Wpeak 7 9 12 

70% Wpeak 3 6 8 

Total duration 20 25 35 

 

 

 

Table 2: Baseline participant demographics 

 ACE (n = 10) CYC (n = 10) 

Sex (male/female) 4/6 4/6 

Age (Years) 66.2 ± 3.9 65.5 ± 7.8 

Height (m) 1.63 ± 0.10 1.63 ± 0.07 

Mass (kg) 65.3 ± 13.6 65.5 ± 13.2 

BMI (kg/m2) 24.7 ± 4.9 24.7 ± 4.7 

Dominant hand grip strength (kg) 25 ± 3 28 ± 12 

Physical activity (hr/week) 1.1 ± 1.0 1.2 ± 0.9 

 

 

 
 

 

 

 

 

 

 



Table 3. Mean±SD data for centre of pressure measures during bipedal standing on a fixed and compliant surface with eyes open (EO) and eyes 

closed (EC) between pre and post arm-cranking and cycling training 

 

 

 

 ACE  CYC Mode  Time 

ANOVA 

  Pre Post d Pre Post d P 2

p  

Fixed surface          

COPAP (cm) EO 1.72 ± 0.56 1.52 ± 0.43 0.4 1.70 ± 0.22 1.20 ± 0.17* 2.5 0.283 .036 

 EC 2.63 ± 1.26 2.21 ± 0.83 0.4 2.45 ± 0.58 2.20 ± 0.54 0.4 0.770 .087 

COPML (cm) EO 1.49 ± 0.43 1.05 ± 0.41* 1.0 1.46 ± 0.41 1.12 ± 0.09 1.1 0.652 .006 

 EC 1.75 ± 0.90 1.41 ± 0.51 0.5 1.66 ± 0.65 1.52 ± 0.74 0.2 0.430 .020 

COPV (cm s-1) EO 2.46 ± 0.59 2.28 ± 0.31 0.4 2.40 ± 0.45 2.04 ± 0.12 1.1 0.512 .014 

 EC 3.28 ± 0.98 3.18 ± 0.49 0.1 3.04 ± 0.53 3.14 ± 0.37 0.2 0.642 .007 

Compliant surface          

COPAP (cm) EO 2.72 ± 0.64 2.61 ± 0.21 0.2 2.82 ± 0.48 2.08 ± 0.49* 1.5 0.059 .107 

 EC 6.87 ± 1.07 6.66 ± 0.97 0.2 6.69 ± 2.04 4.10 ± 0.74* 1.7 0.008 .197 

COPML (cm) EO 2.82 ± 0.55 1.97 ± 0.26* 2.0 2.65 ± 0.56 2.65 ± 0.77 0.0 0.026 .145 

 EC 6.10 ± 1.28 4.86 ± 0.73* 1.2 5.89 ± 1.05 5.86 ± 1.92 0.0 0.170 .058 

COPV (cm s-1) EO 3.36 ± 0.73 3.34 ± 0.91 0.0 3.76 ± 1.64 3.46 ± 1.48 0.2 0.728 .004 

 EC 5.97 ± 1.95 5.89 ± 2.44 0.0 6.04± 1.80 5.37 ± 1.13 0.4 0.649 .007 

 

*Sig. different compared to pre-training (P < 0.05). COPAP; anteroposterior centre of pressure displacement, COPML; mediolateral centre of 

pressure displacement, COPV; mean velocity of the centre of pressure, EO; eyes open, EC; eyes closed, d; effect size 

 

 

 

 

 

 

 

 



 

Table 4. Peak responses obtained during mode specific and cross transfer CYC and ACE training 

 

 

*Sig. different compared to pre-training (P < 0.05). Wpeak; peak power output, V̇O2peak; peak oxygen uptake, V̇E; pulmonary ventilation, RER; 

respiratory exchange ratio, HRMAX; maximal heart rate, RPEL; local ratings of perceived exertion, RPEC; central ratings of perceived exertion.  
 

 

Group Variable CYC Test  ACE Test  Mode  Time 

ANOVA 

 PRE POST d PRE POST d P 2

p  

ACE Training Wpeak (watts) 98 ± 25 108 ± 23*  0.32 51 ± 14  65 ± 16*  0.66 0.050 .363 

 V̇O2peak (L·min-1) 1.44 ± 0.43 1.64 ± 0.46* 0.46 1.12 ± 0.31 1.39 ± 0.36*  0.82 0.115 .253 

 V̇O2peak (ml·min·kg-1) 23 ± 7 26 ± 7*  0.45 17 ± 4  22 ± 5*  0.93 0.082 .299 

 V̇E (L·min-1) 54 ± 14 58 ± 12 0.32 47 ± 11  55 ± 13* 0.66 0.210 .168 

 RER 1.14 ± 0.03 1.15 ± 0.09 0.14 1.14 ± 0.03 1.16 ± 0.06 0.45 0.744 .012 

 HRMAX (beats·min-1) 147 ± 18 152 ± 16* 0.31 143 ± 16 153 ± 11* 0.70 0.259 .139 

 RPEL 20 ± 1 20 ± 1 0.00 20 ± 1 20 ± 1 0.00 0.213 .167 

 RPEC 19 ± 2 19 ± 2 0.00 18 ± 2 16 ± 2 1.13 0.009 .550 

CYC Training Wpeak (watts) 103 ± 56 129 ± 73* 0.41 57 ± 27  62 ± 31*  0.21 0.019 .569 

 V̇O2peak (L·min-1) 1.55 ± 0.71 1.97 ± 0.56*  0.50 1.17 ± 0.49  1.36 ± 0.58*  0.34 0.035 .493 

 V̇O2peak (ml·min·kg-1) 23 ± 8 30 ± 12*  0.62 18 ± 6  20 ± 7*  0.42 0.020 .561 

 V̇E (L·min-1) 62 ± 29 71 ± 27* 0.30 43 ± 19  52 ± 24  0.41 0.912 .002 

 RER 1.17 ± 0.02 1.15 ± 0.06 0.11 1.14 ± 0.05 1.15 ± 0.01 0.20 0.140 .284 

 HRMAX (beats·min-1) 153 ± 25 158 ± 16 0.27 144 ± 16 150 ± 13* 0.36 0.957 .000 

 RPEL 20 ± 1 19 ± 1 0.82 20 ± 1 18 ± 1 2.00 0.351 .125 

 RPEC 19 ± 1 19 ± 2 0.26 20 ± 1 16 ± 1  4.00 0.111 .321 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1. Enrolment schematic 
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Fig. 2. Anterior (A), posterior (B) left (C) and right (D) functional reach distance before and 

after 6 weeks of ACE or CYC training. *Time effect (P < 0.05). Solid lines represent 

responders. Dashed lines represent non-responders.  
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Fig. 3. Timed-up and Go Test (TUG) performance (A) and 8-meter walking speed (B) before 

and after ACE and CYC training. *Time effect (P < 0.05). Solid lines represent responders. 

Dashed lines represent non-responders. 
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Fig. 4. Hand grip strength (A) and 30-s arm curl test (B) before and after ACE and CYC 

training. *Time effect (P < 0.05). Solid lines represent responders. Dashed lines represent 

non-responders. 
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