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Phase Diagram for a 2-D Two-Temperature Diffusive XY Model
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Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature
conserved order parameter XY model. When the two temperatures are equal the system becomes
the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbind-
ing phase transition. When the two temperatures are unequal the system is driven by an energy
flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-
equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases:
A homogenous disordered phase and two phases with long range, spin texture order. Two critical
lines, representing continuous phase transitions from a homogenous disordered phase to two phases
of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical
lines as they approach the KT point is described by a crossover exponent ϕ = 2.52 ± 0.05. Finally,
we suggest that the transition between the two phases with long-range order is first-order, making
the KT-point where all three phases meet a bicritical point.

PACS numbers: 05.70.Ln 64.60.Kw 64.60.F- 64.60.Cn

Much of the research in the statistical physics of
nonequilibrium sytems has been directed toward un-
derstanding how universal equilibrium critical phenom-
ena are affected by dynamical nonequilibrium perturba-
tions. Field-theoretical studies have indicated that the
effects of nonequilibrium dynamics are drastic in sys-
tems where detailed balance violation is coupled with
conserved anisotropic dynamics [1]. In these systems,
effective long range interactions can be induced by the
local dynamics producing a critical behavior that is re-
markably different from the one of the corresponding un-
perturbed, equilibrium, systems [2–18].

In this paper, we present the phase diagram for a
two-dimensional two-temperature diffusive conserved or-
der parameter XY model. The system evolves through
Kawasaki spin-exchange dynamics [19]. Thus, the dy-
namics is purely relaxational with no reversible mode
couplings, and corresponds to Model B of Ref. 20. Long
range order can exist in nonequilibrium steady states of
this system due to the effective long range interactions
generated by the anisotropic diffusive dynamics that oc-
curs in that regime. The ordered phase is character-
ized by the appearance of standing spin waves, or spin
textures, oriented along the direction of lower temper-
ature. The system exhibits a nonequilibrium disorder–
long-range order transition that is in the same univer-
sality class as an equilibrium model with dipole inter-
actions [11, 14]. Note that our model reduces to the
equilibrium XY model in the limit where both temper-
atures are equal. Also, the Mermin-Wagner theorem
states that there is no spontaneous symmetry break-
ing in equilibrium systems with continuous symmetry of
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the order parameter and dimension d = 2 [21]. Thus,
no long-range ordered phase is observed in the two-
dimensional equilibrium XY model. However, the equi-
librium system still undergoes a transition from quasi-
long-range order to disorder characterized by the emer-
gence and unbinding of vortices and antivortices, which
is the Kosterlitz-Thouless (KT) transition [22]. Hereafter
we refer to the quasi-long-range order phase as the KT
phase. Since both a KT transition and a disorder–long-
range order phase transition occur in the two-dimensional
two-temperature XY model, we expect to find a KT–
dipole crossover in the phase diagram for this system.
Using results from Monte Carlo simulations, we

show that two critical lines representing nonequilibrium
disorder–long-range order transition temperatures meet
at the equilibrium KT transition temperature. These
lines are described by an exponent which we predict to
be the universal exponent for KT–dipole crossover. Fi-
nally, we argue that, at temperatures below the critical
KT temperature, any infinitesimal nonequilibrium per-
turbation to the system, will produce long-range ordered
phases. Thus, the nonequilibrium behavior is very dif-
ferent than that in equilibrium where long-range order is
forbidden due to the Mermin-Wagner theorem [11].
Our model consists of a set of two-dimensional spins

arranged on a square lattice of rectangular dimensions
Lx and Ly. Each spin ~si is a unit vector. The directions
of the spins are evenly distributed from 0 to 2π over the
lattice, so that their vector sum is null. The total energy
of the system is given by the Hamiltonian

H = −
∑

〈ij〉

~si · ~sj ,

where 〈ij〉 indicates sum over the nearest neighbor spins
on the lattice. The system evolves through Kawasaki ex-
changes with Metropolis rates [19, 23]. The exchanges
along the x and y axes satisfy detailed balance with tem-
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Figure 1: (Color online). Order parameter Ψ vs. βx at βy = 0
for different system sizes. The black circles and solid line
correspond to a system size of 12 × 9; the red squares and
dashed line correspond to a system size of 16× 16; the green
diamonds and dotted line correspond to a system size of 24×
36; the blue triangles and dashed-dotted line correspond to
a system size of 32 × 64. The plot clearly shows a transition
from disorder to order at a βx of approximately 0.7. The error
bars are smaller than the symbol size.

peratures 1/βx and 1/βy, respectively. When βx 6= βy,
an energy current flows from the hotter heat bath to the
cooler one and detailed balance is no longer satisfied glob-
ally. When this is the case, phase transitions occur in
nonequilibrium steady states and are characterized by
the appearance of a long-wavelength spin texture in the
direction with the larger value of β. In our nonequil-
brium simulations, we generally study the case βy < βx,
so that the spin texture appears in the x direction. To
give a quantitative measure of this ordering, we define
the order parameter Ψ as the ensemble averaged arith-
metic average of the components of the long-wavelength
limit of the structure factor:

Ψ =
1

2

[

C1

(

2π

Lx

, 0

)

+ C2

(

2π

Lx

, 0

)]

,

where Cn (kx, ky) is the normalized Fourier transform of
the nth component of the spin vectors of our system.
The spatial anisotropy of the system requires an anal-

ysis using anisotropic finite size scaling [24]. Hence, one
must compare systems with sizes that scale in a way that
keeps the expression L1+∆

x /Ly constant, where ∆ is the
anisotropy exponent. The value ∆ = 1 has been es-
timated using renormalization group techniques to first
order in a dimensional epsilon expansion [26]. There-
fore, we performed simulations on systems of sizes 12×9,
16 × 16, 24 × 36 and 32 × 64. Note that there may be
higher-order corrections to the value of ∆ that, with this
choice of system sizes, would introduce some systematic
errors in the data analysis.
We measured Ψ after each Monte Carlo sweep (MCS)

during the simulations. After estimating the relaxation
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Figure 2: (Color online). Binder’s cumulant gL vs. βx at
βy = 0 for different system sizes. The black circles and solid
line correspond to a system size of 12 × 9; the red squares
and dashed line correspond to a system size of 16 × 16; the
green diamonds and dotted line correspond to a system size of
24× 36; the blue triangles and dashed-dotted line correspond
to a system size of 32× 64. The plots intersect asympotically
at βx ≈ 0.68. The error bars are smaller than the symbol size.

time, we determined the ensemble averages 〈Ψ〉 and 〈Ψ2〉
over uncorrelated configurations in the steady state. We
ran 4 × 106, 5 × 106, 8 × 107 and 10 × 108 MCS for the
system sizes 12 × 9, 16 × 16, 24 × 36 and 32 × 64, re-
spectively. Integrated autocorrelation times ranged from
roughly 200 MCS for the smallest system to roughly
1200 MCS for the largest system.

Our simulations reveal that long-range ordered states
occur when βy is sufficiently small and βx is sufficiently
large or viceversa, by symmetry. Note that the βx–βy

phase diagram for this system is symmetric about the di-
agonal since interchanging these temperatures is equiva-
lent to simply renaming the axes of the lattice. Thus, we
study the ordering process only in the βy < βx region.

Figure 1 shows the value of Ψ as a function of βx

with βy = 0 for different system sizes. The data clearly
show ordering occuring at βx ≈ 0.7. Graphs showing
similar critical behavior were produced for each simu-
lated value of βy. We achieved more precise estimates
of the disorder–order transition temperatures by mea-
suring the crossing point of Binder’s cumulant gL ≡
3 − 2

(

〈

Ψ2
〉

/〈Ψ〉2
)

[25]. As expected for a continuous

phase transition, the values of gL for different system
sizes cross at the critical point βxc

, as shown in Fig. 2.
This allowed us to measure the critical βx for βy values
of −0.9, −0.75, −0.6, −0.3, 0, 0.3, 0.6, 0.75, 0.9 and 1.

The locations of the transition points can
be parametrized in terms of the quantities
ε = (2βKT − βxc

− βyc
) /

√
2 and δ = (βxc

− βyc
) /

√
2.

The result of such parametrization is shown in a log-log
plot in Fig. 3. The possibility of fitting the data to a
straight line implies they obey the power law δ ∼ εϕ.
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Figure 3: (Color online). Power-law fit of the dependence of
δ on ε for the measured critical points. The points lying on
a straight line on a double logarithmic plot imply δ ∼ εϕ.
The slope of the line corresponds to the universal crossover
exponent ϕ. We measure ϕ = 2.52 ± 0.05. The inset shows
the geometric representation of the ε− δ coordinates.

The slope of this line allows us to estimate the crossover
exponent as ϕ = 2.52± 0.05.
Figure 4 shows the phase diagram for the model. The

insets in the figure show the alignment of the spin tex-
tures associated with ordered states. The two critical
lines representing the nonequilibrium disorder–long range
order transitions meet at a temperature 1/βc ≈ 0.89.
This is the same as the KT critical temperature [27],
leading us to conclude that the ordered regions of the
diagram meet at a line corresponding to the low temper-
ature equilibrium KT phase.
Monte Carlo simulations were also used to investigate

the low temperature behavior of our system near equilib-
rium. We measured the time evolution of the difference
δΨ between the order parameters for the x and y direc-
tions. This was done while varying βx and βy so that, as
time (MCS) progressed, we moved perpendicularly across
the equilibrium line from one long-range ordered region
to the other. Hysteresis was clearly observed for square
systems smaller than 32 × 32, indicating that the equi-
librium line may also be a line of first order transitions
from order in one direction to order in the other.
However, for larger system sizes, a different, glassy-

type of behavior was observed. The quantity δΨ did
not switch from a large positive (negative) value to a
large negative (positive) value, as in a hysteresis loop,
but stayed at a value of approximately 0 after crossing the
equilibrium line. The actual system configurations where
δΨ ≈ 0 were investigated, and we observed columns of
ordered vectors, pointing in roughly the same direction,
between columns of disordered vectors.
We note that a similar “striped” configuration was ob-

served after deep quenches from the high temperature
disordered phase to a low temperature ordered phase. In
the steady state simulations described above, we avoided
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Figure 4: (Color online). Phase diagram for the two-
dimensional two-temperature XY model. The red points are
actual measurements of the nonequilibrium transition temper-
atures between disorder and long-range order phases. The two
solid black critical lines are drawn with a crossover exponent
ϕ = 2.52 to fit the points. The blue dashed line corresponds
to the equilibrium KT phase. The blue square corresponds
to the KT transition temperature. The insets show schematic
drawings of spin textures in the ordered state. The error bars
are smaller than the symbol size.

these striped configurations in favor of long wavelength
spin textures by starting the simulations in the steady
state configuration of a temperature very close to the
one currently being simulated; this process was contin-
ued for monotonically decreasing temperatures from the
disordered phase to the ordered phase. Thus, quenching
of the system to a striped configuration was avoided.

We believe the striped configuration to be a metastable
state that can be found in finite-sized systems with
anisotropic nonequilibrium dynamics, e.g. a driven Ising
model [28]. We caution however that in the case of a
driven diffusive Ising model, such striped configurations
are stable in the thermodynamic limit L → ∞ [29, 30].
In particular, if L‖ is the dimension of the drive and
L⊥ the other dimension, “wide” systems (L⊥ > L‖)
and square systems support stable striped configurations,
while “narrow” systems (L‖ ≫ L⊥) support stable long-
range ordered configurations (a single stripe in the case
of the Ising model). In light of these results for the driven
Ising model, we note that it is possible that the striped
configurations in our model may represent true stable
states, particularly for the large square systems used in
the simulations exploring the low-temperature region.

In any case, these striped configurations do not indi-
cate an extended KT phase in the low temperature region
since the KT phase, characterized by the appearance of
vortices, is entirely different from the long-range ordered
phase or the striped phase. Thus, the phase diagram
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is drawn to indicate that infinitesimal non-equilibrium
perturbations to the dynamics of the system cause com-
pletely different system behavior at temperatures below
the KT transition temperature.
This is consistent with what can be inferred from the

following argument. Consider the Langevin equation for
model B with a two-component order parameter ~η:

∂t~η = λ∇2

[

(

−∇2 + τ
)

~η +
1

6
g~ηη2

]

+ ~ξ ,

where ~δ is the order parameter field, g and λ are generic

constants, ~ξ is a Gaussian noise term and τ ≡ T−Tc

Tc

is the
reduced temperature. To account for the system having
two different temperatures, the operators, the parameters
and the noise term are split into x and y components:

∂t~η =λ

{

∂2
x

[

(

−∂2
x + τx

)

~η +
1

6
gx~ηη

2

]

+

∂2
y

[

(

−∂2
y + τy

)

~η +
1

6
gy~ηη

2

]}

+

ξxx̂+ ξy ŷ + 2∂2
x∂

2
y~η ,

where x̂ and ŷ are the unit vectors in the x and y di-
rections, respectively. To describe the system below crit-
icality close to the equilibrium line, both τs should be
negative [1]. This means that the system is unstable
with respect to perturbations in both directions. The
case τx = τy corresponds to the equilibrium model, in
which the instability has the same importance in both
directions. However, any nonequilibrium perturbation
will cause the instability to become stronger in one of the

two directions, thus generating effective long range corre-
lations in the direction corresponding to the lower τ . The
possibility of an extended KT phase is ruled out by the
established result that, for large enough systems, the con-
tribution to the correlation between far away spins due
to vortices is vanishingly small [31]. This means that any
long range interaction, however small, is enough to make
vortices unimportant in the description of the system.
Consequently, the equilibrium KT phase is destroyed by
any nonequilibrium perturbations.

In conclusion, we determined the phase diagram for
a two-dimensional two-temperature conserved order pa-
rameter XY model. The system, whose evolution hap-
pens through Kawasaki spin exchanges, has lines of con-
tinuous phase transition between ordered states, charac-
terized by the appearance of spin textures in the direction
of the lower temperature, and a disordered state. These
lines meet at the equilibrium KT point, corresponding
to a KT transition in the equilibrium model. We mea-
sured the crossover universal critical exponent ϕ for this
transition, finding the value ϕ = 2.52 ± 0.05. For tem-
peratures lower than the KT point, the equilibrium line
on the phase diagram is a line of first order transition be-
tween the ordered states, with the direction of the spin
textures changing. We provided an argument validating
our finding and excluding the possibility of an extended
KT phase below criticality.
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