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Frequency-Locked Loop Based Estimation of
Single-Phase Grid Voltage Parameters

Hafiz Ahmed, Member, IEEE, Sid-Ali Amamra, Michael Bierhoff, Member, IEEE

Abstract—Estimation of Amplitude, instantaneous
phase and frequency of single-phase grid voltage signal
have been studied in this paper. The proposed approach
uses a novel circular limit cycle oscillator (CLO) coupled
with frequency-locked loop (FLL). Due to the nonlinear
structure of the CLO, the proposed frequency adaptive
CLO technique is robust against various perturbations
faced in the practical settings e.g. discontinuous jump of
phase, frequency and amplitude. Global stability analysis
of the CLO and local stability analysis of the frequency
adaptive CLO has been performed. Experimental results
demonstrate the effectiveness of the proposed technique
over a very recent technique proposed in the literature.

I. INTRODUCTION

AMPLITUDE, phase and frequency are the fundamental
parameters of single-phase grid signal. These funda-

mental parameters play significant role in various control,
estimation, measurement and monitoring application in the
context of smart grid [1], [2]. As a result, the estimation of
these parameters is very important in the presence of various
uncertainties (e.g. disturbance, non-smooth jumps) faced by
the real-life electric power systems.

There are several widely accepted class of techniques avail-
able in the literature [3]–[16]. Frequency based techniques like
discrete Fourier transform (DFT) or recursive DFT [5] can be
used for parameter estimation. However, DFT suffers from
spectral leakage while the recursive DFT may be subject to
accumulation error. Least squares (LS) and its variants like
weighted or recursive LS [8] are also found in the literature.
LS can not handle singular matrix while for weighted LS exact
knowledge of the weights are required. Kalman filter (KF)
is another technique that can be used for the grid voltage
parameter estimation [6]. However, prior knowledge of the
covariance matrix is required. Moreover, it is computationally
burdensome for low-cost real-time computing hardware.

Another popular class of technique is the well known phase-
locked loop (PLL). PLL and its various variants [4], [7],
[17] are widely used in the literature and successfully applied
in various practical applications. PLLs are computationally
simple, easy to tune and can provide accurate estimate of the
time varying parameters. Classical PLL algorithms suffer in
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unbalanced condition and the fast dynamic response generally
comes at a cost of accuracy. Enhanced PLL (EPLL) [4]
overcome these limitations but at a higher computational cost
than the classical PLL.

Recently two nonlinear techniques namely second order
generalized integrator frequency-locked loop (SOGI-FLL) [7]
and adaptive notch filter (ANF) [9] became very popular.
These methods have good performance however they suffer
during voltage swells and sags. Although these techniques are
nonlinear in nature but they are initial condition dependent.
The main fundamental building block of these methods rely
on the linear harmonic oscillator. Linear oscillators are not
structurally stable as such small perturbation may change
the equilibrium. Moreover, the oscillation amplitude is initial
conditions dependent. For global stability analysis of various
variants of FLL based technique, please consult [13], [14]. To
overcome the limitations of linear oscillator based methods,
nonlinear oscillator as the main building block can be useful.
This has been explored in [10]. However, [10] can’t estimate
the amplitude in the presence of discontinuous amplitude
jumps.

In this article, we propose the application of a novel
nonlinear circular limit cycle oscillator (CLO) to estimate
the fundamental parameters of the single-phase grid voltage
signal. The special feature of this oscillator is that it has
an almost globally asymptotically stable closed orbit in the
phase-plane. This makes the proposed technique global i.e. its
convergence doesn’t depend on the initial conditions. This is a
considerable advantage over the existing literature. However,
the circular limit cycle oscillator is not frequency adaptive. To
overcome this limitation, we couple the CLO with the FLL
technique proposed in [7]. The coupled system works on a
wide range of initial conditions for the FLL part and for any
initial conditions for the CLO part.

The rest of the article is organized as follows: Section
II gives the details of the proposed technique while the
experimental results are given in Section III. Finally, Section
IV concludes this article.

II. PROPOSED TECHNIQUE

A. Basics of Circular Limit Cycle Oscillator
In the phase-plane analysis of second-order nonlinear sys-

tems, some time an isolated periodic trajectory can be ob-
served. This isolated periodic trajectory is known as limit
cycle. The existence of a stable limit cycle implies sustained
robust oscillation. This is a considerable advantage over linear
harmonic oscillator which is not structurally stable. Circular-
LCO (CLO) are a special type of LCO where the shape of



the limit cycle is circular and independent of the oscillator
parameters. In this work, we propose the following CLO model
adapted from [18],

ẋ = yωn (1a)

ẏ = −xωn − y
(
x2 + y2 − 1

)
(1b)

where x and y are the state variables and ωn is the angular
frequency of the sustained oscillation. The solutions of the
CLO are x (t) = −cos (ωnt) , y(t) = sin (ωnt). As the
solution of y(t) is similar to the single-phase grid voltage
signal, CLO (1) can be considered as a proxy of the grid
voltage signal. Then using proper feedback mechanism, any
change in the grid voltage parameters, can be easily tracked
using model (1).

A particular feature of CLO (1) is that it has an unsta-
ble equilibrium which is the origin and an almost globally
asymptotically stable limit cycle which is the circle of radius
1 denoted by x2 + y2 = 1. It means, any trajectory that
originates anywhere in the phase-plane, will converge to the
circle of radius 1 except the one at origin. To verify this claim,
the instability of the origin and the almost global asymptotic
stability (A-GAS) of the limit cycle need to be proved.

Instability of the origin: Through linearization of eq. (1) at
the origin, it can be found that the eigenvalues are given by
1
2

(
1±

√
1− 4ω2

n

)
. This clearly demonstrates the instability

as the real part is always positive.
A-GAS of the limit cycle: This property can be demon-

strated by converting eq. (1) into polar coordinates. In polar
coordinates, x = rcosθ, y = rsinθ and θ = arctan (y/x).
Then the dynamics of CLO in polar coordinates are given by:

rṙ = xẋ+ yẏ

ṙ = −r sin2(θ)
(
r2 − 1

)
(2)

θ̇ = (ẏx− ẋy) /r2

θ̇ = − sin(θ) cos(θ)
(
r2 − 1

)
− ωn (3)

From eq. (2) and (3), we get that if r = 1, then ṙ = 0 and
θ̇ = −ωn, which implies a clockwise circular limit cycle of
radius 1 with angular frequency ωn like the grid signal angular
frequency. The stability of the limit cycle can be proved by
considering V = 0.5

(
x2 + y2 − 1

)2
as a Lyapunov function

[19]. Then the proof of A-GAS property is straightforward and
avoided here for the purpose of brevity.

B. Frequency Adaptive CLO for parameter estimation
Eq. (1) has A-GAS property which makes it a very suitable

model for single-phase grid voltage parameter estimation.
However, the angular frequency ωn is constant. As such,
the CLO will face difficulty in the presence of varying grid
frequency. To overcome this issue, a frequency adaptation
property needs to be introduced. For this purpose, frequency-
locked loop (FLL) [7] can be very useful. CLO coupled with
FLL and feedback mechanism to introduce the actual grid
voltage is given by:

ẋ = yω (4a)

ẏ = −α (y − χ)ω − xω − y
(
x2 + y2 − 1

)
(4b)

ż = β (y − χ)xω (4c)

where α, β are the positive gains, ω = ωn+2πz is the angular
frequency with ωn denoting the nominal grid frequency, y−χ
denotes the estimation error of the grid signal by the CLO and
the grid voltage signal χ is given by:

χ = Ag sin(θg)

θ̇g = −ωg (5)

where Ag,θg and ωg are the amplitude, instantaneous phase
and frequency of the actual grid signal. Original CLO (1) os-
cillates at ωn, however, the frequency adaptive CLO oscillates
with the actual grid frequency ωn, thanks to the feedback
mechanism and the coupling of FLL. It is to be noted here that
CLO (4) can’t handle DC bias in its current form. To make
the CLO DC bias robust, the DC bias can be considered as
an additional state variable in (4) as used in [20]. This solves
the problem of DC bias. Details are avoided here for space
limitation.

In the steady state, −α (y − χ)ω → 0. Then the dynamics
of eq. (4a) and (4b) are similar to the original CLO (1). As
such the solutions are also similar i.e. x(t) = −Ag cos(θg)
and y(t) = Ag sin(θg). Then the following formula gives the
frequency, phase and amplitude of the actual grid signal χ:

ωg = ωn + 2πz (6a)
θg = arctan {y/ (−x)} (6b)

Ag = x2 + y2 (6c)

C. Local analysis of frequency adaptive CLO

To analyze the local stability of the frequency adaptive CLO,
in this Section, we would resort to the polar coordinates as
in Section II-B. Prior to that, to couple the dynamics of the
grid signal (5) into the frequency adaptive CLO (4), let us
introduce the instantaneous phase error as: eθ = θ− θg . Then
the dynamics of (4) and eθ in polar coordinates are given as:

ṙ = r sin2(eθ + θg)(A
2 − 1)− αex2−χω sin(eθ + θg) (7a)

ėθ = ωg − ω +
sin{2(eθ + θg)}
2(A2 − 1)−1

− ω cos(eθ + θg)

r(αex2−χ)
−1 (7b)

ż = βex2−χωr cos(eθ + θg) (7c)

where ex2−χ = r sin(eθ + θg) − Ag sin θg. The desired
equilibrium of eq. (7) is given by:

x? = {r = A = Ag, eθ = 0, z = (ωg − ωn) /2π}

Without losing any generality, for the sake of computational
simplicity, we assume that Ag = 1. Then the system matrix
of eq. (7) linearized at the equilibrium is given by:



Figure 1. Block diagram of the frequency adaptive CLO.

J (x?) = (2 + αωg){cos2(θg − 1)} −αωg sin (2θg) /2 0
−(2 + αωg) sin (2θg) /2 −αωg cos2(θg) −2π

βωg sin (2θg) /2 βωg cos
2(θg) 0


(8)

The eigenvalues of matrix J(x?) can be calculated from the
following equation:

λ3 + (2 sin2(θg) + αωg)λ
2 + 2πβωg(1− sin2(θg))λ

+4πβωg sin
2(θg)(1− sin2(θg)) = 0 (9)

From eq. (9), it can be seen that for any α, β > 0, Re(λJ) ≤
0 as −1 ≤ sin(θg) ≤ 1, which implies that the polynomial (9)
is Hurwitz. This implies the local stability of the equilibrium
point except the case when sin (θg) = 0. When sin (θg) =
0 only marginal stability can be guaranteed as in this case
λ1,2 = 0 while λ3 < 0. The block diagram of the frequency
adaptive CLO is given in Fig. 1.

D. Tuning of the parameters α and β

In the stability analysis part, we have shown that for any
α, β > 0, the local stability is guaranteed. However, this
doesn’t give any idea on the selection of α and β. To select
α and β, let us assume that θg = 0. Then the polynomial (9)
reduces to:

λ2 + αωgλ+ 2πβωg = 0 (10)

By comparing the polynomial (10) to the denominator poly-
nomial of a second-order transfer function i.e.

λ2 + 2ζω0λ+ ω2
0 = 0 (11)

we found that ωo =
√

2πβωg and ζ =
αωg

2ωo
. Then for a

damping ratio of ζ = 1√
2

, the following formula can be a
good starting point for selecting α and β:

α =

√
4πβ

ωg
=

√
2β

fg
(12)

where experience showed that β ≤ fg .

Table I
SUMMARY OF THE RESULTS.

Test condition −→ +5Hz. freq. +40
◦

phase
Characteristics↓ CLO EPLL CLO EPLL

Settling time ±0.1Hz. (cycles) ≈ 1 ≈ 2.8 ≈ 2 ≈ 3.35
Max. freq. error (Hz.) 5 5 5.3 4.3

Max. phase error 9◦ 9.5
◦

40
◦

40
◦

Max. amp. error (p.u.) 0.07 0.04 0.12 0.05
Test condition −→ −0.2p.u. amp. +0.1p.u. DC bias

Characteristics↓ CLO EPLL CLO EPLL
Settling time ±0.1Hz. (cycles) ≈ 0.5 ≈ 2.5 ≈ 1 ≈ 1

Max. freq. error (Hz.) 0.85 0.8 0.68 0.41

Max. phase error 6.6
◦

6.6
◦

3.5
◦

4.7
◦

Max. amp. error (p.u.) 0.2 0.2 0.091 0.07

III. EXPERIMENTAL STUDY

DC bias robust enhanced phase-locked loop (EPLL) [20]
has been selected as the comparison technique. Proposed fre-
quency adaptive CLO and EPLL are implemented experimen-
tally using dSPACE 1104 board with a sampling frequency of
8KHz and discretized using the third-order Adams-Bashforth
method. The parameters of the proposed technique are selected
as α =

√
2 and β = 20. EPLL parameters are selected

as: µ0 = 85; µ1 = 200, µ3 = 400 and µ2 = 20000. For
the DC bias test, we modified the CLO following the ideas
given in [20] and used µ0 = 85 as the parameter for the
DC bias estimation part like EPLL. In other cases, DC bias
part was turned-off in both techniques for the sake of fare
comparison. Following [16], step changes in a) frequency. b)
ref. magnitude, c) phase, and d) DC offset are considered as
test scenarios. Details are given in Table I.

Experimental results for case a) and d) are shown in Fig.
2. Case b) and c) are avoided here due to space limitation.
Summary of the results for four cases are given in Table
I. Except the DC bias case, CLO significantly outperformed
EPLL in terms of settling time. Moreover, in terms of peak
phase or frequency error, CLO performed better than EPLL
most of the times. However, in terms of peak amplitude error,
CLO always lagged behind EPLL. This is partly related to
the gain tuning. Peak amplitude error is mostly determined
by the rapidity of the FLL part i.e. gain γ. Lower value of
γ increases the convergence time while decreases the peak
amplitude error. As such this is a trade-off for the practising
engineers.

IV. CONCLUSION

This article demonstrated a nonlinear technique for phase,
frequency and amplitude estimation of the single-phase grid
voltage signal. The nonlinear technique used a novel circular
limit cycle oscillator in conjunction with the well known
frequency-locked loop. By transforming the closed-loop sys-
tem into polar coordinates, global and local stability analysis
have been performed for the CLO and CLO-FLL respectively.
Comparative analysis with EPLL has been performed using
four challenging test cases involving non-smooth amplitude,
phase, frequency and DC bias jump. The proposed technique
outperformed the comparison technique. The proposed ap-
proach didn’t consider harmonics which could be a possible



(a)

(b)

Figure 2. Experimental Results. (A): change in frequency from 50Hz. to 55Hz. (B): change of DC magnitude from 0 to 0.1p.u. Arrow indicates the
time when change happens.

future research topic. The application of the proposed tech-
nique to various interesting areas e.g. grid synchronization is
planned to be done in the future. In this work, we haven’t
considered rigorous mathematical analysis of the FLL part.
This is also going to be considered in a future work.
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