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Abstract

The Artificial bee colony (ABC) algorithm has shown competitive performance for handling various opti-
mization problems. However, despite its strong global search ability, it suffers from a poor convergence rate
and it loses the balance between exploitation and exploration. To compensate for this weakness, our paper
proposes a cellular structured neighborhood, with Gaussian-based search equation and local attractor, and a
redefined probability calculation for the ABC algorithm after an empirical analysis. The proposed algorithm
is named as CGABC-Cellular neighborhood with Gaussian distribution ABC. The cellular automata (CA)
model can keep individuals interact with specific neighbors while maintaining the population diversity. The
Gaussian-based search equation combined with the local attractor can help exploit locally the search space,
and the modified probability calculation based on rank sorting can make the selection of onlooker bees more
robust and appropriate. Theoretical analysis are made to prove the global convergence of the CGABC
algorithm based on the theory of probability metric spaces, and the results show that CGABC will converge
to the global optimum. The proposed algorithm is tested on a set of benchmark functions and three real-
world problems (the ”Lennard Jones potential problem”, the ”frequency-modulated sound wave synthesis
problem” and the ”feature selection problem”), and the results demonstrate that our proposed strategies
help ABC achieve higher accuracy and faster convergence when compared with other ABC variants and
swarm-based evolutionary algorithms (EAs).

Keywords: Artificial bee colony, Cellular automata, Gaussian distribution, Probability calculation

1. Introduction

Evolutionary Algorithms (EAs) [13], as an important branch of derivative-free techniques, have been
demonstrated to be efficient tools for solving difficult optimization problems characterized as multi-modal,
non-differentiable, non-convex, nonlinear as well as other challenging problems. As a class of stochastic
optimization and adaptive techniques, EAs draw inspirations from natural evolution and the collective
behavior of social insect colonies or animal groups in nature. They provide a framework that mainly includes
Genetic Algorithms (GA) [6], Differential Evolution (DE) [43] algorithm, Particle Swarm Optimization
(PSO) [27], etc.

Artificial bee colony (ABC) algorithm was initially proposed by Karaboga [23] in 2005, inspired from
the intelligent foraging behavior of honeybees. In this algorithm, there are three kinds of bees to perform
different tasks. Employed bees take the responsibility for searching food sources in a given multidimensional
continuous search space and propagating food information to onlooker bees. After receiving the information,
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onlooker bees would perform an exploitative search around the neighborhood of better food sources selected
by fitness values. The scouts are designed to help jump out of local minima. Because of its easy imple-
mentation with fewer control parameters as well as simple structure, ABC has been compared favourably
to other EAs [24], and thus has been applied to many real-world problems [38].

However, mainly due to the search equation which performs well in exploration but badly in exploitation,
the ABC algorithm inevitably faces poor convergence. To address this drawback, researchers have developed
plenty of approaches in many aspects, as shown in Table 1. Generally, the variants of ABC can be classified
into three categories: ABC with modified search equations, hybrids of ABC with other techniques, and ABC
with adaptive mechanisms. In terms of the modified search equations, the global best solution inspired from
PSO and DE was highlighted to improve the exploitation ability such as in the GABC [50], MABC [17],
ABC/best/1 [18], and EABC [20] algorithms. Under the guidance of global best solution, individuals could
be pulled towards the potential regions, thus the convergence rate of the algorithm can be improved to
some extent. Besides, both [12] and [16] introduced the property of Gaussian distribution system to the
search equation. In [12], Gaussian distribution was used for parameter tuning to get better stability and
exploitative behavior, while it was used to control the movement distribution of candidate solutions in [16].
Instead of differential position update rule in the original ABC, a distribution-based solution update rule
was proposed in the distABC [4] algorithm to prevent stagnation in the whole population by using the mean
and standard deviation of two selected food sources in order to obtain a new candidate solution. In the
case of hybrid ABC, some particular search methods or evolution operators involved in other EAs have been
incorporated in the ABC. For example, chaotic-based search widely used for initialization was designed to
help enhance the global convergence and population diversity [30, 40]. Other effective techniques, such as
orthogonal experimental design (OED) [19], Rosenbrocks rotational direction method [22] and Hooke-Jeeves
pattern search [21], were taken to generate a more efficient candidate solution by sampling a set of well
representative combinations of solutions. Finally, for the adaptation mechanism, the new selection strategy
of neighborhood was designed for the updating equation to obtain a more precise search ability [25, 40]. To
avoid random search direction, previous successful experience of foraging was memorized for bees to provide
a more favorable search guidance [1, 28, 32]. Kiran et al. [29] integrated five solution update rules and
counters into the ABC (ABCVSS) algorithm to update solutions, aiming to efficiently handle optimization
problems with different characteristics. However, this study is not limited to the above mentioned methods;
for a comprehensive review, classifying the methods of improvements and the applications, one can refer to
[38].

However, to our best knowledge, the practical effect of onlooker bees and scouts on the performance
of the ABC algorithm is rarely studied; and little attention has been paid on the neighborhood structure
of the ABC algorithm for achieving superior performance. Based on the above consideration, we first
analyze the actual role of the onlooker bees played in improving the convergence rate and the effect of
scouts on escaping from local optima, in order to obtain a comprehensive understanding of the search
mechanism of the ABC algorithm. Different from the randomly generated population and applying the
search mechanism on the population as a whole, we use a cellular topology, motivated by cellular automata
(CA) [46], to decentralize the population. The decentralization of the ABC can arrange the whole population
in a two-dimensional lattice structure and keep individuals interacting within a particular neighborhood
in order to strike a balance between exploitation and exploration. We further introduce the Gaussian
distribution combined with redefined local attractor in the search equation to guarantee the convergence.
Moreover, a modified probability calculation is proposed to benefit the selection of onlooker bees, thereby
improving the exploitation ability. This proposed algorithm is named as CGABC (Cellular neighborhood
with Gaussian distribution ABC). A theoretical analysis for the CGABC algorithm is given in a probabilistic
metric space, and experimental studies are conducted based on a set of numerical benchmarks and three
real-world applications to validate the performance of the proposed CGABC algorithm.

The rest of paper is structured as follows. Section 2 describes the ABC algorithm in detail. Section 3
introduces the motivation of this paper and presents the framework of the proposed approach. Experimental
studies are reported and discussed in section 4. Finally, some conclusions are drawn in section 5.

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1. Three types of ABC variants

Type Algorithms Abbreviation Reference

modified search equations

Gbest-guided ABC GABC [50]
Improved ABC MABC [17]
Global Best ABC ABC/best/1 [18]
Enhancing ABC EABC [20]
Gaussian ABC GABC [12]
Bare Bones ABC BABC [16]
ABC with Distribution-based Up-
date Rule

distABC [4]

hybrids of ABC with other techniques

Chaotic ABC based on Tent Map STOC-ABC [30]
ABC with Novel Search Equation
and Improved Dimension Selection
Strategy

NSABC [40]

ABC with Modified Search Equation
and Orthogonal Learning

OCABC [19]

Rosenbrock ABC RABC [22]
HookeJeeves ABC HABC [21]

adaptive mechanisms

Quick ABC qABC [25]
ABC with Modification Rate and
Scaling Factor

ASF-MR [1]

Directed ABC dABC [28]
ABC with Memory ABCM [32]
ABC with Variable Search Strategy ABCVSS [29]

2. Overview of ABC Algorithm

The ABC algorithm contains three groups of bees: employed bees, onlooker bees and scouts. The number
of employed and onlooker bees are equal, both of which account for half of the colony. The position of a
food source represents a candidate solution of the optimization problem, and its nectar amount denotes
the corresponding fitness value. It should be noted that one food source is assigned to only one employed
bee. Assuming that the initial population, consisting of SN solutions with D-dimensional vector Xi =
(xi,1, xi,2, ..., xi,D) is randomly generated by Eq. (1),

xi,j = xminj + rand(0, 1)(xmaxj − xminj ) (1)

where i ∈ {1, 2, ..., SN}, j ∈ {1, 2, ..., D}. xminj and xmaxj respectively represent the lower and upper bounds
of jth dimension. rand(0,1) denotes a random value uniformly distributed in (0,1). In the employed bee
phase, a dimension is randomly chosen to generate a new candidate solution Vi by the following equation:

vi,j = xi,j + ∅i,j(xi,j − xk,j) (2)

where j ∈ {1, 2, ..., D} and k ∈ {1, 2, ..., SN} are randomly selected indexes; ∅i,j is a uniformly random
value in [-1, 1]. Then, a greedy selection based on the quality of the nectar amount is adopted to select
the better one between the candidate solution and the old solution. After that, the employed bees share
information of food sources with onlooker bees through dancing.

The update process of onlookers is the same as that in the employed bee phase, however, the main
difference between them relies on that the onlookers select potential food sources to exploit according to
the probabilities calculated by fitness values. Assuming a minimization problem, the probability pi and the

3
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fitness value fiti of solution Xi is calculated as follows:

pi = fiti/

SN∑

i=1

fiti (3)

fiti =

{ 1
1+fi

, if fi ≥ 0

fi, if fi < 0
(4)

where fi means the objective function value. During the scout phase, a solution would be replaced with
a new generated solution Eq. (2) if it had not been improved after consecutive Limit iterations.

3. ABC with the Concept of Cellular Automata Model

3.1. Motivations

3.1.1. The neighborhood effect

Two contradictory aspects that influence the performance of EAs are the exploration and the exploitation
abilities. Exploration is considered as the capability to search the undiscovered region in the whole search
space to find potential solutions, while exploitation indicates the ability to exploit potential solutions using
the previous information obtained by good individuals. Based on Eq. (2), a candidate solution is generated
by moving the individual towards a randomly chosen one in the population with a random coefficient in
[−1, 1]; therefore, the search direction is totally stochastic, which can help preserve the population diversity
to some extent. However, it is difficult to ensure a high probability of successful update because the ABC
algorithm ignores the beneficial information hidden in the neighborhood and does not make full use of the
elite solutions to guide the search towards a potential direction.

Assuming that there are ten individuals as shown in Fig. 1, the five-pointed star highlighted in yellow
is the current individual denoted as Xi, while other nine individuals are shown in blue squares and labeled
as S1 to S9. The red circle is the actual optimal solution represented as Xopt. L1 and L2 are the search
directions from the current individual to S1 and S5, respectively. According to Eq. (2), any solution in
the subset {S1, S2, ..., S3} would be randomly chosen to help generate the candidate solution. This would
cause a high-level randomness, and it may even exert a negative effect on the global convergence when some
distant solutions (e.g., S1) are selected. On the other hand, the search direction can be purposeful if a good
solution in the neighborhood is considered. In Fig. 1, the neighborhood of Xi is circled by dotted line,
where S4 and S5 are neighbors. Xi will move towards Xopt if S5 is considered to guide the search, and the
convergence speed will be increasingly improved. Therefore, it is necessary to establish the neighborhoods
for the population.

X

Y

S1

S2

S3

S4

S5

S6

S7

S8

S9

Fig. 1. The search direction of an individual
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3.1.2. Preliminary experiments on properties of the ABC algorithm

Besides, onlookers selected by probabilities (as shown in Eq. (3)) take the responsibility for exploiting
better individuals. Nevertheless, the fitness values can be approximately equal to 1 when the corresponding
objective function values are positive but too small, e.g. 1e-30. This has a directly negative effect on the cal-
culation of probabilities, on which onlookers depend to select potential individuals to exploit. Furthermore,
scouts are supposed to increase diversity when the population is getting stuck in a local optimum. However,
the population can drastically lose diversity when a new solution provided by a scout is surrounded and
influenced by a large amount of individuals falling into stagnation. In view of the fact that the number of
scouts is small and the time occurred is always late, therefore the effect of scouts is relatively feeble.

In order to validate the above discussion about the performance of onlooker bees and scouts on the
convergence, an experiment is conducted to record the mean number of scouts, the mean percentage of
independent individuals regarded as onlookers and the mean convergence curves along with the search
process. Figs. 1-3 present the experimental results on the Ackley function with D = 30 in [−32, 32]
observed at three different values of Limit, i.e. 0.2∗SN ∗D, 0.6∗SN ∗D and 1.0∗SN ∗D [50], respectively.
From Figs. 2-4 , inspiring conclusions can be drawn as follows:

1) Scouts always appear in a short time just after the stagnation of the population, and its appearance may
postpone due to the increasing Limit;

2) The percentage of onlooker bees oscillates temporarily along with the appearance of scouts, otherwise it
maintains a high proportion (more than 60%);

3) The convergence curves keep unchangeable no matter what the values of Limit are.

With the purpose of overcoming the mentioned shortcomings, three novel operators are introduced in
this paper, namely: the cellular structured neighborhood mechanism, the Gaussian-based search equation
and the modified probability calculation, in order to efficiently exploit the available information concealed
in the neighborhood and to find the elite individuals. Therefore a simple and effective framework containing
these three operators, named as the CGABC algorithm, is proposed.

3.2. Hybridization of CA model and ABC algorithm

Based on the analysis in the above subsection, we need a well-designed communication structure and
rigid information inheriting mechanism to influence the collaboration of individuals and thereby affect the
performance of the ABC algorithm.

The concept of the CA model was first proposed by Von Neumann and Ulam [45], and the basic classi-
fications of CA was described by Wolfram [46]. As a discrete dynamical system, CA can stimulate micro-
behavior by micro-dynamics using the interaction of individuals (cells) connected in particular neighborhood
structures. The deterministic automata (cells) in CA are homogeneously interconnected and can work syn-
chronously at discrete steps following the same transition rule; thus, a large amount of elements working
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Fig. 2. Results on the Ackley function with Limit = 0.2∗SN ∗D: (a) the mean number of scouts; (b) the percentage
of selected onlookers. (c) convergence curve on the Ackley function.
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Fig. 3. Results on the Ackley function with Limit = 0.6∗SN ∗D: (a) the mean number of scouts; (b) the percentage
of selected onlookers. (c) convergence curve on the Ackley function.
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Fig. 4. Results on the Ackley function with Limit = 1.0∗SN ∗D: (a) the mean number of scouts; (b) the percentage
of selected onlookers. (c) convergence curve on the Ackley function.

in parallel can be found to be quite powerful to model complex systems [31]. Therefore, the CA model is
adopted to decentralize the population of the ABC.

3.2.1. Cellular automata (CA)

There are four basic components of CA: cell space, neighborhood, cell state, and transition rule. Cell
space presents the connecting structure of cells, and a checkboard-like lattice structure in two dimensions
is employed in this paper. A periodic boundary is used for cells on the edges to decide their neighbors by
means of imaging the grids embedded in toroidal topology, which can be regarded as taping the left and right
boundaries of the rectangle to form a tube, and then taping the upper and bottom boundaries of the tube
to form a torus. Neighborhood is defined as the cells surrounding a given cell, and the six commonly used
neighborhoods are shown in Fig. 5 where L5 and L9 are linear neighborhood and C9, C13, C21, and C25 are
compact neighborhood. Cell state is considered as the intrinsic feature of a cell, denoting the different states
in which a single cell can be. The transition rule is used to control the following state of a cell according to
its current state and the states of its neighboring cells.

Given a cell, apart from the number of neighbors, the distribution of neighbors is another important
characteristic that crucially influence the property of the neighboring structure. For instance, although the
number of neighbors for neighborhood L9 and C9 are the same, the dispersion of them are totally different.
Alba et al. [2] defined the radius for both the 2-D grid and the neighborhood by the dispersion of n∗ points
in a circle centering (x̄, ȳ) based on Eq. (5), and then the grid-neighborhood relationship is able to be
precisely quantified by the relative ratio between their radius according to Eq. (6). For comparison, the
radius and ratio for different neighborhood on two grid shapes (i.e. 100 = 5 ∗ 20 and 100 = 10 ∗ 10 ) with
100 individuals are presented in Table 2. It is obviously that with the same number of neighbors, a thinner
grid shape gets small ratio because of the large dispersion (e.g. C9 and L9 in Table 2).
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L5 L9 C9 C13 C21 C25

Fig. 5. Six common types of neighborhoods in CA

rad =

√√√√(

n∗∑

i=1

(xi − x̄)2 +

n∗∑

i=1

(yi − ȳ)2)/n∗, x̄ =

n∗∑

i=1

xi
n∗
, ȳ =

n∗∑

i=1

yi
n∗

(5)

ratio =
radneighborhood

radshape
(6)

3.2.2. ABC algorithm with cellular structured population

From the above description of CA, it can be seen that CA are easy to implement without any strict
mathematical reasoning. To enhance the cooperation of population, the concept of a CA model is utilized in
the ABC algorithm to explore the neighboring structure and the diffusing mechanism of the swarm system.
Some definitions for integrating the ABC and CA model are given as follows.

1) Cell space

At first, an individual is thought of as a cell, and the number of all cells in the CA is exactly the same as
the number of individuals in the ABC algorithm. Then, each individual is randomly allocated to a unique
cell without duplication in the initial phase, and most importantly the position of an individual in the lattice
structure is fixed during the whole search process.

2) Neighborhood

Taken neighborhood C9 as an example, an explicit representation of the neighboring structure is de-
picted in Fig. 6 with one hundred individuals. The neighbors of yellow individuals are highlighted in
blue, while the overlapping neighbors belonging to different cells are colored in purple.For example, the
neighbors of individuals 5, 12 and 19 denoted as X5 ,X12 and X19 are {X1, X2, X3, X4, X6, X9, X10, X11},
{X6, X7, X8, X11, X13, X16, X17, X18} ,{X13, X14, X15, X18, X20, X21, X22, X23}, respectively. The overlap-
ping neighbors between individuals X5 and X12 are {X6, X11}, and those between X12 and X19 are
{X13, X18}. Apparently, each individual in the grid has the same neighborhood overlapping with nearby
individuals. Individuals locally interact with their neighbors, and such limited information transmission
has advantages in improving the local search ability. Meanwhile, due to the decentralized population, the
information delivered by individuals could be slowly diffused to others through overlapping neighbors. In

Table 2. Radius and ratio of six representative neighborhoods in Fig. 4

Neighborhood
5 ∗ 20 10 ∗ 10

radshape radneighborhood Ratio radshape radneighborhood Ratio

L5 5.2783 0.8944 0.1694 4.0620 0.8944 0.2202
L9 5.2783 1.4907 0.2824 4.0620 1.4907 0.3670
C9 5.2783 1.1547 0.2188 4.0620 1.1547 0.2843
C13 5.2783 1.4676 0.2780 4.0620 2.0000 0.3613
C21 5.2783 1.7995 0.3409 4.0620 1.4676 0.4430
C25 5.2783 2.0000 0.3789 4.0620 1.7995 0.4924
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Fig. 6, It can be noted that {X6, X11} takes responsibility for transferring information between X5 and X12,
and {X13, X18} is useful for delivering information between X12 and X19.Thus, the information between X5

and X19 can be slowly exchanged through {X6, X11, X13, X18} .

1 2 3

4 5 6

9 10 11

16

7

12

17

8

13 14 15

18 19 20

21 22 23

Fig. 6. Neighboring structure in the neighborhood C9

3) Cell state

According to the definition of the ABC algorithm, the cell state can be briefly defined as the employed
bee state, onlooker bee state or scout bee state. Naturally, how to switch cell states is an important issue
for the search process to balance the exploitation and exploration. It can be noted that the state transition
between the employed bees and onlooker bees is dominated by the parameter p based on Eq. 3, and the
state transition between the employed bees and scouts is determined by the parameter Limit. However, due
to the above consideration, these two parameters are not appropriately designed for the algorithm. As we all
know, the search ability of EAs could be highly enhanced by efficient parameter adaptation, especially when
the control parameter is reasonably designed to accommodate with different phases of the search process. In
the ABC algorithm, good individuals do not have more opportunities than other individuals to be chosen by
onlookers to perform meticulous exploitation due to the improper calculation of the parameter p; therefore,
the valuable information involved in good individuals cannot be fully exploited to guide the search into more
potential regions.

In order to take full advantages of the beneficial information hidden in good individuals, a novel proba-
bility assignment is defined based on the ranking of individuals at the current iteration, presented as follows.

Pri = exp(−2.0 ∗ Fri
SN/2

) (7)

where Fr means the rank of individuals from best to worst; Fri and Pri denote the rank and the
probability of Xi. Here, -2.0 is used as the exponential growth coefficient to control the distribution of
probabilities. Negative exponential function enlarges the probabilities of those individuals that are better
than the median individual, whereas it nearly ignores the lagged individuals. As shown in Fig. 7, the

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

(10,0.449)

(25,0.135)

(40,0.041)

Ranking of the population

Pr
ob

ab
ili

ty

Probability for onlooker bee

Fig. 7. The probability curve for onlooker bees with SN = 50
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probabilities of the individuals that are worse than the median individual are all smaller than 0.135, while the
probabilities of those ranking in the top ten are over 0.449. Therefore, the transition between the employed
bee state and the onlooker bee state can be strictly controlled. In other words, only a few individuals can be
frequently employed as onlooker bees performing exploitative search. From the viewpoint of scouts, another
advantage lies in that the transition probability between the employed state and the scout state may be
increased to some extent. Given a top individual with a high probability, it may easily get trapped into
local minima with little useful information after the intensive exploitation used as an onlooker bee; and then
it will be replaced by a scout as soon as possible. As a consequence, the population can quickly extract
beneficial information from better individuals for exploitation as well as timely replace trapped individuals
with randomly generated solutions. This can highly improve the convergence rate of the algorithm while
preserving the population diversity.

In order to make a clear and accurate comparison between the old and the candidate solution, the
objective function values are directly applied to the selection of better solutions as in [20]. Hence, there is
no need to calculate the fitness values for each solution, dramatically reducing the computational cost.

4) Transition rule

The search equation updating the positions of individuals is regarded as being the transition rule. With
the aim to improve the local exploitation in the neighborhood, a novel search equation is designed, which
gets inspiration from Gaussian distribution. The generalized formulation is defined as follows.

vi,j = N(si,j , α ∗ |si,j − xk,j |) (8)

α = 0.8 ∗ (1−
√

FEs

maxFEs
) + 0.2 (9)

where j ∈ 1, 2, ..., D is a randomly chosen dimension; FEs denotes the index of current function evaluation;
maxFEs means the maximum number of function evaluations; k ∈ 1, 2, ..., D, k 6= i and Xk is a randomly
chosen solution from the whole population instead of the neighborhood; Si is regarded as the local attractor
of individual Xi , and si,j is the jth element of vector Si ; α is a scaling factor to control the magnitude
of variance operator. Based on previous experiments, α decreasing iteratively from 1.0 to 0.2 by Eq. (9)
can perfrom best, which can improve the search stability by decreasing the search scope along with the
evolutionary process. Besides, the descending preference can be explicitly considered to make the search
process undergo two optimization phases: exploration at the initial phase and exploitation at the later phase.

It should be emphasized that Si is an abstract term having different definitions for employed and onlooker
bees as shown in Eqs. (10) and (11), where xlbest,j and xgbest,j are the jth element of the local best position
Xlbest and the global best position Xgbest , respectively. λ , which controls the degree xi,j depending on
xlbest,j , decreases along with the iterations; N(·) is used as a noise for λ , obeying a normal distribution
whose mean and standard deviation both are 0.5.

si,j = λ ∗ xlbest,j + (1− λ) ∗ xk,j (10)

si,j = λ ∗ xlbest,j + (1− λ) ∗ xgbest,j (11)

λ = N(0.5, 0.5) ∗ (1− (
FEs

maxFEs
)2) (12)

The main difference between Eq. (10) and (11) lies in that the former equation uses a randomly selected
individual Xk while the latter one uses the global best solution Xgbest. The effect of Xk can be viewed
as a random motion, making the individual fluctuate so that it may reach a point far from the original
position, especially when the local best individual is stuck in a local optimum. Therefore, the movement of
an individual is endowed with global search ability by using Xk , which can help the local best individual
skip out onto a better position. Additionally, the integration of global best solution Xgbest can apparently
accelerate the convergence rate of the search. As a whole, si,j works as the local attractor inside a hyper-
rectangle with xlbest,j and xk,j (or xgbest,j ) regarded as the two ends of the diagonal. As mentioned above,
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each individual concentrate on exploiting in the specialized neighborhood, so the information diffusion of
better individuals is slowed down. This may exert a negative influence on the convergence rate although
the population diversity is preserved. It is apparent that the search centered around Si with Gaussian
distribution can accelerate the diffusion of the local best individual through overlapping neighbors and
hence drastically improve the exploitative efficiency.

In general, the neighborhood of each individual is determined by the CA model, and a Gaussian-based
search equation with well-designed parameter adaptation is proposed in order to have a better balance
between global and local search. The pseudocode of CGABC is described in Algorithm 1.

3.2.3. Time complexity of CGABC

The cellular structure does not increase the complexity of the CGABC, since the neighborhood of each
individual is predesigned, as depicted in Fig. 5. Compared to the ABC algorithm, the selection of local
best individual, the Gaussian based search equation and the population sorting are additional operations
contained in the CGABC, of which the time complexity are O(SN ∗ 2Nneigh) (Nneigh is the number of
neighbors of each individual), O(SN) and O(SN ∗ log(SN)) , respectively. The time complexity of the
ABC algorithm is O(SN ∗D), which has a larger scale than the three additional operations. Therefore, the
time complexity of the CGABC remains O(SN ∗D). Hence, it can be concluded that the complexity of the
CGABC algorithm is not increased by the additional operations.

4. Convergence analysis of CGABC

The stochastic properties of nature-inspired algorithms make them difficult to validate global convergence
in theory. We follow the global search criteria provided by Solis and Wets [35, 41] to investigate the
convergence of the proposed algorithm. For clarity, some relevant preliminaries are included below.

4.1. Preliminaries

Remark 1. A random search algorithm can be regarded as global search algorithm if the successive ap-
proximations generated by the algorithm with a random initialization are guaranteed to converge to the
global minimizer.

Assumption 1. Given a continuous fitness function f in the feasible domain S, f : RN → R and S ∈ RN .
The objective is to find a point z ∈ S which can minimize f on S or at least generate an acceptable
approximation of the infimum of f on S .

Let {zk}∞k=0 be a sequence obtained by the random search algorithm. Global convergence requires that
the sequence {f(zk)}∞k=0 should converge to the infimum of f on S. For the sake of avoiding some pathological
situations which prevents the algorithm finding the global minimizer, the search objective of the algorithm
is defined as the essential infimum of f on S as follows:

inf(m : v[z ∈ S | f(z < m) > 0]) (13)

where v[A] is the Lebesgue measure on the set A.

Remark 2. The ε-acceptable region Rε ∈ S is defined as the following:

Rε = {z ∈ S | f(z) < ψ + ε} (14)

where ε > 0, and ε denotes the acceptable error; ψ means global minimum. Rε ∈ S denotes the optimality
region for the algorithm. The algorithm can be considered to have found an acceptable approximation to
the global minimum if it discovers a point in the ε-acceptable region.
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Algorithm 1 The pseudocode of CGABC algorithm

1: Initialize the parameters, i.e. SN , D, maxFEs, Limit;
2: Generate the initial population;
3: Evaluate the objective function values for the population;
4: repeat
5: Determine the neighbors of each individual by a specific topology;
6: Calculate α according to Eq. (9);
7: The employed bee state:
8: for i = 1 : SN do
9: Calculate λ by Eq. (12);

10: Determine the local best individual Xlbest;
11: Determine the local attractor Si by Eq. (10);
12: Generate a candidate solution Vi by Eq. (8);
13: if f(Xi) > f(Vi) then
14: Set Xi = Vi, triali = 0;
15: if f(Xgbest) > f(Vi) then
16: Set Xgbest = Vi;
17: end if
18: else
19: Set triali = triali+ 1
20: end if
21: end for
22: Calculate Pr according to Eq. (7), and set t = 0, i = 1;
23: Determine the neighbors of each individual by a specific topology;
24: The onlooker bee state:
25: while t ≤ SN do
26: if rand(0, 1) < Pri then
27: Calculate λ by Eq. (12);
28: Determine the local best solution Xlbest and global best solution Xgbest;
29: Determine the local attractor Si by Eq. (11);
30: Generate a candidate solution Vi by Eq. (8);
31: if f(Xi) > f(Vi) then
32: Set Xi = Vi, triali = 0;
33: if f(Xgbest) > f(Vi) then
34: Set Xgbest = Vi;
35: end if
36: else
37: Set triali = triali+ 1
38: end if
39: t = t+ 1, i = i+ 1
40: if i > SN then
41: i = 1
42: end if
43: end if
44: end while
45: The scout state:
46: if max(triali) > Limit then
47: replace Xi with a randomly generated solution by Eq. (1)
48: end if
49: until termination condition is met.
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Lemma 1. (Borel-Cantelli Lemmas) Let {Ek}k=1 be a sequence of events occurring in a probability space.

Let pk = P (Ek) . If
∑∞
k=1 pk <∞ holds, then P

{⋂∞
n=1

⋃∞
k≥nEk

}
= 0 ; Similarly, suppose that {Ek}k=1 is

a sequence of independent events in a probability space. If
∑∞
k=1 pk =∞ holds, then P

{⋂∞
n=1

⋃∞
k≥nEk

}
= 1

.

Thus, the lemma alleges that the set of all outcomes with the characteristic of being repeated infinitely
many times must occur with probability zero if the sum of the probabilities of the events Ek is finite.
Otherwise, the probability that infinitely many of them occur is 1 if the events Ek are independent and the
sum of the probabilities of Ek diverges to infinity.

4.2. Global convergence criteria for random search algorithms

Hypothesis 1. f(G(z, ξ)) ≤ f(z) and f(G(z, ξ)) ≤ f(ξ) if ξ ∈ S .

Here, G(·) function represents a random search algorithm and must satisfy condition (H1).

Hypothesis 2. For any Borel subset A of S with its measure v[A] > 0 , we have

∞∏

k=0

(1− µk(A)) = 0 (15)

(H2) indicates that, given any subset A of S with positive Lebesgue measure v, the probability that re-
peatedly missing the subset A must be zero with random sampling. Therefore, for random search algorithm,
we can induce the necessary and sufficient condition of global convergence according to (H1) and (H2), as
the following theorem.

Theorem 1. (Global search) Given that f is a measurable function, S is a measurable subset of RN and
(H1) and (H2) are satisfied. Let {zk}∞k=0 be a sequence generated by the random search algorithm, then

lim
k→∞

P [zk ∈ Rε] = 1 (16)

where P [zk ∈ Rε] denotes the probability that the point zk is in the ε-acceptable region Rε at step k.

Based on theorem 1, the algorithms can be proved to converge onto the global minimum when hypotheses
(H1) and (H2) are satisfied.

4.3. Global convergence analysis of CGABC

This subsection aims to demonstrate that CGABC algorithm is a global convergence algorithm, namely,
the CGABC satisfies the hypotheses (H1) and (H2).

Lemma 2. CGABC satisfy (H1).

Proof. According to the property of CGABC, the function G mentioned in (H1) for CGABC is defined as

G(Xt
gbest, X

t+1
i ) =

{
xtgbest, if f(Xt+1

i ) ≥ f(Xt
gbest)

Xt+1
i , if f(Xt+1

i ) < f(Xt
gbest)

(17)

where Xt
i means the position of individual Xi at the tth iteration; and the sequence

{
Xt
gbest

}n
t=0

denotes

best position found by the current population so far (from the first to the tth iteration); Xt+1
i represents

the updated position for the next iteration of individual Xt
i , that is,

Xt+1
i =

{
Xt
i , if f(Xt

i ) ≤ f(V ti )
V ti , if f(Xt

i ) > f(V ti )
(18)

where V ti is the candidate position of individual Xi at the tth iteration. Therefore, the sequence
{
Xt
gbest

}n
t=0

is monotonic and the definition of Xt+1
i meet the conditions of (H1). This completes the proof of Lemma 2.
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For any Borel subset A of S with v[A] > 0, suppose that T0 = [z | z ∈ A] and T1 = [z | z ∈ A \A] , then
the position vectors X(t) generated by CGABC in S at step t should be classified into two states:

1) It is the noted state I0 when there is at least an individual belongs to T0;
2) It is the noted state I1 when all individuals belong to T1 .

Lemma 3. (Individual state transition) assuming that Assumption 1 holds, and let qij (i, j = 0, 1 ) denotes
the state transition probability of transforming from the state Ii in X(t) to state Ij in X(t + 1), then four
cases can be obtained: q01 = 0, q00 = 1, q11 ≤ c ∈ (0, 1) and q10 ≥ 1− c ∈ (0, 1).

Proof. Based on Lemma 2, the best solution searched by the CGABC algorithm is monotonic, thus, we
can have: q01 = 0, q00 = 1. The following content is to testify the other two cases.

According to the definition of search equation in CGABC, i.e. Eq. (8), it is obviously that individuals
obey Gaussian distribution, i.e. Xi,j ∼ N(µi,j , σ

2
i,j) where µi,j = si,j and σ2

i,j = α |si,j − xk,j | . For any
Borel subset A of S with v[A] > 0, we have

P {Xi ∈ A} =

D∏

j=1

P {xi,j ∈ A} =

D∏

j=1

∮

A

1√
2πσi,j

exp(−
(y − µ2

i,j)

2σ2
i,j

)dy (19)

Let P (Xi) = P (Xi ∈ A), ∀i ∈ SN . Because the positions of individuals are bounded, it can be observed
that E(Xi) = µi <∞ where µi represents the mean vector of individual Xi ; thus 0 < P (Xi) < 1. Let the
subset ŝ ∈ S which contains SN individuals of the swarm. If there exists l ∈ ŝ in finite set ŝ, and then

P (Xl) = mini∈ŝP (Xl) (20)

From Eq. (20), it is clear that P (Xl) ≤ P (Xi) ≤ q10 while q10 + q11 = 1. Therefore, given a constant
γ ∈ (0, 1), we have

q11 = 1− q10 ≤ 1− P (Xl) = γ (21)

This completes the proof of Lemma 3.

Lemma 4. CGABC can satisfy (H2).

Proof. First, let us define P̄ (Xt
i ) = P {Xt

i ∈ S \A}, ∀i ∈ {1, 2, .., SN}. By Lemma 3, it can be deduced
that

P̄ (Xt
i ) =

{
0, if Xt

i ∈ A,∃t ∈ {0, 1, ..., t}
qt11, if Xt

i ∈ S \A,∀t ∈ {0, 1, ..., t}
(22)

Therefore,
∞∑

t=1

qt11 ≤
∞∑

t=1

rt =
r

1− r <∞ (23)

Note that qt11 means the tth power of q11. Based on Lemma 1 (i.e. Borel-Cantelli Lemmas), for any
i ∈ {1, 2, ..., SN}, we have

P




∞⋂

n=1

∞⋃

t≥n
Xt
i ∈ S \A



 = 0 (24)

This indicates that the probability of repeatedly missing the acceptable region A must be zero. Hence, Eq.
(24) implies that

∞∏

t=0

(1− µt(A)) = 0 (25)

Therefore, CGABC satisfies (H2), which completes the proof of Lemma 4.

Theorem 2. The CGABC algorithm is a global convergence algorithm.

Proof. Since CGABC satisfies both (H1) and (H2) and based on Theorem 1, it can be concluded that
CGABC is global convergent.
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5. Experiments and analysis

5.1. Test suites

With the aim to make an overall investigation of the CGABC algorithm, experiments are conducted on
32 numerical benchmarks functions with different characteristics (unimodal, multimodal, separated, shifted,
rotated, and noisy) from [16, 44]. F1-F20 are classical benchmark functions which have been frequently
utilized for easy comparisons [16, 29, 32], and F21-F32 are CEC 2005 functions [44]. Besides, two real-world
problems, referred to CEC 2010 [9], and a feature selection problem [3], are used to validate the performance
of CGABC on real applications.

5.1.1. Benchmark functions

The function name, search range, global optimum and main properties of these 32 benchmark functions
are described in Table 3 [16, 44]. Their mathematic formulas are listed in the Appendix, where z =
M ∗ (x − o); x, o, M are the original variable, the shifted global optimum and the orthogonal rotation
matrix, respectively. The function can be shifted when o is not the origin of coordinates. The matrix M can
transform the function from separability to inseparability while keeping the properties of the original function
unchangeable. Certainly the function is non-rotated if matrix M is a D-dimensional identity matrix. In the
Appendix A, the Accept (column 3) [16] defined for each benchmark function is used to verify whether the
current trial is successful. A trial is regarded as a success if the result obtained is within the actual global
optimum (column 4 in Table 3) and the Accept value [16].

5.1.2. Real-world applications

In order to evaluate the performance of the CGABC algorithm, three real-world problems are employed
here, which are the Lennard-Jones potential problem, the parameter estimation for a frequency-modulated
(FM) sound wave synthesis problem and the feature selection problem. These three problems are simulated
as optimization problems. The first two problems use continuous variables, while the last one is a binary
problem.

1) Lennard-Jones potential problem

The Lennard-Jones potential problem, as a potential energy minimization problem, aims to find an
optimal organization of atoms with minimum potential energy. This is a multimodal problems, and the local
minima exponentially increase with increasing number of atoms. Therefore, it is difficult for optimization
algorithms to slove this problems.

Assuming that there are N atoms in a cluster, and the Cartesian coordinates of each atom can be given
as

Pi = {xi, yi, zi} , i ∈ {1, 2, ..., N} (26)

Therefore, the dimension of each individual associated with the number of atoms should be 3 ∗N . The
potential energy of a cluster is calculated by the summation of paired interactive actions among atoms,
which is denoted as

f =

N−1∑

i=1

N∑

j=i+1

(µ−12
ij − µ−6

ij ) (27)

where µij means the Euclidean distance between the ith atom and the jth atom.
In this subsection, experiments are conducted with different number of atoms from 7 to 15 [40], and

the corresponding number of maximum fitness evaluations are 50000, 50000, 60000, 70000, 80000, 90000,
100000, 100000 and 100000.

2) Frequency-Modulated (FM) sound wave synthesis problem
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The Frequency-Modulated (FM) sound wave synthesis plays a crucial role in several modern music
systems, which aims at generating sounds similar to target sounds. It is a highly complex multimodal
problem with optimum value being 0. The formula for the estimated sound and target sound waves are
represented as:

y(t) = α1 · sin(ω1 · t · θ − α2 · sin(ω2 · t · θ + α3 · sin(ω3 · t · θ))) (28)

y0(t) = 1.0 · sin(5.0 · t · θ − 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))) (29)

where θ = 2π/100 . The objective of this problem is to minimize the summation of the squared errors
between the estimated wave and target wave as follows:

f( ~X) =

100∑

t=0

(y(t)− y0(t))2 (30)

Table 3. Properties of benchmark functions

No. Function Name Range Optimum Modality Separable Shifted Rotated Noisy

F1 Sphere [−100, 100]D 0 U Y N N N
F2 Elliptic [−100, 100]D 0 U Y N N N
F3 Sumsquare [−10, 10]D 0 U Y N N N
F4 Schwefel226 [−1, 1]D 0 U Y N N N
F5 Schwefel222 [−10, 10]D 0 U Y N N N
F6 Schwefel221 [−100, 100]D 0 U Y N N N
F7 Step [−100, 100]D 0 U Y N N N
F8 QuarticWN [−1.28, 1.28]D 0 U Y N N N
F9 Schaffer [−100, 100]D 0 M N N N N
F10 Rosenbrock [−10, 10]D 0 M N N N N
F11 Rastrigin [−5.12, 5.12]D 0 M Y N N N
F12 Ncrastrigin [−5.12, 5.12]D 0 M Y N N N
F13 Griewank [−600, 600]D 0 M N N N N
F14 Sumpower [−10, 10]D 0 M N N N N
F15 Ackley [−32, 32]D 0 M N N N N
F16 Penalized1 [−50, 50]D 0 M N N N N
F17 Penalized2 [−50, 50]D 0 M N N N N
F18 Alphine [−10, 10]D 0 M Y N N N
F19 Levy [−10, 10]D 0 M N N N N
F20 Weierstrass [−0.5, 0.5]D 0 M Y N N N
F21 Shifted Sphere [−100, 100]D 0 U Y Y N N
F22 Shifted Schwefel 1.2 [−100, 100]D 0 U N Y N N
F23 Shifted Rotated High

Conditioned Elliptic
[−100, 100]D 0 U N Y Y Y

F24 Shifted Noise Schwefel 1.2 [−100, 100]D 0 U N Y N N
F25 Schwefel 2.6 with Optimum

on Bounds
[−100, 100]D 0 U N N N N

F26 Shifted Rosenbrock [−100, 100]D 0 U N Y N N
F27 Shifted Rotated Griewank

without Bounds
[−600, 600]D 0 M N Y Y N

F28 Shifted Rotated Ackley
with Optimum on Bounds

[−32, 32]D 0 M N Y Y N

F29 Shifted Rastrigin [−5, 5]D 0 M Y Y N N
F30 Shifted Rotated Rastrigin [−5, 5]D 0 M N Y Y N
F31 Shifted Rotated Weierstrass [−0.5, 0.5]D 0 M N Y Y N
F32 Schwefel 2.13 [−π, π]D 0 M N N N N
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where the parameters of ~X = {α1, ω1, α2, ω2, α3, ω3} are defined in the range [−6.4, 6.35]. Here, the maxi-
mum number of fitness evaluations are set as 6× 106 for comparison.

3) Feature selection problem

Feature selection, as a preprocessing tool in classification tasks, can select a subset of meaningful features
from a dataset and abandon the redundant ones [3]. Given a dataset, let D denotes the number of all
features. Due to the fact that these features may be noisy, misleading and irrelevant, EAs are used to
extract an optimal subset containing d relevant features from the original feature set in order to improve
the classification accuracy.

A binary vector is employed to represent the features. 1 indicates that the corresponding feature is
chosen, while 0 indicates that it is abandoned. The whole population is controlled to search in [0, 1].
Let Xi = {xi,1, xi,2, ..., xi,D} denotes the ith individual, and the corresponding feature subset is Fi =
{fi,1, fi,2, ..., fi,D}. A straightforward strategy, as shown in Eq. (31) where j={ 1,2,...,D}, is used to
constrain each element of an individual to 0 and 1.

fi,j =

{
0, if xi,j ∈ (0.5, 1]
1, if xi,j ∈ [0, 0.5]

(31)

Feature selection is used to solve classification problems in this paper [10]. Five groups of datasets
for classification problems are employed, which are taken from the UCI Repository [34]. Moreover, K-
nearest neighbor (KNN) technique [3] and leave-one-out cross-validation (LOOCV) are used to evaluate the
performance of each individual [40]. The classification accuracy is viewed as the objective values, which is
calculated as the correctly classified samples to all samples. This is a maximization problem, because higher
accuracy means better performance of selected feature subset.

Table 4. Parameter settings for all algorithms used in the comparisons

Algorithms Parameter setting Ref Algorithms Parameter setting Ref

ABC Limit = 1.0 ∗ SN ∗D [24] DE DE/rand/1/bin, F = 0.8, CR =
0.8

[43]

GABC c = 1.5, Limit = 1.0 ∗ SN ∗D [50] jDE τ1 = τ2 = 0.1, Fl = 0.1, Fu = 0.9 [5]
MABC p = 0.7, Limit = 1.0 ∗ SN ∗D [17] JADE DE/current− to− pbest/, p =

0.05, c = 0.1
[49]

ABC/best/1 Limit = 0.6 ∗ SN ∗D [18] SaDE DE/rand/1/bin, F =
N(0.5, 0.3), CR =
N(CRmk , 0.1), CRm0 = 0.5

[37]

ASF-MR Limit = 200,MR = 0.4, SF = 1 [1] FIPS χ = 0.729,
∑
ci = 4.1 [36]

qABC r = 1, Limit = 0.5 ∗ SN ∗D [25] HPSO-
TVAC

V : Vmax − 0.1Vmax, c1 = c2 = 2 [39]

EABC A = 1, µ = σ = 0.3, Limit = 200 [20] CLPSO ω : 0.9− 0.4, c = 1.49445,m = 7 [33]
ABCVSS Limit = 1.0 ∗ SN ∗D [29] FPSO ω : 0.9− 0.4,

∑
ci = 4 [11]

ABCM M = 2, Limit = 1.0 ∗ SN ∗D [32] OLPSO-G ω : 0.9− 0.4, c = 2.0, G =
5;Vmaxd = 0.2 ∗Range

[48]

BABC Limit = 200 [16] PSO ω : 0.9− 0.4, c1 = c2 = 2.0 [27]
distABC TSD = 10−5, Limit = 1.0 ∗SN ∗D [4] GBBPSO − [26]
OCABC M = 2 dlog2(D + 1)e , Limit = 200 [19] MCS ρ = 3/2, pa = 0.25 [15]

APABC SNmax = 50, SNmin = 20, T = 20 [8] MTABC Limit = 200 [42]
HABC Limit = 150, Fadapt =

50, Freproduce = 5, η = 0.5
[7]

5.2. Experimental settings

For all of the compared algorithms, the population size is set to be 100, namely the colony size SN is
50. The dimension D of all tested benchmarks functions is 30, and the parameter Limit of CGABC is set
as 100. Each algorithm runs 50 times independently for each objective function listed in Table 3.
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Moreover, five groups of experiments are designed for analysis and comparison in terms of benchmark
functions. Aiming to investigate the effect of the proposed strategies (i.e. CA model, Gaussian-based search
equation and modified parameter adaptation), the first group of experiments is to make comparisons among
ABC and five new ABC variants, including ABC with C25 cellular structured population (cABC), ABC
with adaptive parameter Pr (pABC), ABC with Gaussian-based search equation (gABC), ABC with both
Pr and C25 neighborhood structure (pcABC) as well as the proposed CGABC. The next two groups of
experiments are conducted to investigate the influence of different grid shapes and neighborhoods appointed
on the ABC algorithm. In the fourth group, CGABC is further compared with twelve state-of-art ABC
algorithms, four variants of DE and five variants of PSO to validate the efficiency of CGABC. For a fair
comparison, the parameter settings and control methods of these algorithms coincide exactly with their
corresponding papers as listed in Table 4. For the first four groups, the maximum number of function
evaluations on F1-F20 and F21-F32 are set as 150000 and 300000 [16, 44], respectively, expecting that it is
set as 200000 for the comparison among CGABC and PSO variants [20].

5.3. Experimental results on benchmark functions

5.3.1. Performance comparison among ABC, cABC, pABC, pcABC, gABC and CGABC

For cABC, pcABC, and CGABC algorithms, which are embedded with the cellular structured population,
the 2D grid shape is set as 6 × 8 , and the neighborhood structure applied is the neighborhood C25. The
results are listed in Table 5 regarding mean best values (Mean) and standard deviations (Std) of the best

Table 5. Mean and standard deviation values of six algorithms on 15 functions

Func Metric ABC pABC cABC pcABC gABC CGABC

F1 Mean 8.81E-16 6.51E-16 2.06E-17 2.99E-21 1.16E-41 3.88E-75
Std 1.59E-16 9.63E-17 1.79E-17 5.08E-21 6.91E-41 5.69E-75

F2
Mean 9.89E-09 2.41E-15 2.74E-09 5.28E-17 2.59E-37 1.26E-71
Std 9.01E-09 1.77E-15 3.48E-09 6.91E-17 1.79E-36 1.83E-71

F3
Mean 5.71E-16 5.84E-16 3.90E-19 2.04E-22 9.38E-43 5.18E-76
Std 8.79E-17 8.61E-17 3.04E-19 2.62E-22 3.56E-42 8.82E-76

F4
Mean 3.41E-08 1.77E-06 2.37E+00 1.13E-07 -3.02E-12 -3.64E-12
Std 1.21E-07 1.04E-05 1.67E+01 7.41E-07 8.70E-13 0.00E+00

F5
Mean 2.13E-10 5.54E-11 1.20E-10 8.01E-12 2.21E-22 1.27E-39
Std 6.69E-11 1.73E-11 3.51E-11 5.82E-12 8.00E-22 9.49E-40

F6
Mean 1.28E+01 1.07E+01 1.17E+01 1.07E+01 1.25E+00 5.46E+00
Std 2.87E+00 2.33E+00 2.98E+00 2.22E+00 2.21E-01 9.00E-01

F7
Mean 0 0 0 0 0 0
Std 0 0 0 0 0 0

F8
Mean 1.10E-01 1.08E-01 1.12E-01 1.04E-01 1.32E-02 1.60E-02
Std 2.40E-02 2.11E-02 2.07E-02 2.21E-02 3.53E-03 4.35E-03

F9
Mean 3.66E-01 3.19E-01 3.59E-01 3.22E-01 1.97E-01 2.28E-01
Std 2.16E-02 3.26E-02 2.62E-02 3.13E-02 3.81E-02 2.63E-02

F10
Mean 5.80E-02 4.28E-02 7.05E-02 4.39E-02 6.65E-01 1.65E-01
Std 4.71E-02 3.10E-02 7.15E-02 3.41E-02 1.24E+00 2.52E-01

F11
Mean 1.44E-14 1.42E-14 1.57E-14 4.05E-15 0 0
Std 1.43E-14 1.56E-14 1.64E-14 6.28E-15 0 0

F12
Mean 2.99E-13 2.48E-13 3.82E-13 3.72E-14 0 0
Std 4.46E-13 3.23E-13 6.95E-13 4.93E-14 0 0

F13
Mean 6.16E-14 3.52E-15 2.17E-14 3.95E-15 0 0
Std 1.35E-13 5.22E-15 4.95E-14 1.23E-14 0 0

F14
Mean 1.23E-16 9.23E-14 2.13E-21 1.33E-21 5.80E-61 1.83E-133
Std 1.23E-16 1.96E-13 3.97E-21 3.23E-21 2.98E-60 9.53E-133

F15 Mean 1.51E-09 1.56E-09 9.85E-10 2.72E-10 1.56E-14 1.06E-14
Std 5.59E-10 5.26E-10 3.82E-10 1.93E-10 3.11E-15 2.74E-15
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Table 6. AVENs and successful rates of six algorithms on 15 functions

Func Metric ABC pABC cABC pcABC gABC CGABC

F1 AVEN 9.02E+04 7.03E+04 8.64E+04 6.70E+04 2.69E+04 2.56E+04
SR 100 100 100 100 100 100

F2
AVEN 1.50E+05 1.01E+05 1.44E+05 9.69E+04 3.46E+04 3.25E+04
SR 62 100 92 100 100 100

F3
AVEN 8.15E+04 6.44E+04 7.93E+04 6.15E+04 2.54E+04 2.38E+04
SR 100 100 100 100 100 100

F4
AVEN - - - - 8.70E+04 5.65E+04
SR 84 72 72 90 100 100

F5
AVEN 1.30E+05 1.18E+05 1.28E+05 1.10E+05 4.00E+04 3.81E+04
SR 100 100 100 100 100 100

F6
AVEN 4.54E+04 2.84E+04 4.41E+04 2.72E+04 1.40E+04 1.36E+04
SR 100 100 100 100 100 100

F7
AVEN 3.56E+04 2.95E+04 3.78E+04 2.88E+04 1.27E+04 1.21E+04
SR 100 100 100 100 100 100

F8
AVEN - - - - 2.46E+04 2.51E+04
SR 28 34 20 44 100 100

F9
AVEN - - - - - -
SR - - - - - -

F10
AVEN 4.14E+04 5.70E+04 4.87E+04 5.63E+04 5.27E+04 6.03E+04
SR 100 100 100 100 96 96

F11
AVEN 1.14E+05 1.14E+05 1.23E+05 1.03E+05 8.46E+04 6.26E+04
SR 100 100 100 100 100 100

F12
AVEN 1.31E+05 1.27E+05 1.27E+05 1.14E+05 5.85E+04 3.51E+04
SR 100 100 100 100 100 100

F13
AVEN 1.10E+05 9.46E+04 1.13E+05 9.25E+04 8.18E+04 7.29E+04
SR 100 100 100 100 100 100

F14
AVEN 7.79E+04 4.70E+04 7.25E+04 4.63E+04 1.79E+04 1.70E+04
SR 100 100 100 100 100 100

F15 AVEN 1.40E+05 1.38E+05 1.39E+05 1.29E+05 4.29E+04 4.06E+04
SR 100 100 100 100 100 100

solutions obtained on fifteen selected functions. The superior algorithm for each function is in boldface.
The convergence curves of different ABCs are plotted in Fig. 8. To further provide contrasts in the
robustness and convergence rate, the comparison associated with successful rate (SR) [16], average function
evaluation number (AV EN) [16] and acceleration rate (AR) [22] are conducted and reported in Table 6 and
7, respectively. In particular, SR denotes the percentage of successful runs in all independent runs on each
function; AV EN means the average number of function evaluations required to reach the threshold defined
as Accept in the Appendix, which is only associated with those successful optimizations; the acceleration rate
(AR) denotes the ratio of AV EN of algorithm1 to that of algorithm2 relating to algorithm1 vs algorithm2.
Further, the nonparametric Wilcoxons rank-sum test aims to estimate whether the comparisons between two
algorithms (i.e. algorithm1 vs. algorithm2) are significantly different at a 5% significance level, where ’+’, ’-’,
and ’=’ stands for that algorithm1 is significantly superior, inferior, or identical to algorithm2, respectively.
The results of Wilcoxon rank-sum test are listed in Table 8. The term ’b/w/e’ denotes the number of
functions that algorithm1 is significantly better than, worse than, or equal to algorithm2; and the term gm
denotes general merits, which calculated by the difference between the number of significantly superior and
significantly worse functions so as to provide a clear comparison between algorithm1 and algorithm2 [14, 47].

From Table 5, we can see that ABC performs worst among all the algorithms. CGABC achieves the
best performance on 11 functions except F6, F8, F9 and F10, where gABC performs best on the first three
functions and pABC does well on the last one. As can be inferred from Table 6 and 7, CGABC can obtain
100% successful rate and converges faster than other algorithms on most cases expect for F8, F9 and F10
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where F9 cannot be successfully solved by all algorithms and the results of CGABC on F8 and F10 are
slightly worse than that of ABC. As a whole, the superior performance achieved by CGABC should be
mainly attributed to the reasonable cooperation of the three proposed strategies as illustrated in section 3.2.

For the comparison between pABC and ABC, pABC converges faster than ABC because of the lower
acceleration rates listed in Table 7, although the comparison is not so obvious with regard to accuracy and
successful rate. It can be seen that the performance of cABC is the same as that of pABC as confirmed
in Table 8, indicating that the cellular structured population and adaptive probability calculation proposed
in this paper have advantages for the convergence rate. From Tables 7-8, an interesting result is that
pcABC performs much better than both pABC and cABC, which informs us that combination of cellular
neighborhood and adaptive parameter is an effective way to enhance the performance of ABC. Moreover, in
terms of mean values and acceleration rate shown in Tables 5 and 7, gABC performs better than other four
algorithms in general, although gABC cannot surpass CGABC on most functions except F6, F8 and F9.
Therefore, it can be observed that the performance of gABC dramatically benefits from the effectiveness of
Gaussian-based search equation with the newly defined local attractor.

From the convergence curves plotted in Fig. 8, it is evident that the CGABC converges fastest, followed
by gABC, and ABC converges the slowest. The convergence rate of other three algorithms are between ABC
and gABC, which supports the earlier discussions in section 3.1 and 3.2.

Table 7. Acceleration rate comparisons among six algorithms on 15 functions

AR F1 F2 F3 F4 F5 F6 F7 F8

pABC vs. ABC 0.78 0.67 0.79 - 0.9 0.62 0.83 -
cABC vs. ABC 0.96 0.96 0.97 - 0.98 0.97 1.06 -
pABC vs. cABC 0.81 0.7 0.81 - 0.92 0.64 0.78 -
pcABC vs. ABC 0.74 0.65 0.75 - 0.84 0.6 0.81 -
pcABC vs. pABC 0.95 0.96 0.96 - 0.93 0.96 0.98 -
pcABC vs. cABC 0.78 0.67 0.78 - 0.86 0.62 0.76 -
gABC vs. ABC 0.3 0.23 0.31 - 0.31 0.31 0.36 -
gABC vs. pcABC 0.4 0.36 0.41 - 0.36 0.52 0.44 -
CGABC vs. ABC 0.28 0.22 0.29 - 0.29 0.3 0.34 -
CGABC vs. pABC 0.36 0.32 0.37 - 0.32 0.48 0.41 -
CGABC vs. cABC 0.3 0.23 0.3 - 0.3 0.31 0.32 -
CGABC vs. pcABC 0.38 0.34 0.39 - 0.35 0.5 0.42 -
CGABC vs. gABC 0.95 0.94 0.94 0.65 0.95 0.97 0.95 1.02

AR F9 F10 F11 F12 F13 F14 F15

pABC vs. ABC - 1.38 1 0.97 0.86 0.6 0.99
cABC vs. ABC - 1.18 1.08 0.97 1.03 0.93 0.99
pABC vs. cABC - 1.17 0.93 0.99 0.84 0.65 1
pcABC vs. ABC - 1.36 0.9 0.87 0.84 0.59 0.92
pcABC vs. pABC - 0.99 0.91 0.9 0.98 0.99 0.93
pcABC vs. cABC - 1.16 0.84 0.9 0.82 0.64 0.93
gABC vs. ABC - 1.27 0.74 0.45 0.74 0.23 0.31
gABC vs. pcABC - 0.94 0.82 0.51 0.88 0.39 0.33
CGABC vs. ABC - 1.46 0.55 0.27 0.66 0.22 0.29
CGABC vs. pABC - 1.06 0.55 0.28 0.77 0.36 0.29
CGABC vs. cABC - 1.24 0.51 0.28 0.65 0.23 0.29
CGABC vs. pcABC - 1.07 0.61 0.31 0.79 0.37 0.32
CGABC vs. gABC - 1.14 0.74 0.6 0.89 0.95 0.95
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Table 8. Wilcoxon rank-sum test results of comparisons among six algorithms on 15 functions

Wilcoxon rank-sum test F1 F2 F3 F4 F5 F6 F7 F8

pABC vs. ABC + + = - + + = =
cABC vs. ABC + + + = + = = =
pABC vs. cABC - + - = + = = =
pcABC vs. ABC + + + = + + = =
pcABC vs. pABC + + + + + = = =
pcABC vs. cABC + + + = + = = +
gABC vs .ABC + + + + + + = +
gABC vs. pcABC + + + + + + = +
CGABC vs. ABC + + + + + + = +
CGABC vs. pABC + + + + + + = +
CGABC vs. cABC + + + + + + = +
CGABC vs. pcABC + + + + + + = +
CGABC vs. gABC + + + + + - = -

Wilcoxon rank-sum test F9 F10 F11 F12 F13 F14 F15 b/w/e/gm

pABC vs. ABC + = = = + - = 6/2/7/4
cABC vs. ABC = = = = = + + 6/0/9/6
pABC vs. cABC + = = = + - - 4/4/7/0
pcABC vs. ABC + = + + + + + 11/0/4/11
pcABC vs. pABC = = + + - + + 9/1/5/8
pcABC vs. cABC + = + + + + + 11/0/4/11
gABC vs. ABC + - + + + + + 13/1/1/12
gABC vs. pcABC + - + + + + + 13/1/1/12
CGABC vs. ABC + = + + + + + 13/0/2/13
CGABC vs. pABC + = + + + + + 13/0/2/13
CGABC vs. cABC + = + + + + + 13/0/2/13
CGABC vs. pcABC + = + + + + + 13/0/2/13
CGABC vs. gABC - + = = = + + 8/3/4/5

Table 9. Radiuses and ratios of four gird shapes

Neighborhood
4× 12 5× 10 6× 8 7× 7

radshape Ratio radshape Ratio radshape Ratio radshape Ratio

L5 3.6429 0.2455 3.2879 0.272 3.116 0.287 2.8284 0.3162
L9 3.6429 0.4092 3.2879 0.4534 3.116 0.4784 2.8284 0.527
C9 3.6429 0.317 3.2879 0.3512 3.116 0.3706 2.8284 0.4082
C13 3.6429 0.4029 3.2879 0.4464 3.116 0.471 2.8284 0.5189
C21 3.6429 0.494 3.2879 0.5473 3.116 0.5775 2.8284 0.6362
C25 3.6429 0.549 3.2879 0.6083 3.116 0.6418 2.8284 0.7071

5.3.2. Performance comparison of CGABC with four different grid shapes
In this group of experiments, the performance of CGABC with different grid shapes and fixed number of neighbors

is studied. With a constant or approximated size of colony (i.e.50), four 2D grid shapes used here are: (a) 4×12 = 48;
(b) 5× 10 = 50 ; (c) 6× 8 = 48 ; (d) 7× 7 = 49 , and the corresponding CGABC with these grid shapes are denoted
as CGABC-G1, CGABC-G2, CGABC-G3, CGABC-G4. For clarity, the ratios for different grid shapes are listed in
Table 9. Neighborhood structure C25 is employed for this group of experiments.

The results are given in Table 10 with respect to mean best values and standard deviations out of 50 runs.
Based on Table 10, we can see that all the four algorithms can reach the global optima on functions F7, F12, F13,
and F14, and CGABC-G3 performs the best on most unimodal functions, involving F1, F2, F3 and F5. However,
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the comparisons on multimodal functions are unclear due to the statistical results in Table 11, except for functions
F8 and F14 where CGABC-G1 and CGABC-G3 achieve the best results, respectively. From Fig. 9, CGABC-G3
outperforms all other algorithms, while CGABC-G2 performs the worst. Meanwhile, the performance of the other
two algorithms is between CGABC-G3 and CGABC-G2. It seems that the relationship between the ratios and the
results are not evident.

Table 10. Performance comparisons among the CGABC with four grid shapes (best results in bold)

F Metric CGABC-G1 CGABC-G2 CGABC-G3 CGABC-G4

F1 Mean 1.12E-77 3.88E-75 7.72E-78 2.53E-76
Std 1.47E-77 5.69E-75 1.23E-77 4.13E-76

F2
Mean 4.59E-74 1.26E-71 1.46E-74 3.81E-73
Std 6.52E-74 1.83E-71 1.95E-74 6.05E-73

F3
Mean 1.75E-78 5.18E-76 2.73E-78 1.96E-77
Std 2.76E-78 8.82E-76 4.18E-78 2.57E-77

F4
Mean -3.64E-12 -3.64E-12 -3.64E-12 -3.64E-12
Std 0 0 0 0

F5
Mean 1.02E-40 1.27E-39 5.13E-41 1.65E-40
Std 8.21E-41 9.49E-40 4.20E-41 1.36E-40

F6
Mean 5.42E+00 5.46E+00 5.24E+00 5.55E+00
Std 9.80E-01 9.00E-01 9.69E-01 9.14E-01

F7
Mean 0 0 0 0
Std 0 0 0 0

F8
Mean 1.48E-02 1.60E-02 1.46E-02 1.52E-02
Std 3.77E-03 4.35E-03 4.30E-03 4.11E-03

F9
Mean 2.30E-01 2.28E-01 2.34E-01 2.30E-01
Std 3.37E-02 2.63E-02 2.84E-02 3.07E-02

F10
Mean 4.07E-01 1.65E-01 2.78E-01 2.36E-01
Std 1.12E+00 2.52E-01 5.72E-01 4.08E-01

F11
Mean 0 0 0 0
Std 0 0 0 0

F12
Mean 0 0 0 0
Std 0 0 0 0

F13
Mean 0 0 0 0
Std 0 0 0 0

F14
Mean 4.99E-138 1.83E-133 1.59E-139 6.93E-137
Std 3.29E-137 9.53E-133 5.38E-139 3.28E-136

F15 Mean 1.09E-14 1.06E-14 1.08E-14 1.05E-14
Std 2.73E-15 2.74E-15 2.87E-15 2.96E-15

Table 11. The Wilcoxon rank-sum test results when comparing CGABC with four grid shapes

Wilcoxon Rank-sum test F1 F2 F3 F4 F5 F6 F7 F8

CGABC-G3 vs. CGABC-G1 = + = = + = = =
CGABC-G3 vs. CGABC-G2 + + + = + = = =
CGABC-G3 vs. CGABC-G4 + + + = + = = =

Wilcoxon Rank-sum test F9 F10 F11 F12 F13 F14 F15 b/w/e/gm

CGABC-G3 vs. CGABC-G1 = = = = = + = 3/0/12/3
CGABC-G3 vs. CGABC-G2 = = = = = + = 5/0/10/5
CGABC-G3 vs. CGABC-G4 = = = = = + = 5/0/10/5
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5.3.3. Performance comparisons of CGABC with six different neighborhood structures
In this subsection, six neighborhoods in Fig. 5 are used in CGABC to find out the impact of these neighbor-

hoods on the performance of CGABC, and the algorithms are represented as CGABC-L5, CGABC-L9, CGABC-C9,
CGABC-C13, CGABC-C21, and CGABC-C25 respectively. The fixed 2D grid shape for all algorithms is 6× 8 = 48
according to the results obtained in the former subsection. Mean best values and standard deviations over 50 runs
are given in Table 12 and the rank-sum test results are given in Table 13.

From Table 12, it can be noted that all of the algorithms can reach the global optima on four functions, including
F7, F11, F12 and F13. According to the statistical results in Table 13, both CGABC-C25 and CGABC-21 show
the best performance and the difference between them is not obvious. CGABC-L5 performs the worst, while the
performance of the other three algorithms are between CGABC-C25 and CGABC-L5. According to the mean best
curves presented in Fig. 10, it is easy to conclude that the performance of these six algorithms shows a promising
trend, which has relation to the ratios of the neighborhood as presented in Table 2. The neighborhood C25 has the
largest ratio, while L5 holds the lowest ratio. It reveals that there is an inherent relationship between the ratios of
neighborhood and the performance of algorithms associated.

5.3.4. Performance comparison among CGABC and the state-of-art ABC variants
To study the efficiency of the CGABC algorithm, this group of experiments are designed to compare CGABC

with 15 state-of-art ABC variants. These ABC variants are ABC, GABC, MABC, ABC/best/1, ASF-MR, qABC,
EABC, ABCVSS, ABCM, BABC, distABC, OCABC, APABC, HABC, and MTABC. The mean best values and
standard deviation on 50 runs of each algorithm on each function are reported in Tables 14-17, and the statistical

Table 12. Performance comparisons among CGABC with six neighborhoods (best results in bold)

Func Metric CGABC-L5 CGABC-L9 CGABC-C9 CGABC-C13 CGABC-C21 CGABC-C25

F1 Mean 1.92E-72 2.41E-76 9.98E-76 2.86E-77 1.34E-77 7.72E-78
SD 2.70E-72 4.04E-76 1.26E-75 4.26E-77 2.09E-77 1.23E-77

F2 Mean 1.21E-69 4.90E-73 2.01E-72 8.80E-74 1.42E-74 1.46E-74
SD 1.11E-69 6.48E-73 2.36E-72 1.62E-73 2.09E-74 1.95E-74

F3 Mean 2.01E-73 2.45E-77 1.11E-76 3.62E-78 9.35E-79 2.73E-78
SD 2.48E-73 3.28E-77 1.37E-76 5.67E-78 1.78E-78 4.18E-78

F4 Mean -3.64E-12 -3.64E-12 -3.64E-12 -3.64E-12 -3.64E-12 -3.64E-12
SD 0 0 0 0 0 0

F5 Mean 6.46E-38 4.04E-40 1.06E-39 1.17E-40 5.58E-41 5.13E-41
SD 4.65E-38 2.38E-40 8.63E-40 6.88E-41 3.79E-41 4.20E-41

F6 Mean 7.18E+00 6.17E+00 6.39E+00 5.95E+00 5.28E+00 5.24E+00
SD 9.88E-01 8.99E-01 1.21E+00 9.52E-01 8.78E-01 9.69E-01

F7 Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F8 Mean 1.99E-02 1.61E-02 1.61E-02 1.57E-02 1.44E-02 1.46E-02
SD 4.73E-03 4.15E-03 3.92E-03 3.94E-03 3.62E-03 4.30E-03

F9 Mean 2.51E-01 2.39E-01 2.43E-01 2.37E-01 2.29E-01 2.34E-01
SD 3.11E-02 2.73E-02 2.43E-02 3.00E-02 3.14E-02 2.84E-02

F10 Mean 9.87E-02 1.28E-01 8.28E-02 5.68E-02 2.80E-01 2.78E-01
SD 1.49E-01 2.25E-01 1.15E-01 8.58E-02 4.74E-01 5.72E-01

F11 Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F12 Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F13 Mean 0 0 0 0 0 0
SD 0 0 0 0 0 0

F14 Mean 4.81E-112 4.53E-126 9.30E-129 3.95E-134 8.51E-138 1.59E-139
SD 2.52E-111 3.15E-125 5.68E-128 1.68E-133 3.13E-137 5.38E-139

F15 Mean 1.26E-14 1.20E-14 1.15E-14 1.13E-14 1.02E-14 1.08E-14
SD 1.60E-15 2.12E-15 2.06E-15 2.79E-15 2.93E-15 2.87E-15
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Fig. 8. Convergence curves of six algorithms on 15 benchmark functions

Table 13. The Wilcoxon rank-sum test results when comparing CGABC with six neighborhoods

Wilcoxon Rank-sum test F1 F2 F3 F4 F5 F6 F7 F8

CGABC-C25 vs. CGABC-L5 + + + = + + = +
CGABC-C25 vs. CGABC-L9 + + + = + + = =
CGABC- C25vs. CGABC-C9 + + + = + + = =
CGABC- C25vs. CGABC-C13 + + = = + + = =
CGABC- C25vs. CGABC-C21 = = - = = = = =

Wilcoxon Rank-sum test F9 F10 F11 F12 F13 F14 F15 b/w/e/gm

CGABC-C25 vs. CGABC-L5 + = = = = + + 9/0/6/9
CGABC-C25 vs. CGABC-L9 = = = = = + + 7/0/8/7
CGABC- C25vs. CGABC-C9 = = = = = + = 6/0/9/6
CGABC- C25vs. CGABC-C13 = = = = = + = 5/0/10/5
CGABC- C25vs. CGABC-C21 = = = = = + = 1/1/13/0

results are given in Tables 18 and 19.
As seen from Table 14-17, all algorithms have achieved the global optima on F7 and F20, and CGABC performs

the best on 15 functions, which are F1, F3, F4, F5, F7, F11, F12, F13, F14, F16, F17, F19, F20, F21, F29.
The algorithms OCABC, MABC, EABC, ABC/best/1, ASF-MR, distABC, GABC, BABC, ABCVSS, ATABC and
MTABC yield better results on nineteen, ten, ten, nine, seven, seven, six, six, five, eight, and seven functions, and
the remaining algorithms obtain the best results on less than five functions. Although the number of functions on
which OCABC performs better is larger than that of CGABC, OCABC performs worse than CGABC due to the
statistical results in Table 18-19. Generally, CGABC shows the best performance among the fifteen algorithms for
solving the 32 benchmark functions, based on the results in Tables 18-19.
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Algorithms F1 F2 F3 F4 F5 F6 F7 F8

ABC 8.72E-16 1.27E-09 5.60E-16 2.22E-01 2.04E-10 1.00E+01 0 6.20E-02
1.59E-16 1.13E-09 6.72E-17 1.57E+00 6.38E-11 2.47E+00 0 1.20E-02

BABC
6.95E-13 3.32E-05 5.64E-40 1.90E-11 2.07E-22 1.55E-02 0 5.93E-02
3.09E-12 1.17E-04 1.40E-39 6.46E-11 1.43E-22 1.20E-02 0 1.51E-02

ASFMR
1.11E-23 1.89E-20 1.09E-24 3.85E+03 5.36E-17 4.48E-02 0 1.17E-01
9.34E-24 1.85E-20 8.36E-25 3.44E+02 2.22E-17 2.28E-02 0 3.68E-02

MABC
3.31E-40 6.73E-37 3.01E-41 -1.82E-12 1.40E-21 4.44E+00 0 2.85E-02
2.47E-40 4.49E-37 1.62E-41 0 4.07E-22 5.62E-01 0 6.12E-03

ABCVSS
2.51E-17 7.19E-10 4.88E-19 2.35E-09 1.47E-10 3.60E+00 0 4.87E-02
2.90E-17 7.99E-10 6.31E-19 1.13E-08 8.05E-11 2.12E+00 0 1.86E-02

EABC
1.73E-54 7.10E-51 1.34E-55 -3.09E-12 1.37E-28 1.67E+00 0 2.05E-02
1.31E-54 4.99E-51 8.62E-56 8.42E-13 5.16E-29 2.71E-01 0 4.51E-03

OCABC
1.24E-62 3.17E-58 1.79E-63 -3.64E-12 1.40E-32 7.84E-01 0 2.18E-04
1.40E-62 3.91E-58 2.23E-63 0 8.30E-33 3.79E-01 0 9.24E-05

qABC
1.62E-09 4.28E-07 2.30E-10 1.75E+02 6.23E-06 3.71E+01 0 1.28E-01
2.61E-09 4.32E-07 3.28E-10 1.44E+02 2.46E-06 3.38E+00 0 3.29E-02

ABCM
2.05E-05 5.68E-02 2.81E-06 3.23E+02 1.87E-03 1.36E+01 0 6.48E-02
4.91E-05 1.56E-01 5.97E-06 1.30E+02 2.23E-03 3.71E+00 0 1.25E-02

distABC
3.77E-49 1.03E-197 7.91E-48 -1.91E+06 2.73E-26 3.85E+00 0 2.87E-02
2.10E-48 0 1.58E-47 8.30E+06 2.21E-26 5.90E-01 0 5.49E-03

ABC/best/1
7.17E-50 9.32E-15 2.80E-50 -2.69E-12 1.23E-25 5.22E+00 0 2.03E-02
1.42E-49 6.25E-14 3.41E-50 9.18E-13 5.90E-26 2.53E+00 0 4.23E-03

GABC
3.81E-16 3.31E-16 4.09E-16 -2.73E-12 1.20E-15 2.83E+00 0 2.71E-02
5.46E-17 6.17E-17 3.46E-17 9.19E-13 1.04E-16 4.85E-01 0 4.98E-03

APABC
2.70E-49 3.13E-47 5.88E-57 2.37E+00 2.53E-30 1.61E-01 0 1.14E-02
1.91E-48 2.21E-46 4.16E-56 1.67E+01 1.79E-29 3.98E-02 0 2.93E-03

HABC
1.16E-16 2.58E-08 2.12E-18 7.57E+00 2.22E-10 2.23E+01 0 1.41E-01
8.84E-17 4.01E-08 2.70E-18 2.85E+01 9.52E-11 4.65E+00 0 3.48E-02

MTABC
6.33E-52 3.33E-47 4.15E-53 2.37E+00 2.41E-31 6.31E-01 0 1.50E-02
6.08E-52 4.39E-47 3.01E-53 1.67E+01 1.01E-31 3.26E-01 0 3.85E-03

CGABC 3.88E-75 1.26E-71 5.18E-76 -3.64E-12 1.27E-39 5.46E+00 0 1.60E-02
5.69E-75 1.83E-71 8.82E-76 0 9.49E-40 9.00E-01 0 4.35E-03
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Fig. 9. The results of CGABC with four different gird shapes (the numbers from 1 to 4 on the X-axis represent:
(1) CGABC-G1; (2) CGABC-G2; (3) CGABC-G3; (4) CGABC-G4)
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Fig. 10. The results of CGABC with six different neighborhoods (the numbers from 1 to 6 on the X-axis represent:
(1) CGABC-L5; (2) CGABC-C9; (3) CGABC-L9; (4) CGABC-C13; (5) CGABC-C21; (6) CGABC-C25)

Table 15. The performance comparison on F9-F16 among CGABC and other 15 ABC variants (best in bold)

Algorithms F9 F10 F11 F12 F13 F14 F15 F16

ABC 3.53E-01 4.10E-02 2.16E-14 4.99E-13 1.09E-13 1.33E-17 1.61E-09 5.20E-16
2.29E-02 3.97E-02 2.35E-14 6.91E-13 2.15E-13 5.74E-18 5.92E-10 7.96E-17

BABC 3.33E-01 1.22E-01 0 0 3.66E-16 8.28E-55 2.83E-14 9.07E-13
2.49E-02 1.42E-01 0 0 2.18E-15 5.62E-54 2.62E-15 3.74E-12

Continued on next page
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Table 15 – continued from previous page

Algorithms F9 F10 F11 F12 F13 F14 F15 F16

ASFMR 4.83E-01 2.14E+01 2.60E+01 4.17E+01 8.11E-13 9.46E-56 7.31E-01 1.33E-04
2.82E-03 3.62E+00 3.79E+00 8.47E+00 5.72E-12 3.58E-55 9.71E-01 6.73E-04

MABC 2.28E-01 4.00E-01 0 0 0 1.74E-69 2.85E-14 1.57E-32
2.03E-02 3.92E-01 0 0 0 4.50E-69 2.47E-15 5.53E-48

ABCVSS 3.36E-01 6.09E-02 1.57E-14 8.85E-14 1.10E-14 3.20E-23 8.42E-10 2.14E-19
3.91E-02 5.29E-02 2.03E-14 1.38E-13 2.48E-14 6.73E-23 6.34E-10 2.37E-19

EABC 2.11E-01 8.55E-01 0 0 0 3.01E-76 1.91E-14 1.57E-32
3.24E-02 1.86E+00 0 0 0 1.54E-75 2.24E-15 5.53E-48

OCABC 3.85E-02 1.27E+01 0 0 0 3.59E-79 5.72E-15 1.57E-32
1.54E-02 2.64E+01 0 0 0 1.26E-78 1.25E-15 5.53E-48

qABC 4.52E-01 4.99E-01 7.95E-08 7.68E-04 7.79E-08 1.61E-14 7.04E-05 9.56E-11
1.03E-02 4.90E-01 2.24E-07 5.30E-03 1.29E-07 2.89E-14 3.29E-05 1.39E-10

ABCM 3.51E-01 3.85E+00 4.80E-01 2.05E-06 8.35E-03 7.95E-14 9.27E-05 1.38E-08
2.41E-02 4.42E+00 5.10E-01 4.35E-06 9.56E-03 4.24E-13 1.10E-04 3.41E-08

distABC 2.44E-01 1.56E-01 0 0 0 1.26E-113 2.94E-14 5.30E-10
2.31E-02 1.19E-01 0 0 0 7.84E-113 2.51E-15 5.80E-11

ABC/best/12.02E-01 9.11E+00 0 0 2.22E-17 7.70E-91 1.04E-14 1.57E-32
2.66E-02 1.89E+01 0 0 1.05E-16 2.66E-90 3.42E-15 5.53E-48

GABC 2.28E-01 9.28E-01 0 0 0 5.89E-18 3.08E-14 3.75E-16
3.20E-02 2.20E+00 0 0 0 2.57E-18 2.86E-15 5.19E-17

APABC 2.09E-01 2.13E-01 0 0 6.37E-14 1.26E-80 3.10E-14 1.57E-32
3.57E-02 2.38E-01 0 0 2.29E-13 8.75E-80 4.09E-15 5.53E-48

HABC 3.82E-01 5.62E-02 8.90E-13 1.05E-12 6.64E-07 3.37E-19 1.77E-09 1.10E-18
2.46E-02 5.71E-02 5.98E-12 4.24E-12 4.69E-06 1.89E-18 9.56E-10 1.66E-18

MTABC 1.92E-01 8.50E+00 0 0 1.61E-13 7.56E-63 1.75E-14 1.57E-32
3.50E-02 2.15E+01 0 0 1.14E-12 5.32E-62 4.29E-15 5.53E-48

CGABC 2.28E-01 1.65E-01 0 0 0 1.83E-133 1.06E-14 1.57E-32
2.63E-02 2.52E-01 0 0 0 9.53E-133 2.74E-15 5.53E-48

Table 16. The performance comparison on F17-F24 among CGABC and other 15 ABC variants (best in bold)

Algorithms F17 F18 F19 F20 F21 F22 F23 F24

ABC 8.28E-16 4.98E-06 2.00E-13 0 3.90E-16 5.16E+03 6.97E+06 3.49E+04
1.81E-16 2.81E-06 2.24E-13 0 5.42E-17 1.79E+03 2.18E+06 5.87E+03

BABC 1.53E-12 7.44E-17 1.35E-31 0 6.10E-11 4.43E+03 7.51E+06 3.90E+04
8.07E-12 1.88E-16 1.77E-46 0 2.37E-10 1.53E+03 2.43E+06 5.40E+03

ASFMR 4.34E-25 1.38E-01 8.21E-26 0 0 2.19E+00 1.43E+06 5.14E+04
3.51E-25 3.27E-01 8.52E-26 0 0 8.01E-01 3.00E+05 8.61E+03

MABC 1.50E-33 4.47E-21 1.35E-31 0 0 1.03E+04 1.21E+07 3.63E+04
0 3.23E-21 1.77E-46 0 0 2.08E+03 3.39E+06 4.52E+03

ABCVSS 3.29E-17 3.63E-06 1.12E-13 0 0 5.41E+03 5.78E+06 3.34E+04
4.25E-17 3.21E-06 1.51E-13 0 0 1.53E+03 1.95E+06 5.50E+03

EABC 1.50E-33 1.63E-28 1.35E-31 0 0 9.65E+03 1.55E+07 3.36E+04
0 1.45E-28 1.77E-46 0 0 2.22E+03 4.01E+06 4.42E+03

OCABC 1.50E-33 1.76E-33 1.35E-31 0 0 5.48E+02 8.77E+06 2.22E+03
0 1.46E-33 1.77E-46 0 0 1.60E+02 2.13E+06 5.12E+02

qABC 9.73E-10 3.79E-04 4.87E-08 0 4.67E-16 7.30E+03 9.74E+06 4.85E+04
1.20E-09 3.08E-04 3.57E-08 0 6.15E-17 3.04E+03 3.26E+06 7.96E+03

ABCM 1.77E-09 2.53E-04 6.98E-07 0 3.40E-08 4.38E+03 5.79E+06 3.53E+04
4.66E-09 2.16E-04 1.08E-06 0 1.64E-07 1.44E+03 1.77E+06 5.05E+03

distABC 7.91E-09 3.70E-05 1.48E-06 0 4.11E-08 3.96E+03 5.44E+06 2.74E+04

Continued on next page

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 16 – continued from previous page

Algorithms F17 F18 F19 F20 F21 F22 F23 F24

1.05E-09 7.96E-06 8.02E-07 0 4.99E-09 1.17E+03 1.85E+06 4.56E+03
ABC/best/1 1.50E-33 5.44E-17 1.35E-31 0 0 5.24E+03 7.54E+06 3.18E+04

0 1.54E-16 1.77E-46 0 0 2.43E+03 2.89E+06 6.06E+03
GABC 3.94E-16 6.19E-07 3.13E-16 0 2.90E-16 5.53E+03 6.78E+06 3.09E+04

5.00E-17 9.02E-07 6.40E-17 0 5.95E-17 2.20E+03 2.39E+06 6.08E+03
APABC 1.50E-33 2.08E-33 1.35E-31 0 0 1.14E+04 1.55E+07 3.09E+04

0 7.42E-33 1.77E-46 0 0 3.00E+03 3.35E+06 5.32E+03
HABC 1.32E-16 6.07E-06 2.95E-13 0 2.60E+04 2.47E+04 2.48E+04 2.42E+04

1.04E-16 5.69E-06 4.03E-13 0 5.55E+03 5.35E+03 5.39E+03 4.98E+03
MTABC 1.50E-33 3.59E-31 1.35E-31 0 9.79E+03 1.00E+04 9.62E+03 1.05E+04

0 1.36E-30 1.77E-46 0 3.59E+03 3.64E+03 3.24E+03 3.33E+03
CGABC 1.50E-33 5.73E-16 1.35E-31 0 0 1.07E+04 1.57E+07 3.55E+04

0 7.80E-16 1.77E-46 0 0 4.48E+03 5.10E+06 4.39E+03

Table 17. The performance comparison on F25-F32 among CGABC and other 15 ABC variants (best in bold)

Algorithms F25 F26 F27 F28 F29 F30 F31 F32

ABC 1.03E+04 1.49E+00 4.70E+03 2.08E+01 0 3.25E+02 2.79E+01 8.66E+03
1.36E+03 1.81E+00 2.63E-12 5.29E-02 0 4.68E+01 1.89E+00 3.08E+03

BABC 6.38E+03 1.56E+01 4.70E+03 2.10E+01 0 1.33E+02 2.84E+01 2.10E+04
1.07E+03 1.29E+01 2.61E-12 5.67E-02 0 2.58E+01 1.73E+00 4.58E+03

ASFMR 5.90E+03 6.12E+01 4.74E+03 2.01E+01 5.25E+01 9.30E+01 3.52E+01 9.30E+02
7.04E+02 2.74E+01 1.54E+01 2.39E-02 1.04E+01 1.38E+01 1.72E+00 9.46E+02

MABC 8.50E+03 1.61E+00 4.70E+03 2.08E+01 0 1.64E+02 2.72E+01 1.25E+04
1.31E+03 1.99E+00 4.96E-12 5.31E-02 0 2.19E+01 1.89E+00 3.47E+03

ABCVSS 1.04E+04 1.24E+00 4.70E+03 2.08E+01 0 2.56E+02 2.72E+01 8.68E+03
1.32E+03 1.72E+00 2.57E-12 4.74E-02 0 8.10E+01 1.85E+00 3.27E+03

EABC 5.93E+03 1.70E+01 4.70E+03 2.09E+01 0 1.15E+02 2.68E+01 1.75E+04
7.55E+02 2.01E+01 2.55E-12 6.31E-02 0 1.90E+01 1.66E+00 3.73E+03

OCABC 3.02E+03 6.28E+01 4.70E+03 2.09E+01 0 4.12E+01 2.64E+01 1.95E+04
3.33E+02 3.98E+01 4.81E-12 4.01E-02 0 7.75E+00 1.77E+00 3.81E+03

qABC 1.07E+04 2.22E+00 4.70E+03 2.09E+01 6.36E-13 3.22E+02 2.84E+01 1.42E+04
1.12E+03 2.58E+00 8.79E-12 4.18E-02 1.30E-12 4.40E+01 2.08E+00 5.58E+03

ABCM 1.12E+04 7.95E+01 4.70E+03 2.07E+01 3.17E-10 3.52E+02 2.79E+01 9.02E+03
1.57E+03 4.95E+01 2.50E-04 5.66E-02 1.25E-09 5.55E+01 1.86E+00 4.07E+03

distABC 8.35E+03 3.65E+00 3.61E+00 2.08E+01 8.03E-06 2.16E+02 2.79E+01 9.74E+03
1.32E+03 4.52E+00 1.48E+00 5.16E-02 8.30E-07 3.47E+01 1.51E+00 2.98E+03

ABC/best/1 8.35E+03 1.38E+01 4.70E+03 2.08E+01 0 1.37E+02 2.70E+01 6.89E+03
1.08E+03 1.86E+01 4.81E-12 6.33E-02 0 2.10E+01 1.72E+00 2.97E+03

GABC 8.44E+03 4.21E+00 4.70E+03 2.08E+01 0 1.63E+02 2.67E+01 8.19E+03
1.34E+03 6.74E+00 4.21E-12 7.02E-02 0 2.42E+01 1.55E+00 3.79E+03

APABC 5.63E+03 2.48E+01 4.70E+03 2.09E+01 0 1.11E+02 2.73E+01 1.95E+04
7.40E+02 2.58E+01 3.12E+00 4.42E-02 0 1.48E+01 1.96E+00 4.30E+03

HABC 2.37E+04 2.47E+04 2.60E+04 2.07E+04 1.00E+04 8.69E+03 9.66E+05 2.55E+04
4.91E+03 5.50E+03 5.50E+03 4.39E+03 3.11E+03 3.20E+03 6.44E-10 5.42E+03

MTABC 9.72E+03 1.00E+04 9.47E+03 9.15E+03 9.82E+03 9.96E+03 9.66E+05 9.89E+03
3.58E+03 2.74E+03 3.00E+03 3.55E+03 3.46E+03 3.06E+03 7.89E-10 3.40E+03

CGABC 5.69E+03 1.07E+01 4.70E+03 2.09E+01 0 1.10E+02 2.82E+01 2.56E+04
7.29E+02 1.42E+01 2.53E-12 4.53E-02 0 1.98E+01 1.46E+00 5.88E+03
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Table 18. Wilcoxon rank sum test among CGABC and 15 ABC variants on F1-F17 (best in bold)

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

CGABC vs. ABC + + + + + + = + + - + + + + + + +
CGABC vs. BABC + + + + + - = + + = = = + + + + +
CGABC vs. ASFMR + + + + + - = + + + + + = + + + +
CGABC vs. MABC + + + + + - = + = + = = = + + = =
CGABC vs. ABCVSS + + + + + - = + + = + + + + + + +
CGABC vs. EABC + + + + + - = + = + = = = + + = =
CGABC vs. OCABC + + + = + - = - - + = = = + - = =
CGABC vs. qABC + + + + + + = + + + + + + + + + +
CGABC vs. ABCM + + + + + + = + + + + + + + + + +
CGABC vs. distABC + - + + + - = + = - = = = + + + +
CGABC vs. ABC/best/1 + + + + + = = + - + = = = + = = =
CGABC vs. GABC + + + + + - = + = = = = = + + + +

CGABC vs. ATABC + + + + + - = - - + = = + + + = =
CGABC vs. HABC + + + + + + = + + = + + + + + + +
CGABC vs. MTABC + + + = + - = = - + = = = + + = =

Table 19. Wilcoxon rank sum test among CGABC and 15 ABC variants on F18-F32 (best in bold)

Algorithms F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 b/w/e/gm

CGABC vs. ABC + + = + - - + + + = + = + = - 23/4/5/19
CGABC vs. BABC = = = = - - + = + + - + - + - 17/6/9/11
CGABC vs. ASFMR + + = = = - = + - - - = + - - 18/7/7/11
CGABC vs. MABC = = = = - - = + - = - = + - - 11/7/14/4
CGABC vs. ABCVSS + + = = = = - = + = = = = - - 17/4/11/13
CGABC vs. EABC = = = = - - - - + - = = - - - 10/9/13/1
CGABC vs. OCABC = = = + - - + + - + - + + = - 12/9/11/3
CGABC vs. qABC + + = + - - - + = - - + + = - 22/6/4/16
CGABC vs. ABCM + + = = - - - + = - - = + - - 20/7/5/13
CGABC vs. distABC + + = + - - = + + + - + + = - 17/8/8/9
CGABC vs. ABC/best/1 = = = + - - - + - = - = + - - 11/8/13/3
CGABC vs. GABC + + = + - - = + - = - = + = - 15/6/11/9
CGABC vs. APABC = = = = = = - = + + = = = - - 11/6/15/5
CGABC vs. HABC + + = + + - - + + + + + + + = 26/2/4/24
CGABC vs. MTABC = = = + = - - + + + + + + + - 15/5/12/10

5.3.5. Performance comparison among CGABC and the other EAs
In order to further validate the effectiveness of the CGABC algorithm, comparison with four DE variants and

five PSO variants on twelve selected functions are conducted. These algorithms contains DE, jDE, JADE, SaDE,
FIPS, HPSO-TVAC, CLPSO, FPSO, OLPSO-G. Note that the maximal number of function evaluations (maxFEs)
for DE variants on different functions are listed in Table 20 (column 2), and the maxFEs for PSO variants is set as
200000 [20].The results listed in Tables 20 and 21 regarding the mean best values and standard deviations are taken
directly from [40], which has been frequently cited [16, 19, 29].

As seen from Table 20, the comparison shows that CGABC outperforms DEs with the exception of the Quartic
function on which JADE performs the best. CGABC is the only one that can reach the global optimum on function
Rastrigin among the compared algorithms. In Table 21, there is a huge amount of difference between the performance
of CGABC and that of other algorithms on most cases, especially on those unimodal functions where CGABC shows
great performance. Besides, CGABC can obtain the optimal values on four functions, including Step, Rastrigin,
NCRastrigin and Griewank functions. FPSO and OLPSO-G perform better than other algorithms on the Quartic
and Ackley functions, respectively. From Table 20 and 21, it can be seen that CGABC can significantly outperform
the other algorithms on almost all cases.
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Table 20. Comparison among CGABC and DE variants on twelve functions (best in bolds)

F maxFEs Matric DE jDE JADE SaDE CGABC

F1 150,000 Mean 9.80E-14 1.46e28 1.32e54 3.28e20 4.09E-75
Std 8.40E-14 1.78e28 9.22e54 3.63e20 5.67E-75

F4 100,000
Mean 5.90E+03 1.70e10 2.62e04 1.13e08 -3.60E-12
Std 1.10E+03 1.70e10 3.59e04 1.08e08 2.57E-13

F5 200,000
Mean 1.60E-09 9.02e24 3.18e25 3.51e25 3.25E-53
Std 1.10E-09 6.01e24 2.05e24 2.74e25 2.33E-53

F7 10,000
Mean 4.70E+03 6.13E+02 5.62E+00 5.07E+01 2.20E-01
Std 1.10E+03 1.72E+02 1.87E+00 1.34E+01 4.18E-01

F8 300,000
Mean 4.70E-03 3.35e03 6.14e04 4.86e03 1.06E-02
Std 1.20E-03 8.68e04 2.55e04 5.21e04 3.11E-03

F10 500,000
Mean 2.10E+00 1.04e03 1.59e01 7.98e02 2.23E-02
Std 1.50E+00 1.37e03 7.89e01 5.64e01 4.42E-02

F11 100,000
Mean 1.80E+02 3.32e04 1.33e01 2.43E+00 0
Std 1.30E+01 6.39e04 9.74e02 1.60E+00 0

F13 50,000
Mean 2.00E-01 7.29e06 1.57e08 2.52e09 1.72E-14
Std 1.10E-01 1.05e05 1.09e07 1.24e08 7.70E-14

F15 50,000
Mean 1.10E-01 2.37e04 3.35e09 3.81e06 1.89E-11
Std 3.90E-02 7.10e05 2.84e09 8.26e07 8.78E-12

F16 50,000
Mean 1.20E-02 7.03e08 1.67e15 8.25e12 3.15E-24
Std 1.00E-02 5.74e08 1.02e14 5.12e12 2.80E-24

F17 50,000
Mean 7.50E-02 1.80e05 1.87e10 1.93e09 1.45E-22
Std 3.80E-02 1.42e05 1.09e09 1.53e09 1.36E-22

F18 300,000 Mean 2.30E-04 6.08e10 2.78e05 2.94e06 3.55E-16
Std 1.70E-04 8.36e10 8.43e06 3.47e06 4.74E-16

Table 21. Comparison among CGABC and PSO variants on twelve functions (best in bolds)

F metric FIPS HPSO-TVAC CLPSO FPSO OLPSO-G CGABC

F1 Mean 2.42E-13 2.83E-33 1.58E-12 2.40E-16 4.12E-54 1.62E-101
Std 1.73E-13 3.19E-33 7.70E-13 2.00E-31 6.34E-54 2.14E-101

F4
Mean 9.93E+02 1.59E+03 3.82E-04 1.34E+03 3.84E+02 -3.64E-12
Std 5.09E+02 3.26E+02 1.28E-05 2.77E+02 2.17E+02 0

F5
Mean 2.76E-08 9.03E-20 2.51E-08 1.58E-11 9.85E-30 2.72E-53
Std 9.04E-09 9.58E-20 5.84E-09 1.03E-22 1.01E-29 1.91E-53

F7
Mean 0 0 0 0 0 0
Std 0 0 0 0 0 0

F8
Mean 4.24E-03 9.82E-02 5.85E-03 4.16E-03 1.16E-02 1.31E-02
Std 1.28E-04 3.26E-02 1.11E-03 2.40E-06 4.10E-03 3.69E-03

F10
Mean 2.51E+01 2.39E+01 1.13E+01 2.81E+01 2.15E+01 1.31E-01
Std 5.10E-01 2.65E+01 9.85E+00 2.31E+02 2.99E+01 3.24E-01

F11
Mean 6.51E+01 9.43E+00 9.09E-05 7.38E+01 1.07E+00 0
Std 1.33E+01 3.48E+00 1.25E-04 3.70E+02 9.92E-01 0

F12
Mean 7.01E+01 1.03E+01 1.54E+00 7.03E+01 2.18E+00 0
Std 1.47E+01 8.24E+00 2.75E+00 2.96E+02 6.31E-01 0

F13
Mean 9.01E-12 9.75E-03 9.02E-09 1.47E-03 4.83E-03 0
Std 1.84E-11 8.33E-03 8.57E-09 1.28E-05 8.63E-03 0

F15
Mean 2.33E-07 7.29E-14 3.66E-07 2.17E-09 7.98E-15 8.56E-15
Std 7.19E-08 3.00E-14 7.57E-08 1.71E-18 2.03E-15 2.74E-15

F16
Mean 1.96E-15 2.71E-29 6.45E-14 5.51E-18 1.59E-32 1.57E-32
Std 1.11E-15 1.88E-28 3.70E-14 1.45E-34 1.03E-33 5.53E-48

F17 Mean 2.70E-14 2.79E-28 1.25E-12 1.37E-17 4.39E-04 1.50E-33
Std 1.57E-14 2.18E-28 9.45E-12 3.42E-32 2.20E-03 0
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5.4. Experimental results on three real-world problems

5.4.1. Lennard-Jones potential problem
Eight algorithms mentioned above as well as CGABC are run on the three real-world problems, including ABC,

MABC, ABCVSS, DE, JADE, PSO, GBBPSO, MCS and CGABC. The mean best values and standard deviations
out of 50 independent runs are presented in Table 22, and the statistical results are shown in Table 23. From Table
22, it can be easily observed that CGABC can obtain the best solution among the tested algorithms. As evident
from the results in Table 23, CGABC is statistically superior when compared to all other algorithms.

For clarity, the convergence curves of these nine algorithms with N being 7 and 8 are given in Fig. 11 to illustrate
the search process. As seen from curves, the proposed CGABC exhibits the best performance in the whole process,
demonstrating that the CGABC algorithm can be considered as an effective tool for settling the Lennard-Jones
potential problem.

Table 22. Comparison among 9 algorithms of different number of atoms on Lennard-Jones potential problem (best
in bolds)

N 7 8 9 10 11 12 13 14 15

ABC -15.2738 -18.1408 -21.2695 -24.8877 -28.6383 -32.0716 -35.7046 -38.9081 -42.3555
0.419304 0.456627 0.494486 0.689789 0.585263 0.97964 0.937652 0.922704 1.167892

MABC
-15.2422 -18.2234 -21.617 -24.9195 -28.6559 -32.2131 -36.0323 -39.111 -42.8684
0.317558 0.350828 0.53618 0.552199 0.708897 0.792669 0.799918 0.879837 1.218653

ABCVSS
-15.0911 -18.1128 -21.7329 -24.8341 -28.3378 -32.1409 -35.9725 -39.1301 -42.3857
0.39007 0.495017 0.66661 0.693408 0.772914 0.767914 0.982806 0.919408 1.024813

DE
-7.57219 -8.38575 -9.3637 -10.3937 -11.4195 -12.6442 -13.9937 -14.7873 -15.4556
0.546621 0.435862 0.67343 0.659369 0.68307 0.650433 1.074177 1.007694 0.851148

JADE
-8.13482 -9.04101 -9.5323 -10.7329 -12.4104 -13.2542 -13.8191 -14.4238 -16.2652
2.086477 2.377023 1.777437 1.648833 3.511142 2.942856 2.401755 1.452774 3.650645

PSO
-11.5894 -12.1248 -14.5438 -17.3442 -19.4519 -21.0005 -23.4152 -25.9687 -25.5145
1.995733 2.150686 1.938375 2.969171 3.028371 3.10588 3.156312 4.351524 4.309333

GBBPSO
-14.4621 -17.5342 -20.2161 -22.8031 -25.2476 -27.5723 -28.9203 -30.8626 -33.4785
1.844479 2.255024 2.52454 2.703047 3.093529 3.575741 3.785422 4.247284 4.27287

MCS
-10.2308 -11.5335 -13.6292 -15.6778 -17.7477 -20.2611 -22.6459 -24.0073 -25.7011
0.589026 0.627761 0.752724 0.783488 1.036291 1.07056 1.338691 1.129113 1.260751

CGABC -
15.4219

-
18.6796

-
21.8944

-
25.4084

-
28.8143

-
32.5034

-
36.1997

-
39.6407

-
42.9935

0.542658 0.456531 0.692997 0.860641 1.123522 1.380463 1.470512 1.710728 1.890147

Table 23. Wilcoxon rank sum test on the Lennard-Jones potential problem

N 7 8 9 10 11 12 13 14 15 b/w/e/gm

CGABC vs. ABC = + + + = = = + = 4/0/5/4
CGABC vs. MABC = + = + = = = = = 2/0/7/2
CGABC vs. ABCVSS + + = + + = = = = 4/0/5/4
CGABC vs. DE + + + + + + + + + 9/0/0/9
CGABC vs. JADE + + + + + + + + + 9/0/0/9
CGABC vs. PSO + + + + + + + + + 9/0/0/9
CGABC vs. GBBPSO = = + + + + + + + 7/0/2/7
CGABC vs. MCS + + + + + + + + + 9/0/0/9

5.4.2. Frequency-Modulated (FM) sound wave synthesis problem
To validate the effectiveness of our proposed algorithm, CGABC is further compared with ABC, MABC,

ABCVSS, DE, JADE, PSO, GBBPSO, MCS and CGABC The best fitness values, worst fitness values, mean fitness
values and their standard deviations obtained by the nine algorithms over 50 independent runs are presented in Table
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24. The statistical results are shown in Table 25, including the sum of rank, z-value and P-value. The results in
Tables 24 and 25 reveal that CGABC statistically outperforms the other algorithms. Both CGABC and GBBPSO
can even achieve the global optima on some appropriate cases according to the best fitness values obtained, however,
CGABC has great advantages in terms of the mean best value. The convergence curves plotted in Fig. 12 show
that CGABC converges much faster than all the other algorithms, especially in the later search process. Here, the
optimal values of X̄ obtained by these compared algorithms are presented in Table 26.

Table 24. Best, worst, median, mean and standard deviation values obtained by nine algorithms on FM sound
wave synthesis problem

Algorithms Best Worst Median Mean Std

ABC 5.71E-03 1.07E+01 2.28E-01 1.50E+00 3.09E+00
OCABC 1.45E-27 6.87E-02 1.18E-02 1.97E-02 2.04E-02
ABCVSS 6.63E-03 9.05E+00 2.11E-01 9.67E-01 2.28E+00
distABC 2.34E-03 8.42E+00 8.21E-02 5.89E-01 1.71E+00
JADE 1.36E+01 2.13E+01 1.92E+01 1.87E+01 1.89E+00
PSO 8.50E+00 1.16E+01 1.03E+01 9.90E+00 9.79E-01
GBBPSO 0 1.95E+01 1.18E+01 1.12E+01 5.97E+00
MCS 6.56E-03 4.46E+00 4.05E-01 1.00E+00 1.24E+00
CGABC 0 7.56E-06 1.24E-23 3.35E-07 1.30E-06

Table 25. Wilcoxon rank sum test on the FM sound wave synthesis problem

Wilcoxon rank sum test ranksum z-value P-value Significance

CGABC vs. ABC 1275 -8.61621 < 0.0001 Extremely significant
CGABC vs. OCABC 1436 -7.50602 < 0.0001 Extremely significant
CGABC vs. ABCVSS 1275 -8.61621 < 0.0001 Extremely significant
CGABC vs. distABC 1275 -8.61621 < 0.0001 Extremely significant
CGABC vs. JADE 1275 -8.61621 < 0.0001 Extremely significant
CGABC vs. PSO 1275 -8.61623 < 0.0001 Extremely significant
CGABC vs. GBBPSO 1671 -5.89618 < 0.0001 Extremely significant
CGABC vs. MCS 1275 -8.61621 < 0.0001 Extremely significant
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Fig. 11. Comparison among nine algorithms on Lennard Jones potential problem with 10 and 15 atoms
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5.4.3. Feature selection problem
A detailed description of five datasets from UCI Repository can be found in Table 27. The CGABC is further

compared with ABC, MABC, ABCVSS, distABC, JADE, PSO and MCS. The maximum number of fitness evaluations
is 10000, and the population size is 80, i.e. the colony size of the CGABC is 40. The grid shape of the CGABC is
5×8, and the number of the nearest neighbors, i.e. k, in KNN classification is set as 5. The mean accuracy and mean
number of selected features obtained by the eight algorithms on five UCI dataset over 50 independent runs are given
in Table 28. It can be seen that all algorithms can achieve the best performance on the Parkinsons dataset, and the
performance on the Glass dataset is the same. The CGABC performs best on Wine and Sonar datasets. For the
Ionosphere dataset, the best-performing algorithm is PSO. Combined with the statistical results presented in Table
29, it can be concluded that the CGABC have competitive performance when solving feature selection problems.
However, there is still room for improvement with respect to the number of selected features.
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Fig. 12. Comparisons among nine algorithms on FM sound wave synthesis problem

Table 26. The optimal solutions obtained by the nine compared algorithms

Algorithm Optimal solution

ABC [-1.00251156,-4.99819208,-1.48660393,-4.80082690,2.00104913,-4.90103221]
OCABC [0.99999999,5.00000000,1.50000000,-4.80000000,2.00000000,-4.90000000]
ABCVSS [-0.99466610,-5.00464350,1.50968105,4.79665330,-2.00082423,-4.90105142]
distABC [0.998031996,5.00067718,-1.49960400,4.79843105,2.00308671,4.89951371]
JADE [-0.618234900,-0.0239568283,4.75758643,4.90521381,-0.171399954,0.180965386]
PSO [-0.689434977,114.686097,0.774640062,-90.2565538,-1.05060820,-194.876992]
GBBPSO [-1,-5,1.50000000,4.80000000,2,4.90000000]
MCS [0.994984030,5.00367789,1.49800669,-4.79867017,2.00500683,-4.90171657]
CGABC [1,5,-1.50000000,4.80000000,2,4.90000000]

Table 27. Descriptions of five datasets for feature selection problem

Dataset Glass Wine Ionosphere Parkinsons Sonar

Number of samples 10 13 34 23 60
No. of Classes 7 3 2 2 2
No. of attributes 214 178 351 195 208
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Table 28. Mean accuracy and mean number of selected features obtained by eight algorithms on feature selection
problems

Datasets
Glass Wine Ionosphere Parkinsons Sonar

fn Accuracy fn Accuracy fn Accuracy fn Accuracy fn Accuracy

ABC 5.5 0.9953 7.4 0.9618 11.1 0.9003 10.6 1 27.5 0.8808
MABC 4.7 0.9953 7.7 0.964 9.6 0.9123 9 1 28.7 0.8856
ABCVSS 5.2 0.9953 8.1 0.9652 8.5 0.9157 9.3 1 26.9 0.899
distABC 5.2 0.9953 7.3 0.9674 10.7 0.9085 9.5 1 29.3 0.887
JADE 5.4 0.9953 6 0.9719 9.8 0.9031 10.1 1 28.5 0.887
PSO 4.7 0.9953 7.9 0.964 8.9 0.9225 10.3 1 28.5 0.8963
MCS 5.4 0.9953 6.6 0.9697 8.7 0.9094 8.9 1 26.4 0.8952
CGABC 5.2 0.9953 6 0.9719 8.8 0.9191 9.2 1 27 0.899

Table 29. Wilcoxons rank sum test on the feature selection problem

Wilcoxon rank sum test Glass Wine Ionosphere Parkinsons Sonar b/w/e/g

CGABC vs. ABC = + + = + 3/0/2/3
CGABC vs. MABC = + + = + 3/0/2/3
CGABC vs. ABCVSS = + + = = 2/0/3/2
CGABC vs. distABC = + + = + 3/0/2/3
CGABC vs. JADE = = + = + 2/0/3/2
CGABC vs. PSO = + - = + 2/1/2/1
CGABC vs. MCS = + + = + 3/0/2/3

6. Conclusion

In this paper, the ABC algorithm has been enhanced to the so-called CGABC algorithm, after elaborately
analyzing the effect of the onlooker bees and scout bees with well-designed experiments. The cellular structured
neighborhood was introduced to the CGABC algorithm to make individuals only interact with their neighbors while
preserving the population diversity. In addition, the proposed Gaussian-based search equation with redefined local
attractor can help improve the local search ability. Besides, a more intelligent and robust probability calculation
method based on rank ordering was developed to determine the qualified solutions regarded as onlooker bees. We have
further exploited the global convergence property of the CGABC algorithm according to the theory of probabilistic
metric spaces. The experimental results conducted over 32 benchmark functions and three real-world applicatons
indicate that the proposed CGABC algorithm has demonstrated superior capabilities related to accuracy, robustness
and efficiency. Our future work will involve studying how to apply the CGABC algorithm to some optimization
problems, such as flexible job shop problem and traveling salesman problem, etc.
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Appendix A. Benchmark Functions

Function
Name

Mathematical formulation Accept

Sphere f(X) =
∑D
i=1 z

2
i 1× 10−8

Elliptic f(X) =
∑D
i=1(106)

i−1
D−1 z2i 1× 10−8

Sumsquare f(X) =
∑D
i=1 iz

2
i 1× 10−8

Schwefel226 f(X) = 418.982887 ∗ n−∑D
i=1 izisin(

√
|zi|) 1× 10−8

Schwefel222 f(X) =
∑D
i=1 |zi|+

∏D
i=1 |zi| 1× 10−8

Schwefel221 f(X) = max(|zi| , 1 ≤ i ≤ D) 4× 101

Step f(X) =
∑D
i=1(|zi + 0.5|)2 1× 10−8

QuarticWN f(X) =
∑D
i=1 z

4
i + random(0, 1) 1× 10−1

Schaffer f(X) = 0.5 + (sin2(
√∑D

i=1 z
2
i )− 0.5)/(1 + 0.001 ∗ [

∑D
i=1 z

2
i ])2 1× 10−8

Rosenbrock f(X) =
∑D−1
i=1 [100(zi+1 − z2i )2 + (zi − 1)2] 5× 100

Rastrigin f(X) =
∑D−1
i=1 [z2i − 10cos(2πzi) + 10] 1× 10−8

Ncrastrigin f(X) =
∑D−1
i=1 [y2i − 10cos(2πyi) + 10], yi =

{
zi, if |zi| < 0.5

round(2zi)/2, if |zi| ≥ 0.5
1× 10−8

Griewank f(X) = 1/4000
∑D
i=1 z

2
i −

∏D
i=1 cos(zi/

√
i) + 1 1× 10−8

Sumpower f(X) =
∑D
i=1

∣∣∣zi+1
i

∣∣∣ 1× 10−8

Sumpower f(X) =
∑D
i=1

∣∣∣zi+1
i

∣∣∣ 1× 10−8

Ackley f(X) = −20exp(−0.2
√

1/D ∗∑D
i=1 z

2
i )− exp(1/D ∗∑D

i=1 cos(2πzi)) + 20 + e 1× 10−8

Penalized1 f(X) = π
D

{
10sin2(πy1) +

∑D−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yD − 1)2

}
+

∑D
i=1 µ(zi, 10, 100, 4); yi = 1+ 1

4 (zi+1), µxi,a,k,m =





k(zi − a)m, if zi > a

0, if −a ≤ zi ≤ a
k(−zi − a)m, if zi < −a

1× 10−8

Penalized2 f(X) = 1
10

{
sin2(πz1) +

∑D−1
i=1 (zi − 1)2[1 + sin2(3πzi+1)] + (zD − 1)2[1 + sin2(2πzi+1)]

}
+

∑D
i=1 µ(zi, 5, 100, 4)

1× 10−8

Alphine f(X) =
∑D
i=1 |zisin(zi) + 0.1zi| 1× 10−8

Levy f(X) =
∑D−1
i=1 (zi − 1)2[1 + sin2(3πzi+1)] + sin2(3πz1) + |xD − 1| [1 + sin2(3πzD)] 1× 10−8

Weierstrass f(X) =
∑D
i=1(

∑kmax
k=1 [akcos(2πbk(zi + 0.5))]) + D

∑kmax
k=1 [akcos(2πbk)], a = 0.5, b =

3, kmax = 20
1× 10−8

Schwefel 1.2 f(X) =
∑D
i=1(

∑i
j=1 zj)

2 1× 10−8

Noise Schwe-
fel 1.2

f(X) =
∑D
i=1(

∑i
j=1 zj)

2 ∗ (1 + 0.4 |N(0, 1)|) 1× 10−8

Schwefel 2.6 f(X) = max(Aix − Aio), A ∈ RD×D, the element of A is in [-500,500], det(A) 6= 0;Bi =

Ai ∗ o, o ∈ RD×1, the element of o is in [-100, 100]

1× 10−8

Schwefel 2.13 f(X) =
∑D
i=1(Ai − Bi(z))2, Ai =

∑D
j=1(aijsinαj + bijcosαj), Bi(z) =

∑D
j=1(aijsinzj +

bijcoszj), A×B ∈ RD×D, aij ∈ [−100, 100], bij ∈ [−100, 100];α = [α1, α2, αD], αj ∈ [−π, π]

1× 10−8
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