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Abstract Nonnegative Matrix Factorization (NMF) has become a powerful
model for community discovery in complex networks. Existing NMF-based
methods for community discovery often factorize the corresponding adjacent
matrix of complex networks to obtain its community indicator matrix. How-
ever, the adjacent matrix cannot represent the global structure feature of
complex networks very well, and this leads to the performance degradation
of community discovery. Besides, most of existing methods are not robust
and scalable enough, so they are not effective to deal with complex networks
with noises and large-scales. Aiming at these problems above, in this paper
we propose a method for community discovery using distributed robust NMF
with SimRank similarity measure. This method selects SimRank measure to
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construct the feature matrix, which can more accurately represent the global
structure feature of complex networks. To improve the robustness, we select
ℓ2,1 norm instead of the widely used Frobenius norm to construct its NMF-
based community discovery model. In addition, to improve the scalability,
we implement its key components by using MapReduce distributed comput-
ing framework, including computing SimRank feature matrix and iteratively
solving the NMF-based model for community discovery. We conduct exten-
sive experiments on several typical complex networks. The results show that
our method has better performance and robustness than other representative
NMF-based methods for community discovery. Moreover, our method presents
good scalability, and hence can be used to discover communities in the large-
scale complex networks.

Keywords Community discovery · Robust nonnegative matrix factorization ·
SimRank · MapReduce · Complex networks

1 Introduction

Various real world complex networks, such as online social networks and co-
authorship networks, not only have small-world and scale-free properties, but
also generally have significant community structures. Members in the same
community connect to each other more densely than those in different com-
munities [1,2]. Discovering high quality communities is not only very useful
for the analysis of the structures and functions of complex networks, but also
of great value in practical applications, such as similar user groups detection
and social markets in online social networks. Recently, lots of methods have
been proposed to deal with the problem of community discovery in complex
networks, including graph partitioning based methods [3–5], modularity opti-
mization based methods [6–8] and statistical inference based methods [9,10].
It is worth pointing out that Nonnegative Matrix Factorization (NMF) based
method for community discovery has also gained great attentions. Existing
NMF-based methods for community discovery have proven that NMF can ef-
fectively capture the underlying community structure of complex networks in
the low dimensional data space and has good interpretability of the communi-
ty discovery results. Moreover, due to the good extensibility of NMF, we can
easily extend the basic NMF model to resolve various problems of community
discovery, such as overlapped community discovery using bounded NMF [11],
community discovery across multiple heterogeneous networks using joint N-
MF [12–14] and constraint community discovery using semi-supervised NMF
[15,16]. Overall, these features above have helped NMF become an ideal and
powerful model for community discovery.

Although many NMF-based methods for community discovery have been
proposed, we find that most of them still have the following common short-
comings:

– They often select the simple adjacent matrix of complex networks as the
feature matrix used for factorization. However, the adjacent matrix on-



ly represents the local structure feature and cannot represent the global
structure feature of complex networks very well. Obviously, if the feature
matrix cannot provide enough accurate information, it will degrade the
performance of community discovery based on NMF.

– They often use the Frobenius norm to devise the objective function of
NMF-based model for community discovery, but this least square error
function is not robust with respect to noises. Actually, many real world
complex networks contain lots of noises, such as lots of casual user links
existing in online social networks. If the objective function is not robust
enough to deal with these noises, it will also degrade the performance of
community discovery.

– They all have high time complexities. For a complex network with n nodes,
their time complexities are all above O(n2). When facing the large-scale
complex networks, these methods are hard to run efficiently on a single
machine due to limited computing and storage resources. Therefore, to im-
prove their scalabilities, it is imperative to have them run on the distributed
computing environment.

These findings above motivate us to seek for a better measure to construct
the feature matrix of complex networks, which can further improve the per-
formance of community discovery based on NMF. Meanwhile, we also devote
ourselves to improving the robustness and scalability of NMF-based method
for community discovery. This paper is an extended version of a paper that first
appeared in [17], where a method for community discovery using distributed
SimRank NMF is proposed. In this paper, we further improve this method by
employing robust distributed NMF. In particular, we add extensive theoretical
and experimental analyses of robustness. Our main works are summarized as
follows:

– We investigate several widely used similarity measures of graph nodes and
select SimRank measure to construct the feature matrix, which can better
represent the global structure feature of complex networks.

– We propose a new method for community discovery using distributed ro-
bust NMF with SimRank similarity measure. This method devises the ob-
jective function of the NMF-based model for community discovery using
ℓ2,1 norm, which can help to improve its robustness. In particular, to im-
prove the scalability of our method, we implement its key components
based on the MapReduce distributed computing framework, including com-
puting SimRank feature matrix and iteratively solving the NMF-based
model for community discovery.

– We conduct extensive experiments on several typical complex network
datasets. The results show that our method can obtain better performance
than the representative NMF-based method with different similarity mea-
sures and is effective to handle noises with enhanced robustness. Moreover,
our method presents good scalability by running on the MapReduce cluster
and is efficient enough to deal with the problem of community discovery
in the large-scale complex networks.



The rest of this paper is organized as follows. Firstly, a brief review of
related work is given in Section 2. Then, Section 3 elaborates the key parts of
our proposed method. The experiments and analysis are reported in Section
4. Finally, the conclusions are drawn in Section 5.

2 Related work

2.1 SimRank similarity measure

Without loss of generality, the complex network can be formally denoted as an
undirected and unweighted graph G = (V,E), where V = {v1, v2, ..., vn} is the
set of nodes and E = {eij |vi ∈ V ∧vj ∈ V } is the set of all edges between nodes.
n = |V | is the number of nodes. We can use the adjacent matrix A = [aij ]

n×n

to represent G. For ∀aij ∈ A, if eij ∈ E, then aij = 1, else aij = 0. Let
S ∈ Rn×n

+ denote the node similarity matrix of G and ∀sij ∈ S represents the
similarity between vi and vj , then S is suitable to serve as the feature matrix
of the complex network used in NMF-based model for community discovery.
Recently, there have been several representative node similarity measures used
for constructing S, including common neighbors using Jaccard index (CN) [18],
regular equivalence (RE) [18], diffusion kernels (DK) [19], random walk (RW)
[20] and SimRank (SR) [21]. In particular, SimRank is based on the concept
that two nodes are similar if they are referenced by similar nodes and has
become a powerful measure for the similarity of pairs of nodes in a graph. The
SimRank similarity sij between vi and vj is defined as (i) sij = 1, if i = j; (ii)
sij = 0, if N(i) = ∅ or N(j) = ∅; (iii) otherwise,

sij =
ρ

|N(i)||N(j)|
∑

a∈N(i)

∑
b∈N(j)

sab, (1)

where N(i) and N(j) denote the set of neighbors of vi and vj , respectively.
ρ ∈ [0, 1] is a damping factor (we set ρ = 0.6 in this paper). Based on SimRank
definition above we can obtain sii = 1 and sij = sji. Hence the SimRank sim-
ilarity matrix S is reflexive and symmetric. Obviously, Equation 1 is recursive
and can be rewritten in the following iterative form:

stij =
ρ

|N(i)||N(j)|
∑

a∈N(i)

∑
b∈N(j)

st−1
ab . (2)

Starting with s0aa = 1 and s0ab = 0 if a ̸= b, Equation 2 will converge to
the exact solution of Equation 1 when t→∞. Then, the converged sij is the
final similarity between vi and vj . By this iterative computation, SimRank can
compute the similarity of pairs of nodes in a graph by combining both local
and global topology feature. Hence, it can provide a more accurate feature
matrix to the complex network. In this paper we select SimRank similarity
matrix S to serve as the feature matrix used for our NMF-based method for
community discovery.



2.2 NMF-based method for community discovery

NMF is originally presented for image processing [22,23] and later on it is
widely used in a variety of data mining tasks, including document clustering
[24,25], multimedia data analysis [26–28] and collaborative filtering [29]. In
[30], Ding et al. successfully proved the equivalence of NMF and spectral clus-
tering, which is closely related to the node clustering in a graph. This arouses
many researches on NMF-based methods for community discovery in complex
networks. Generally, the basic NMF-based model for community discovery can
be formulated as: given the feature matrix X ∈ Rn×n

+ of the complex network,
then X can be decomposed into the community feature matrix W and the
community indicator matrix H, such that X ≈ WHT , where W ∈ Rn×k

+ and

H ∈ Rn×k
+ . k is the desired number of communities and should satisfy k ≪

min(m,n). W and H can be obtained by minimizing the objective function:
J(X,WHT ), where J is the objective function that measures the error between
X and WHT . The most widely used error measure function is Frobenius norm
and its corresponding basic NMF-based model for community discovery is:

min J(X,WHT ) = min ∥ X −WHT ∥2F .

s.t. W ≥ 0,H ≥ 0
(3)

In practice, existing NMF-based methods for community discovery often
extend this model to resolve various problems of community discovery. For ex-
ample, targeting undirected, directed and compound complex networks, Wang
et al. [31] proposed symmetric NMF (SNMF), asymmetric NMF (ANMF) and
joint NMF (JNMF) to discover communities, respectively. Related experiments
conducted on synthetic and real world complex networks shown their effective-
ness. Aiming at identifying overlapped communities, Nguyen et al. [32] intro-
duced two approaches, namely iSNMF and iANMF, which can extract mean-
ingful overlapping communities via soft community assignments produced by
NMF. Zhang et al. [33] developed a symmetric binary matrix factorization
model (SBNMF) to identify overlapping communities. This model allows us
not only to assign community memberships explicitly to nodes, but also to
distinguish outliers from overlapping nodes. Besides these classical methods,
many new variants are also continuously proposed, such as MHGNMF method
using mixed hypergraph regularization [34], ENMF method using evolutionary
modularity density [35], PSSNMF method using the node popularity [36] and
BSNMF method [37] using Bayesian inference.

Generally speaking, existing NMF-based methods for community discov-
ery are effective, but they nearly have the same drawbacks. Firstly, they often
construct the feature matrix X by using the adjacent matrix A, which is not
accurate to represent the global feature of the complex network. This often
leads to the degraded performance of community discovery. Secondly, they of-
ten devise the objective function by using the Frobenius norm. It is not robust
enough, because a few noises with large errors easily dominate the objection
function by the form of the squared errors shown in Equation 3. Finally, their



solutions to the NMF-based model for community discovery all refer to the
multiplication operations of multiple n × n matrices, so their time complex-
ities are all above O(n2). Although we can use sparse matrix multiplication
or other optimization strategies to further reduce the time complexity, the
computational cost is still heavy when encountering the large-scale complex
networks. To resolve these problems above, in this paper we propose a new
method using distributed robust NMF with SimRank similarity measure.

3 Our method

In this section, we first present the community discovery model based on robust
NMF with SimRank similarity measure, including its solution and algorithm,
and then give the detailed convergence proof of the solution. Finally, we present
how to improve its scalability by using MapReduce distributed computing
framework.

3.1 Community discovery model

Owing to the feature matrix S being symmetric, following the idea about
symmetric NMF in [38] we can approximate S by the form of HHT . Namely,
S ≈ HHT , where H ∈ Rn×k

+ denotes the community indicator matrix and
each entry hij ∈ H represents the strength that the ith node belongs to the
jth community. The bigger the value of hij , the higher degree of member-
ship with which the ith node belongs to the jth community. To improve the
robustness of our method, we select ℓ2,1 norm to measure the error between
S and HHT instead of the widely used Frobenius norm. Its corresponding
community discovery model is formulated as:

min J(H) =
1

2
||S −HHT ||2,1, s.t. H ≥ 0 (4)

In this model, the error between S andHHT is
∑n

i=1 ||si−HhT
i ||, where si and

hT
i represent the ith column vectors of S and HT , respectively. This formula-

tion doesn’t square the error, and thus the large errors due to noises do not
dominate the objective function J(H). The minimization of the multivariable
objective function J(H) above can be transformed into the typical constrained
optimization problem, which can be solved using the gradient descent method.



Firstly, we can rewrite the objective function J(H) as:

J(H) =
1

2

n∑
i=1

||si −HhT
i ||2

1

||si −HhT
i ||

=
1

2

n∑
i=1

((S −HHT )T (S −HHT ))iidii

=
1

2
tr((S −HHT )D(S −HHT )T )

=
1

2
(tr(SDS)− 2tr(HHTDS) + tr(HHTDHHT )),

(5)

where tr(·) denotes the trace of a matrix and D = [dii]
n×n is a diagonal matrix

with the diagonal elements given by

dii =
1

||si −HhT
i ||

(6)

Then, we can compute the gradient of J(H) with respect to hij :

∇hijJ(H) =
1

2
(
∂tr(SDS)

∂hij
− 2∂tr(HHTDS)

∂hij

+
∂tr(HHTDHHT )

∂hij
)

= (−DSH − SDH + 2DHHTH)ij .

(7)

Finally, using the gradient descent method, we have

hij ← hij − ϵij∇hijJ(H). (8)

Setting ϵij =
hij

(6DHHTH)ij
, we can obtain the following iterative update rule

for hij :

hij ←
2

3
hij(1 +

(DSH + SDH)ij
4(DHHTH)ij

). (9)

The objective function J(H) can monotonically decrease and converge un-
der the iterative update rule in Equation 9. Its convergence proof is given in
Section 3.2. The community membership of every node in G can be determined
based on converged H. Let C = {c1, c2, ..., ck} denote the set of communities
and T1 denote the number of iterations, we devise the community discovery
algorithm shown in Algorithm 1.

In Algorithm 1, there are two parts which are time consuming. One is con-
structing S using SimRank measure (line 1). It still requires O(dn2) time per
iteration based on the state-of-the-art SimRank computation work presented in
[39], where d is the number of average degrees in G. The other time-consuming
part is updating H iteratively (line 4). Updating H per iteration mainly refers
to matrix multiplication operations and it requires O(kn2) time per iteration.



Algorithm 1 Community discovery algorithm

Input: G = (V,E), k, T1;
Output: C = {c1, c2, ..., ck};
1: Construct S using SimRank measure;
2: Initialize H with random nonnegative values;
3: for t = 1 to T1 do

4: ∀hij ∈ H, hij ← 2
3hij(1 +

(DSH+SDH)ij
4(DHHTH)ij

);

5: end for
6: ∀i = 1...k, ci ← Ø;
7: for ∀vi ∈ V do
8: p = argmax

l
hil;

9: cp = cp
∪
{vi};

10: end for

It is not hard to conclude that the total time complexity of Algorithm 1 is
beyond O(n2). Therefore, Algorithm 1 running on serial mode is hard to deal
with the large-scale complex networks. In Section 3.3, we will introduce how
to compute SimRank and update H using MapReduce distributed computing
framework, which can improve the scalability of Algorithm 1 remarkably under
the distributed computing environment.

3.2 Convergence proof

To prove the convergence of the iterative update rule of H in Equation 9, we
will make use of the auxiliary function method proposed in [23]. Firstly, we
introduce the basic definitions and lemmas about the auxiliary function.

Definition 1. If a function satisfies

L(h, h′) ≥ F (h), L(h, h) = F (h) (10)

we say L(h, h′) is an auxiliary function of F (h).
Lemma 1. If L(h, h′) is an auxiliary function, then F (h) monotonically

decreases under the update

ht+1 = argmin
h

L(h, ht) (11)

Proof: F (ht+1) ≤ L(ht+1, ht) ≤ L(ht, ht) = F (ht)
Note that F (ht+1) = F (ht) only if ht is a local minimum of L(h, ht). Thus,

by iterating the update in Equation 11 F (h) can converge to a local mini-
mum hmin = argmin

h
F (h). Namely, we can obtain a sequence of estimates:

F (hmin) ≤ ... ≤ F (ht+1) ≤ F (ht) ≤ ... ≤ F (h1) ≤ F (h0). This implies us that
if we can define an appropriate auxiliary function for J(H) and the update
rule in Equation 9 also follows Equation 11, then the update rule in Equation



9 can guarantee the convergence of J(H). Next we will present the detailed
proofs.

For convenience, let function J(h) denote the part related to hij in J(H),
then we can compute the first order, second order, third order and fourth order
derivatives of J(h) with respect to hij , respectively:

J ′(h) = (−DSH − SDH + 2DHHTH)ij (12)

J ′′(h) = −(DS + SD)ii + 2((DHHT )ii

+ (DH)ijhij + dii
∑
p

h2
pj)

(13)

J ′′′(h) = 12diihij (14)

J (4)(h) = 12dii (15)

Let ht
ij denote the tth iterative update value of hij , then the Taylor series

expansion of J(h) in ht
ij can be written as:

J(h) = J(ht
ij) + J ′(ht

ij)(h− ht
ij)

+
1

2
J ′′(ht

ij)(h− ht
ij)

2 +
1

6
J ′′′(ht

ij)(h− ht
ij)

3

+
1

24
J (4)(ht

ij)(h− ht
ij)

4

(16)

We define the following function L(h, ht
ij) as the auxiliary function of J(h):

L(h, ht
ij) = J(ht

ij) + J ′(ht
ij)(h− ht

ij)

+
1

2
[
6(DHHTH)ij

ht
ij

](h− ht
ij)

2 +
1

6
J ′′′(ht

ij)(h− ht
ij)

3

+
1

24
J (4)(ht

ij)(h− ht
ij)

4

(17)

Proof. Because L(h, h) = J(h) is obvious, we only need to demonstrate that
L(h, ht

ij) ≥ J(h). Comparing the Taylor series expansion of J(h) in Equation
16 with L(h, ht

ij) in Equation 17, we can find that L(h, ht
ij) ≥ J(h) is actually

equivalent to

6(DHHTH)ij
ht
ij

≥ J ′′(h) (18)



Owing to H and D being nonnegative, it is easy to prove that

(DHHTH)ij
ht
ij

=

∑
p(DHHT )iphpj

ht
ij

≥ (DHHT )ii (19)

(DHHTH)ij
ht
ij

=

∑
p

∑
q(DH)iqhpqhpj

ht
ij

≥ (DH)ijhij (20)

(DHHTH)ij
ht
ij

=

∑
p

∑
q

∑
l dilhlqhpqhpj

ht
ij

≥ dii
∑
p

h2
pj (21)

6(DHHTH)ij
ht
ij

≥ 2((DHHT )ii + (DH)ijhij + dii
∑
p

h2
pj)

≥ J ′′(h)

(22)

So Equation 18 holds and L(h, ht
ij) can be the auxiliary function of J(h).

Next, we just need to prove the update rule in Equation 9 can guarantee
L(h, ht

ij) converges to a local minimum. The derivatives of L(h, ht
ij) exist and

are continuous in a small neighborhood of ht
ij , so its local minimum can be

obtained when L′(h, ht
ij) = 0, which can be solved using Newton’s Method:

ht+1
ij = ht

ij −
L′(ht

ij , h
t
ij)

L′′(ht
ij , h

t
ij)

(23)

From Equation 17, we can compute L′(ht
ij , h

t
ij) and L′′(ht

ij , h
t
ij), respec-

tively:

L′(ht
ij , h

t
ij) = (−DSH − SDH + 2DHHTH)ij (24)

L′′(ht
ij , h

t
ij) =

6(DHHTH)ij
ht
ij

(25)

Substituting L′(ht
ij , h

t
ij) and L′′(ht

ij , h
t
ij) in Equation 23, we can obtain the

following update rule:

ht+1
ij =

2

3
ht
ij(1 +

(DSH + SDH)ij
4(DHHTH)ij

) (26)

which is the same as the update rule showed in Equation 9. Therefore, the
update rule of H in Equation 9 can guarantee the convergence of the J(H).

3.3 Improving the scalability using MapReduce

3.3.1 Computing SimRank using MapReduce

From Equation 2, we can see that the similarity between any two nodes de-
pends on similarities between their adjacent nodes. In each iteration the sim-
ilarity can continuously propagate from a pair of nodes to another pair until



it reaches the convergence state. In order to explain this propagation process
more intuitively, we can derive a directed node-pair graph G2 = (V 2, E2),
where (va, vb) ∈ V 2, if va ∈ V and vb ∈ V ; ((va, vb), (vc, vd)) ∈ E2, if eac ∈ E
and ebd ∈ E. To simplify G2, isolated nodes in G2 can be deleted, because
their similarities are always 0 in each iteration. Also, edges pointing to nodes
(va, va) can be deleted, because the similarity of node (va, va) is always 1 in
each iteration. In G2, the similarity of any node can be propagated to any
reachable nodes along the directed edges. Taking Figure 1 as an example of
G and G2, assuming that its SimRank computing begins at (3, 3), (3, 3) prop-
agates its initial value 1 to (2, 4) in the first iteration, then (2, 4) computes
its value based on Equation 2. In the second iteration, (2, 4) propagates again
its value to (1, 2), (1, 3), (2, 3) and (3, 4) to compute their values. Subsequent
iterations will perform the same operations until every node in G2 can finally
obtain a stable value.

Through the analysis above, every iteration of SimRank is suitable to be
implemented using one MapReduce job: Map phase transmits the similarity
of every node-pair to their adjacent node-pairs and Reduce phase aggregates
outputs from Maps to compute the similarity of every node-pair. The whole
iterative process of SimRank computing is composed of many continuous jobs.
Every job performs the same operations and the output of the previous job is
used as the input of the next job. Let S0 and S∗ denote respectively the initial
and the final SimRank values sets, and T2 denote the number of iterations,
we devise the pseudo-code of computing SimRank using MapReduce shown in
Algorithm 2.

1 2

3

4

1,2

1,3

1,4

2,2

2,32,4

3,4

3,3 4,4

G

G
2

(a) (b)

Fig. 1 An example of G and G2

3.3.2 Updating H using MapReduce

Updating H using Equation 9 mainly involves matrix multiplication opera-
tions between S, D and H, which are all suitable to be implemented using



Algorithm 2 Computing SimRank using MapReduce

Input: G = (V,E), S0, T2, ρ;
Output: S∗;
1: for t = 1 to T2 do
2: Map: Read < key = (va, vb), value = st−1

ab >;
3: for ∀(vc, vd) ∈ {(vc, vd)|vc ∈ N(a) ∧ vd ∈ N(b)} do
4: Emit < key = (vc, vd), value = st−1

ab >;
5: end for
6: Reduce: Read < key = (vc, vd), value = vs[0...] >; //vs is a list of
sab elements with the same key
7: if c = d then stcd = 1;
8: else
9: stcd = ρ

len(vs)sum(vs);

10: end if
11: Emit < key = (vc, vd), value = stcd >;
12: end for
13: S∗ = St;
14: Emit S∗;

MapReduce. For a large-scale complex network, its corresponding SimRank
matrix S is actually very sparse, so S can be naturally stored in the format
of < (i, j), sij > key-value pairs. Also, the diagonal matrix D can be stored
in the format of < i, dii >. For H, we can first partition it along the short
dimension and this partition will reconstruct H as (h1, h2, ..., hn), where hi

is a k-dimension row vector of H. Then, H can also be stored in the format
of < i, hi > key-value pairs. To improve the efficiency, D and H can both
directly stored in the distributed cache of machine clusters and support global
fast access. Considering that we must first compute D before computing H,
updating H using Equation 9 can be divided into two phases. The first phase
is computing D and the second phase is computing H. D is a diagonal matrix
and we only need to compute its diagonal elements by using Equation 6, which
can be implemented using the following two sets of MapReduce operations.

– Map-I: map < j, (i, sji) > and < j, (i, hj , hi) > on j such that tuples with
the same j are shuffled to the same machine in the form of< j, {(i, sji), (i, hj , hi)} >.

– Reduce-I: read < j, {(i, sji), (i, hj , hi)} >, emit < i, tj >, where tj is a
temporary variable and tj = (sji − hj • hi)

2.
– Map-II: map < i, tj > such that tuples with the same i are shuffled to the

same machine in the form of < i, {tj} >.
– Reduce-II: read < i, {tj} >, emit < i, dii >, where dii =

1√∑n
j=1 tj

.

For maximizing parallelism on MapReduce cluster, we divide the phase
of computing H into 3 components: P1 = DSH + SDH, P2 = 4DHHTH
and H ← 2

3H. ∗ (1 + P1./P2), where every component can be implemented



using MapReduce. The computing process of every component is described as
follows.

(1) Computing P1 = DSH + SDH. Let p1i denote the ith row vector of
P1, then we have p1i =

∑n
j=1(diisijhj + sijdjjhj), which can be implemented

by two sets of MapReduce operations.

– Map-III: map < j, (i, sij , dii, djj) > and < j, hj > on j such that tu-
ples with the same j are shuffled to the same machine in the form of
< j, {hj , (i, sij , dii, djj)} >.

– Reduce-III: read < j, {hj , (i, sij , dii, djj)} >, emit < i, tj >, where tj =
diisijhj + sijdjjhj .

– Map-IV: map < i, tj > such that tuples with the same i are shuffled to the
same machine in the form of < i, {tj} >.

– Reduce-IV: read < i, {tj} >, emit < i, p1i >, where p1i =
∑n

j=1 tj .

(2) Computing P2 = 4DHHTH. DHHT is a n × n matrix and HTH is
a k × k matrix. Therefore, to reduce the amount of intermediate data, we
should first compute T

′
= HTH and then compute P2 = DHT

′
. Owing to

T
′
=

∑n
i=1 h

T
i hi, its computation can be implemented by single MapReduce

operation.

– Map-V: map < i, hi > and emit < 0, hT
i hi >, where 0 is a dummy key

value for data shuffling.
– Reduce-V: read < 0, {hT

i hi} >, compute T
′
=

∑n
i=1 h

T
i hi and finally emit

< i, T
′
>.

T
′
is a k×k small matrix and hence can be directly stored in the distributed

cache of machine clusters, which every computing node can access to. After
that, we can also use a single MapReduce operation to compute P2 = 4DHT

′
:

– Map-VI: map < i, hi > and emit < i, diihiT
′
>.

– Reduce-VI: read < i, diihiT
′
>, emit < i, p2i >, where p2i = 4diihiT

′
.

(3) Computing H ← 2
3H. ∗ (1 + P1./P2). Updating hi ∈ H can be paral-

lelized through the following single MapReduce operation.

– Map-VII: read < i, hi >, < i, p1i > and < i, p2i > on i such that tu-
ples with the same i are shuffled to the same machine in the form of
< i, {hi, p1i, p2i} >.

– Reduce-VII: read < i, {hi, p1i, p2i} > and emit < i, hnew
i >, where hnew

i =
2
3hi. ∗ (1 + p1i./p2i).

Updating H on MapReduce cluster comprises of seven continuous MapRe-
duce jobs above and its entire flowchart is depicted in Figure 2.

4 Experimental study

In this section, we will report the results of our experimental study on our
proposed method (For convenience, we call it DRNMFSR hereafter). We con-
duct four types of experiments. The first one is the performance comparisons,
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Fig. 2 Updating H on MapReduce cluster

the second one is the robustness validation, the third one is convergence anal-
ysis and the last one is the scalability test on the MapReduce cluster. Each
experiment is run 10 times and the average is reported here.

4.1 Datasets

To compare the performance, we select 5 widely used complex network dataset-
s, including Karate club member network[1], Dolphin social network[1], Amer-
ican college football network [1], Cora [40] and WebKB [40]. Except for Cora
and WebKB datasets, Karate, Dolphin and Football datasets all have ground-
truth community partitions: both Karate and Dolphin have 2, and Football
have 12. These three datasets are also used to validate the robustness of DRN-
MFSR. To test the scalability of DRNMFSR using MapReduce, we select two
large-scale online social networks datasets: LiveJournal [41] and Orkut [41].
Although these two datasets have ground-truth communities, these communi-
ties are overlapped. Our method only focuses on discovering non-overlapped
communities, so we only use LiveJournal and Orkut to test the scalability of
DRNMFSR. The statistics of these datasets above are summarized in Table
1.



Table 1 Statistics of datasets

Dataset |V | |E| k
Karate 34 78 2
Dolphin 62 159 2
Football 115 613 12
Cora 2708 5429 N/A

WebKB 877 1608 N/A
LiveJournal 3997962 34681189 287512

Orkut 3072441 117185083 6288363

4.2 Performance evaluation metrics

(1) Normalized Mutual Information (NMI). In the community discovery prob-
lem, NMI is a standard metric to measure the similarity of the ground-truth
communities and discovered communities [42]. Given the discovered commu-
nities set C and the ground-truth communities set C ′, we can first construct
a confusion matrix N , whose entry nij denotes the number of nodes in the
ground-truth community i that appear in the discovered community j, and
then NMI(C,C ′) can be defined as follows:

NMI(C,C ′) =
−2

∑|C|
i=1

∑|C′|
j=1 nij log(

nijn
ni.n.j

)∑|C|
i=1 ni. log(

ni.

n ) +
∑|C′|

j=1 n.j log(
n.j

n )
, (27)

where ni. denotes the sum over row i of N and n.j denotes the sum over column
j of N . If C is identical to C ′, then NMI(C,C ′) takes its maximum value of 1.
If C is totally independent of C ′, then NMI(C,C ′) takes its minimum value
of 0. Therefore, NMI(C,C ′) ∈ [0, 1]. The larger the NMI(C,C ′) value, the
better the discovered communities.

(2) Modularity Q. The modularity function Q is another way to evalu-
ate the performance of community discovery methods, especially when the
real community structure is not clear [1]. It is often used to directly evalu-
ate the performance of a particular discovered communities set. Given C =
{c1, c2, ..., ck} is the discovered communities set of G(V,E), its modularity
function Q can be defined as follows:

Q(C) =
k∑

i=1

(
L(Vci , Vci)

L(V, V )
− (

L(Vci , V )

L(V, V )
)2), (28)

where Vci is the set of nodes in ci, L(Vci , Vci) =
∑

vi∈Vci
,vj∈Vci

aij , L(Vci , V ) =∑
vi∈Vci

,vj∈V

aij and L(V, V ) = 2|E|. Generally, a bigger Q(C) corresponds to

a better community partition, and hence maximizing Q can also be used to
automatically determine the optimal number of k when the ground-truth com-
munities are unknown.



In our experiments, we select NMI as the performance evaluation metric on
three datasets with ground-truth community partitions (i.e., Karate, Dolphin
and Football) and use Q as the performance evaluation metric on two datasets
without ground-truth community partitions (i.e., Cora and WebKB).

4.3 Performance comparative experiments using different similarity measures

In this subsection, we make performance comparisons with some representa-
tive NMF-based methods for community discovery mentioned in Section 2.2,
including SNMF [31], MHGNMF [34] and BSNMF [35] methods. It is worth
noting that SNMF, MHGNMF and BSNMF methods all use the Frobenius
norm and our method DRNMFSR is the only method using ℓ2,1 norm. In our
experiments, for each method we all apply different similarity measures intro-
duced in Section 2.1 and make comparisons by evaluating the performance of
community discovery. The adjacency matrix A itself also acts as a similarity
measure to be used in the tests (denoted as A).

(1) NMI comparisons
For every method, we apply different similarity measures on Karate, Dol-

phin and Football datasets respectively and make comparisons in term of N-
MI. Note that in each experiment the value of k is set equal to the number
of ground-truth communities of corresponding dataset. Comparison results
are shown in Table 2. We can see that on every dataset every method using
SimRank all performs better than the most frequently used adjacent matrix
measure and other 4 measures (i.e., CN, RE, DK and RW). This means that
SimRank measure can improve the performance of NMF-based methods for
community discovery. Additionally, we also find that every NMI obtained by
DRNMFSR using SimRank is equal to 1 and other four methods using Sim-
Rank all can not guarantee that every NMI is equal to 1. Therefore, DRNMF-
SR performs the best in identifying the ground-truth community partitions.

(2) Q comparisons
We also firstly apply different similarity measures on Cora and WebKB

datasets, and then run DRNMFSR and other three comparative methods (i.e.,
SNMF, MHGNMF and BSNMF), respectively. We compute the Q values by
constantly varying k value of Cora in the domain of [2,100] and [2,50] for
WebKB. The best Q values and its corresponding k values of every method
with different similarity measures are shown in Table 3. We can see that, among
6 measures, every method using SimRank can obtain the biggest Q values.
On WebKB dataset, DRNMFSR using SimRank even improve by 25% than
DRNMFSR using the adjacent matrix measure. Also, we find that DRNMFSR
using SimRank performs better than other three methods using SimRank. For
example, on WebKB dataset the biggest Q value is 0.85, which is obtained by
DRNMFSR and is far greater than the ones obtained by other three methods.

On the whole, the results of comparative experiments above all demon-
strate that similarity matrix constructed using SimRank can better improve
the performance of NMF-based method for community discovery. Actually,



Table 2 NMI comparison results

Method Dataset
Measure

A CN RE DK RW SR

SNMF
Karate 0.95 0.98 0.93 0.52 0.22 1.0
Dolphin 0.89 0.91 0.89 0.31 0.26 0.95
Football 0.92 0.92 0.67 0.39 0.31 0.93

MHGNMF
Karate 0.96 0.97 0.96 0.55 0.31 1.0
Dolphin 0.91 0.93 0.92 0.36 0.32 0.96
Football 0.92 0.92 0.69 0.41 0.35 0.95

BSNMF
Karate 0.94 0.95 0.93 0.53 0.24 1.0
Dolphin 0.89 0.92 0.89 0.34 0.28 0.95
Football 0.92 0.92 0.68 0.39 0.33 0.94

DRNMFSR
Karate 0.95 0.96 0.92 0.58 0.36 1.0
Dolphin 0.92 0.93 0.92 0.43 0.39 1.0
Football 0.92 0.92 0.73 0.45 0.42 1.0

Table 3 Q comparison results

Method Dataset
Measure

A CN RE DK RW SR
Q k Q k Q k Q k Q k Q k

SNMF
Cora 0.48 9 0.45 15 0.53 25 0.29 26 0.23 26 0.61 33

WebKB 0.53 6 0.58 5 0.41 5 0.24 6 0.21 7 0.69 5

MHGNMF
Cora 0.56 11 0.52 18 0.59 21 0.36 27 0.25 25 0.65 33

WebKB 0.59 7 0.63 6 0.51 6 0.34 7 0.26 9 0.73 6

BSNMF
Cora 0.52 10 0.51 16 0.57 26 0.31 28 0.24 26 0.63 33

WebKB 0.56 9 0.61 5 0.46 5 0.27 5 0.22 6 0.70 7

DRNMFSR
Cora 0.61 9 0.56 15 0.68 25 0.41 27 0.36 23 0.76 33

WebKB 0.68 5 0.71 4 0.58 5 0.36 4 0.29 4 0.85 5

SimRank based on recursive style can combine local and global topology fea-
ture to assess the similarity of pairs of nodes in a graph. Hence, it can provide
a more accurate structure feature matrix to the complex network than other
measures which only consider the local topology feature (e.g., the most widely
used measure: the adjacent matrix). Accurate feature matrix is very helpful
to improve the performance of method for community discovery using NMF.
Related experiments have also confirmed this. In addition, we also find that
DRNMFSR using ℓ2,1 norm has better performance than other three NMF-
based methods using Frobenius norm. This is because ℓ2,1 norm can better
improve the robustness than Frobenius norm, and good robustness is also
very helpful to improve the performance of NMF-based method for commu-
nity discovery. In the next section, we will specially present the robustness
advantages of DRNMFSR by also comparing with other three methods.



4.4 Robustness validation

We validate the robustness of DRNMFSR by comparing with SNMF, MHGN-
MF and BSNMF methods on Karate, Dolphin and Football. These three
datasets all have the ground-truth community partitions, so we can make
noises by artificially creating links between nodes located in different commu-
nities. Supposing that the ground-truth communities is C ′ = {c′1, ..., c′r}, where
every c′i contains its own member nodes, then the number of all possible noise
links is

∑r
i=1

∑r
j=i+1 |c′i||c′j |. These virtual noise links can be used to test the

robustness of every method. For the convenience of comparisons, all methods
use the SimRank measure. In our experiments, for every testing dataset we
firstly randomly select different ratios (we set 5 levels: 2%, 4%, 6%, 8% and
10%) of noise links to reconstruct its corresponding SimRank similarity matrix
S, and then respectively evaluate the NMI performance of every method. The
comparison results on every testing dataset are shown in Figure 3 to Figure
5, respectively.
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Fig. 3 Robustness comparison on Karate

From Figure 3 to Figure 5, we can see that with the ratio of noise links
increasing on every testing dataset, the NMIs of SNMF, MHGNMF and B-
SNMF all fall faster than DRNMFSR. For example, when we set the ratio of
noise links on Football to be 10%, the NMI of DRNMFSR is 0.71, which falls
by 29% than the one obtained without noise links, but it is still a relatively
ideal value. However, the NMI of SNMF is 0.43 (falls by 54%), the NMI of
MHGNMF is 0.47 (falls by 50%) and the NMI of BSNMF is 0.46 (falls by
51%). These values also means that their results of community discovery are
very bad. On the whole, these comparison results show that DRNMFSR has
better robustness than other three methods. The reason is that DRNMFSR
selects the ℓ2,1 norm instead of Frobenius norm used in SNMF, MHGNMF and
BSNMF to devise the objective function of NMF-based community discovery
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Fig. 4 Robustness comparison on Dolphin
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Fig. 5 Robustness comparison on Football

model, and the large errors due to noise links do not dominate the objective
function because they are not squared. Therefore, DRNMFSR can improve
the robustness by effectively reducing the affection caused by noise links.

4.5 Convergence analysis

We make convergence analysis for DRNMFSR by comparing with SNMF,
MHGNMF and BSNMF on Karate, Dolphin, Football, Cora and WebKB.
The k value for every dataset is set to its corresponding ground-truth or opti-
mal number obtained by DRNMFSR. The major comparison metrics include
the iterative number of convergence: Iterations and convergence time. For the
fairness of comparisons, all methods use the SimRank measure and are imple-
mented using serial programming model. All the experiments are conducted
on a machine powered by a Intel Core(TM) i7-6700 CPU 3.4GHz with 16G-



B RAM, running Windows 7 64bits and the program language is Java. Our
experiment results are shown in Table 4. The results show that, on every
dataset DRNMFSR all takes less iterations and time to converge than other
three methods. Furthermore, the larger the dataset scale is, the more obvious
the advantage of DRNMFSR is. For example, on Cora DRNMFSR only need-
s 85 iterations and 31.25 seconds to converge, which respectively decreases
by 29.6% and 32.5% than the corresponding suboptimal results obtained by
MHGNMF. Although DRNMFSR using ℓ2,1 norm needs to additionally up-
date the diagonal matrix D in every iterations, it needs less iterations which
can make it run faster than SNMF, MHGNMF and BSNMF.

Table 4 Convergence analysis results

Dataset Metric SNMF MHGNMF BSNMF DRNMFSR

Karate
Iterations 30 27 28 16
Time (sec.) 0.036 0.025 0.029 0.023

Dolphin
Iterations 34 30 31 18
Time (sec.) 0.049 0.032 0.038 0.029

Football
Iterations 77 65 69 35
Time (sec.) 1.876 1.564 1.623 0.986

Cora
Iterations 149 121 136 85
Time (sec.) 56.78 46.32 49.73 31.25

WebKB
Iterations 108 87 98 67
Time (sec.) 33.13 26.56 31.79 19.21

4.6 Scalability test

In this subsection, we conduct experiments on two large-scale datasets: Live-
Journal and Orkut to test the scalability of DRNMFSR using MapReduce.
Our experimental platform is a cluster, which is composed of 10 machines
with the same configuration: 2.93G Hz CPU, 4GB memory and 1TB disk. We
select Twister [43] as the MapReduce distributed computing framework, which
is more suitable for running iterative MapReduce program than other similar
frameworks (e.g., Hadoop or HaLoop). To evaluate the the scalability of DRN-
MFSR running on MapReduce cluster, we introduce the Speedup = Ts/Tc as
the evaluation criterion, where Ts is the running-time of machine clusters un-
der standalone mode, namely only including one worker machine, and Tc is
the running time of machine cluster with specified number of worker machines.
When Speedup is more proportional to the number of worker machines, the
scalability of DRNMFSR will be better. Our experiments include two parts:
computing SimRank and updating H on MapReduce cluster. For convenience,
on every testing dataset we all set the iterative numbers of computing Sim-
Rank and updating H to be the fixed values. Through increasing the number



of worker machines in MapReduce cluster from 1 to 10, we obtain the corre-
sponding running-time of computing SimRank and updatingH on LiveJournal
and Orkut. The corresponding speedup changing curves are shown in Figure
6 and Figure 7, respectively.
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Fig. 7 Speedup of updating H

In Figure 6 and Figure 7 all the speedup changing curves increase nearly
linearly at the beginning and stabilize at a certain value when the number
of worker machines increase to a threshold. The reason is that the size of
dataset limits the number of MapReduce tasks. When the number of worker
machines is bigger than the number of tasks, the tasks have already been
fully parallelized and the extra worker machines in the cluster no longer help
increase the speedup. To confirm this finding, we double the amount of data



by simply duplicating original datasets and conduct the same experiments. We
find that all of new speedup changing curves always increase nearly linearly
when the number of worker machines increase from 1 to 10. This means that
all of worker machines undertake computation tasks. Generally, these results
above indicate that DRNMFSR using MapReduce is scalable enough to deal
with the large-scale complex networks.

5 Conclusions

Many existing works have proved that NMF is a very effective model for com-
munity discovery in complex networks, but there are still many issues worthy
of further research. In this paper, we focus on how to improve NMF-based
community discovery and propose a new method using distributed robust N-
MF with SimRank similarity measure (DRNMFSR). DRNMFSR selects Sim-
Rank similarity measure to construct the feature matrix of complex networks
and can improve the performance of community discovery by more accurate-
ly representing the global structure feature of complex networks. Meanwhile,
DRNMFSR has better robustness by using ℓ2,1 norm instead of the widely
used Frobenius norm and is very effective to handle noises existing in complex
networks. Furthermore, this method can be implemented using MapReduce
distributed computing framework and has a good scalability to resolve the
problem of community discovery in the large-scale complex networks. We con-
duct extensive experiments on several typical complex networks and the results
show that our method is very effective. Considering that recently there have
appeared several other new similarity measures for graph nodes, including net-
work representation based methods and deep learning based methods, we will
further conduct comparative experiments with these new measures in our fu-
ture work. Additionally, we will study more strategies to further improve the
efficiency of our method (e.g., implemented and optimized using the memory
computing based framework: Spark).
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