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Abstract

Recent studies have shown that results deduced on the basis of a new time domain termed natural

time reveal that novel dynamical features hidden behind time-series in complex systems can be

uncovered. Here, we propose a method for estimating the multifractal behavior of time series by

studing the fluctuations of natural time under time reversal. Examples of the application of this

method to fractional Gaussian noises, fractional Brownian motions, binomial multifractal series,

Lévy processes as well as interbeat intervals’ time series from electrocardiograms are presented.
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I. INTRODUCTION

In most cases, the time-series resulting from physical systems and processes exhibit cor-

relations that decay exponentially. However, it is well known[1, 2] that a major exception

is when approaching a critical point, the exponential decay turns into a power-law decay.

Moreover, long range power-law correlations have been found in a wide variety of systems

including complex systems, e.g., see Ref.[3]. Such systems give rise to time-series that ex-

hibit scale-invariant features characterized by long-range power law correlations. Since their

superposition with erratic fluctuations due to, for example, noise in the emitted signals,

may be unavoidable or the amount of experimental data may be small, it is very important

to investigate techniques that may identify such long-range power law correlations. This

is main the scope of the present paper by employing the new time domain termed natural

time [4–8] which may uncover hidden properties in the time-series of complex systems.

In general, a stochastic process X(t) is called [9, 10] self-similar with index H if it has

the property X(λt) d
= λHX(t), where d

= denotes the usual equality of finite-dimensional

distributions. Such a process generates time series which is characterized by an unique

scaling exponent H in their entire length. This kind of time series is called monofractal time

series [11].

In reality, the majority of time series does not exhibit a simple monofractal scaling behav-

ior, which can be accounted for by a single scaling exponent H. As mentioned in Ref. [12],

there is the possibility of crossover (time-) scales sx separating regimes with different scaling

exponents [13, 14], e. g. long-range correlations on small scales s (s << sx) and another

type of correlations or uncorrelated behavior on larger scales s (s >> sx). In other cases,

the scaling behavior is more complicated, and different scaling exponents are required for

different parts of the series [15]. Such time series, where more than one scaling exponent

(set of scaling exponents) is needed in order to describe their scaling properties are called

multifractal time series, e.g., [16–25].

Detrended Fluctuation Analysis (DFA) constitutes a well-established method for the de-

termination of the scaling exponent H in monofractal time series [26, 27] as well as its

generalization Multifractal Detrended Fluctuation Analysis (MFDFA) in the case of multi-

fractal time series [12]. Another widely adopted [28] method for estimating the multifractal

behavior in non-stationary observational records, is the wavelet transform modulus max-
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ima (WTMM) method [29, 30] which involves, however, a more complicated mathematical

treatment. WTMM has been compared [12, 31, 32] to MFDFA and the results show [33]

that MFDFA is at least equivalent to WTMM, while the latter needs more care and may

yield spurious multifractality [32]. An alternative multifractal method that has [33] even

less computational difficulties than MFDFA, is the one based on the Centered Moving Aver-

age (CMA) technique [34, 35], that improves the classical causal backward moving average

method [36, 37] (see also [38]), and is called multifractal CMA (MFCMA). Since CMA per-

forms better than DFA in the limit of very small and very large scales, MFCMA is more

suitable [33] for short time series. Of course, the detrending made in MFCMA is not as

strong as in MFDFA, thus one may consider MFCMA for data without significant trends

and MFDFA for data with intense trends [33], like polynomials of large curvature or peri-

odicities of high amplitude and/or frequency. Natural time [4–8] and more specifically the

fluctuations of its average value under time reversal, can also capture [39] the scaling prop-

erties of a monofractal time series by means of the determination of its scaling exponent H.

Here, we attempt a generalization of this method to the multifractal case.

In Sec. II, we describe the basics of natural time analysis including the fluctuations of the

average value of natural time under time reversal and introduce the Generalized Fluctuations

of the average value of Natural Time under time reversal (GFNT). In the same Section, we

present the methodology we adopt to estimate the set of generalized scaling exponent h(q)

of a mulltifractal time series and its singularity spectrum f(α). Furthermore, in Sec. III,

we examine various time series, comparing the results coming from the different methods:

MFDFA, MFCMA and GFNT. Finally, Sec. IV summarizes our conclusions.

II. METHODOLOGY

A. Natural Time Analysis

In a time series comprising N events, the natural time χk = k/N serves as an index

for the occurrence of the k-th event [4, 5]. In natural time analysis the evolution of the

pair (χk, Qk) is considered, where Qk denotes in general a quantity proportional to the

energy released in the k-th event. For example, for dichotomous signals, Qk stands for

the duration of the k-th pulse while for the seismicity Qk is proportional to the seismic
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energy released during kth earthquake [6, 40–47]. Usually instead of Qk, the normalized

energy release pk = Qk/
∑N

i=1Qi is used [7]. The latter sum up to unity,
∑N

k=1 pk = 1,

and can be considered as probability [48] giving rise to an average value of natural time

〈χ〉 =
∑N

k=1 χkpk. This value changes [39] if we consider the action [49–51] of the time-

reversal T̂ pk = pN−k+1 that makes the first pulse to be considered as the last one, the second

as the last but one etc.

It is noteworthy that the physical meaning of the difference of average value of natural

time χ under time reversal, i.e., of the quantity 〈χ〉−〈T̂ χ〉, can be revealed if we consider the

parametric family of the distributions p(χ; ε) = 1 + ε(χ − 1/2). For small ε (� 1/2), these

distributions correspond to small trends superimposed on a uniform distribution [22, 52].

Direct calculation of 〈χ〉 ≡
∫ 1

0
χp(χ; ε)dχ yields 〈χ〉 = 1/2 + ε/12 and since T̂ p(χ; ε) =

p(χ;−ε), one obtains that 〈χ〉 − 〈T̂ χ〉 = ε/6. Thus, the average value of natural time under

time reversal is proportional to the ‘local’ trend ε and the study of its fluctuations, which is

the subject of the next subsection, is actually the study of how these ‘local’ trends fluctuate

in a time-series.

1. Fluctuations of the average value of natural time under time reversal.

In order to study the long-range dependence in a time series, e.g., Qk, {k = 1, 2, . . . , N},

we have to define a scale-dependent measure (for example, the detrended fluctuation Fd(l)

constitutes [26] such a measure in DFA). Natural time and particularly the fluctuations

of natural time under time reversal, may constitute [39] such a scale-dependent measure

enabling us to introduce a reliable method to extract the scaling exponent H of a monofractal

time series.

The fluctuation of the average value of natural time under time reversal within scale l is

∆χl =

√
E[(〈χ〉 − 〈T̂ χ〉)2] (1)

Considering a sliding window of length l starting from Qm0 (thus ending at Qm0+l−1), the

values of natural time are given by χk = k/l for k = 1, 2, ..., l and correspond to the point

probabilities pk = Qm0+k−1/
∑l

i=1Qm0+i−1. Since under time reversal, we have T̂ pk = pl−k+1,
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Eq.(1) can be alternatively written as

∆χ2
l = E

{[
l∑

k=1

k

l
(pk − pl−k+1)

]2}
(2)

where the symbol E[...] denotes the expectation value obtained when a window of length l is

sliding through the time series Qk. The evaluation of E[...] is carried out by full computation.

By expanding the square in the right hand side of Eq. (2), we obtain

∆χ2
l =

l∑
k=1

(
k

l

)2

E[(pk − pl−k+1)
2] +

∑
k 6=m

km

l2
E[(pk − pl−k+1)(pm − pl−m+1)] (3)

The quantities pk as mentioned sum up to unity, i.e.,
∑l

k=1 pk = 1 or equivalently pk =

1−
∑

m6=k pm. By subtracting from the last expression its value for k = l− k+ 1, we obtain

pk − pl−k+1 = −
∑

m6=k pm − pl−m+1, and hence

(pk − pl−k+1)
2 = −

∑
m6=k

(pk − pl−k+1)(pm − pl−m+1) (4)

By substituting Eq. (3) into Eq. (4), we obtain

∆χ2
l = −

l∑
k=1

(
k

l

)2∑
m6=k

E[(pk−pl−k+1)(pm−pl−m+1)]+
∑
k 6=m

km

l2
E[(pk − pl−k+1)(pm − pl−m+1)]

(5)

which simplifies to

∆χ2
l = −

∑
k,m

(k −m)2

l2
E[(pk − pl−k+1)(pm − pl−m+1)] (6)

The negative sign appears because (pk−pl−k+1) and (pm−pl−m+1) are in general anticor-

related due to Eq. (4). Equation (6) implies that ∆χ2
l measures the long-range correlations

in Qk. If we assume that −E[(pk − pl−k+1)(pm − pl−m+1)] ∝ (k −m)2χH/l2 (cf. pk scales as

1/l due to the condition
∑l

k=1 pk = 1, e.g., see [53]), we have that

∆χ2
l ∝

l4+2χH

l4
(7)

so that
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∆χl(≡
√

∆χ2
l ) ∝ lχH (8)

where χH is a scaling exponent. Obviously, we can calculate it from the slope of the graph

log(∆χl) versus log(l). As it was shown [39], in the case of fractional Brownian motion(fBm)

the scaling exponent χH is identical to the corresponding scaling exponent H

H = χH (9)

while in case of fractional Gaussian noise (fGn) the following condition holds

H = 1 + χH . (10)

2. Generalized fluctuations of the average value of natural time under time reversal.

We observe that Eq. (1) involves a second order moment in analogy to the relation that

governs DFA [26, 27, 54]. With a similar thinking that led from DFA to MFDFA [12], we

define the q − th order variance of natural time under time reversal through the equation

∆χl(q) =
(
E[((〈χ〉 − 〈T̂ χ〉)2)q/2]

)1/q
(11)

which when it scales as

∆χl(q) ∼ lχH(q) (12)

it may lead to the exponents χH(q). As a strict analogy to DFA and MFDFA, we notice that

in the case of q = 2 the generalized fluctuations of natural time under time reversal (GFNT)

revert to ordinary fluctuations of the average value of natural time under time reversal.

B. Procedure to compare GFNT with MFDFA or MFCMA

In order to examine the ability of GFNT, i.e., Eq. (12), to capture the multifractal

scaling properties through χH(q) and compare its performance to MFDFA or MFCMA, the

following procedure is adopted:
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1. We generate monofractal and multifractal time series Xk, with generalized scaling

exponents which are analytically calculated or known in advance.

2. We calculate the sets of generalized scaling exponents h(q) with the help of MFDFA

as described in Appendix A or by following MFCMA as described in Appendix B. In

both cases, the original time series Xk is used for both analyses.

3. In natural time analysis Qk should be positive. So, we normalize the resulting Xk time

series to zero mean and unit standard deviation and then add to the normalized time

series Nk twice the minimum of Nk to ensure the positivity of Qk = Nk + 2|min(Nk)|.

4. We calculate the scaling exponents χH(q) with the help of generalized fluctuations of

natural time under time reversal, i.e., Eqs. (11) and (12), by fitting in a wide range

of scales l. We have empirically observed that the GFNT performance may improve

if an additional summation step is adopted. In such cases, we determine the profile

using the summation process defined by the equation

y(i) =
i∑

k=1

(Xk − X̄) (13)

where y(i) is the profile and X̄ the mean value given by

X̄ =
1

N

N∑
i=1

Xi. (14)

We then repeat the third step by considering the profile y(i) as Xk to ensure positivity

of Qk and calculate χH(q).

5. For further analysis, we may calculate the corresponding singularity spectrum [55]

f(α). Following Kantelhardt et al. [12], we first determine the global scaling exponent

τ(q) from the relation

τ(q) = qH(q)− 1 (15)

where H(q) is the generalized scaling exponent, i.e., h(q) of MFDFA and MFCMA or

χH(q) of GFNT, and q is the order of the fluctuation. Second, we define as usual [55]

the singularity spectrum f(α), using H(q) with the help of Legendre transformation

[56]

f(α) = αq − τ(q) (16)
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where

α = α(q) ≡ ∂τ(q)

∂q
. (17)

For the time series studied in subsection III D, the evaluation of the parameter α in

Eq. (17) is made by using three-point differentiation since there is no analytical form

for the global exponent τ(q). For a more detailed and accurate view of the width of

the singularity spectrum, we fit a second order polynomial to these points, generating

a parabolic function which corresponds to the singularity spectrum. The α value

assigned to the maximum of this second order polynomial, labeled αmax, as well as the

distance |α′ − α′′| between the two α-values that correspond to the same pre-defined

f(α)-value, e.g. f(α′) = f(α′′) = 0.75, are of great importance for our analysis (e.g.,

see Fig.5(c) that will be discussed latter in subsection III D).

III. APPLICATIONS

A. Fractional Brownian motion

Fractional Brownian motion (fBm) introduced by Mandelbrot and van Ness [57] has

already found many physical applications (e.g., see Refs. [58, 59]). As a first example, we

generate 3×102 monofractal fBm time series Xk (consisting of 104 points) for a given value of

the scaling exponent H using the Mandelbrot-Weierstrass function [49, 60, 61] and analyze

them with the help of the generalized fluctuations of natural time under time reversal by

fitting in the range of scales 4 ≤ l ≤ 103. The values obtained for χH(q) are used for the

construction of the statistics depicted in Fig. 1. The distribution of the multifractal spectra

obtained in each case are depicted in this figure by the mean value of χH(q) (blue solid

circles) and the corresponding standard deviation (cf. the mean value of their estimation

error is very close to the depicted standard deviation).

In order to compare these GFNT results with other multifractal methods, we used a com-

puter code named mfdfa.c implementing MFDFA [12] kindly provided to us by Professor

Doctor Jan Kantelhardt and used a fitting range of s = 10−2400. The corresponding results

for the average values of h(q) − 1 are shown by the green squares while the green shaded

region indicates the one standard deviation interval. Additionally, MFCMA (see Appendix

B) has been also applied using a fitting range of s = 10− 2400 and the results are shown in
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Fig.1 by the inverted red triangles (mean values) and the red shaded region (± one standard

deviation).

Although we expect that the estimated generalized scaling exponents χH(q) of GFNT

should be independent from q, the results shown in Fig. 1 exhibit a deviation from the

expected H value. One can observe that GFNT exhibits stability for negative values of q,

however, with much larger error when comparing with MFDFA. For the positive values of q,

the GFNT is approaching the MFDFA in the cases of H = 0.3, H = 0.5, H = 0.7 especially

within the range of 0 ≤ q ≤ 6. Also, the results of GFNT and MFDFA for positive q tend

to be closer for small values of H. When studying the results obtained from MFCMA, we

observe an even smaller variation of h(q). MFCMA performs better than the other methods

for positive q, in accordance with the suggestion of Ref.[33], but for negative q GFNT gives a

more stable result at the expense, however, of a larger standard deviation. In summary, the

scaling exponents χH(q) for the majority of the H values studied have an almost comparable

behavior with those of MFDFA or MFCMA for these monofractal time series.

B. Binomial multifractal series

In the binomial multifractal model, a series of N = 2nmax numbers with k = 1, ..., N is

defined by

xk = αn(k−1)(1− α)nmax−n(k−1) (18)

where 0.5 < α < 1 is a parameter and n(k) is the number of digits equal to 1 in the binary

representation of the number k (for instance n(13) = 3, since 13 corresponds to binary

1101). The generalized Hurst exponent h(q) can be analytically evaluated (e.g., see Ref.

[12]) leading to the expression

h(q) =
1

q
− ln[αq + (1− α)q]

q ln(2)
. (19)

We generated such time series consisting of 8192 points (nmax = 13 with α = 0.7, 0.8, 0.9

and estimated the generalized scaling exponents by MFDFA method (see the green squares

and the corresponding green region in Fig. 2).
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As far as GFNT method is concerned, binomial time series constitute a representative

example where the aforementioned additional step of summation is required. Subsequently,

we generate and analyze the profile (instead of original time series) in natural time by

evaluating scaling exponents χH(q) (fig. 2). More specifically, for the positive q-values we

use for calculation the range l = 8−158 and for the negative q-values the range l = 50−1000.

Thus, we proceed to the comparison of the generalized scaling exponents h(q) calculated

by MFDFA (green color) (using mfdfa.c and fitting in the range 50-1000) and χH(q) by

GFNT (blue color) versus the theoretical set of generalized scaling exponents h(q) for bino-

mial multifractal time series for three different values of α, for α = 0.7, 0.8 and 0.9. For the

negative q values, the results show that the GFNT estimators are equal or better than those

obtained by MFDFA. For the positive q values, the results show that the GFNT estimators

are much better than those obtained by MFDFA and extremely close to the corresponding

theoretical values. This conclusion is not altered if we also consider the additional results

obtained by employing MFCMA (fitting in the range 50-1000), which are shown in Fig.2

with the cyan inverted triangles.

Having the scaling exponents χH(q) from GFNT, we calculate the singularity spectra

for the three cases α = 0.7, 0.8 and 0.9 as shown in Fig.3 and compare them with those

theoretically obtained. The observed convergence of the points strengthens the validation

of the GFNT method.

C. Lévy processes

Uncorrelated process obeying a distribution with an asymptotic power law behavior,

P (x) ∼ x−(αL+1), for large x, will have infinite variance if 0 < αL ≤ 2 [23]. Here, we

examine a typical example of such a process which is the stable Lévy process.

More specifically we calculate the generalized scaling exponents (with MFDFA, MFCMA

and GFNT) of a time series (consisting of 262144 points) which obeys power law with

exponent αL + 1 = 2.5. The time series is coming from Ref. [23] and is available online

at http://lps.lncc.br/index.php/demonstracoes/emd-damf. It has a well-known set of

generalized scaling exponents [62]:
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h(q) =

1/αL q ≤ αL

1/q q > αL

(20)

Our results are shown in Fig.4 where the range of l =5 to 2511 has been used in GFNT.

We observe that the generalized scaling exponents χH(q) which are calculated by GFNT

are closer to the theoretical curve than those obtained by MFDFA (when using mfdfa.c

and fitting in the aforementioned range of 5 to 2511). Additional results obtained by fitting

in the same range and using MFCMA (depicted in Fig.4 by the cyan inverted triangles)

differ from the theoretical curve on average as much as those of GFNT. MFCMA, however,

exhibits an average value of h(q) for negative q which is slightly closer to the theortical one

than that of GFNT.

D. Application to heart variability data

Apart from the synthetic multifractal time series used so far, here we analyze heart rate

variability data which are well known [19, 24, 63–67] to exhibit multifractal properties as

well. These data come from 134 long-lasting (from several hours to around 24 h) elec-

trocardiograms (ECG) of Physionet [68] available from https://physionet.org/. These

contain: (i) 72 healthy subjects which will be labeled H and come from the MIT-BIH Nor-

mal Sinus Rhythm Database (nsrdb) containing 18 H and the Normal Sinus Rhythm RR

Interval Database (nsr2db) containing 54 H (with sampling frequency fexp=128Hz), (ii) 44

patients suffering from congestive heart failure (CHF) coming from the CHF RR Interval

Database (chf2db) containing 29 subjects with fexp=128Hz and the BIDMC CHF Database

(chfdb) with 15 subjects with severe CHF which is a subset of the data described in Ref. [69]

(fexp=250Hz), and (iii) the Sudden Cardiac Death Holter Database (sddb) with fexp=250Hz.

The latter database contains 24 records among which 12 were ECG with audited annota-

tions. Beyond these 12 cases, we also study six more (i.e., ‘33’, ‘37’, ‘44’, ‘47’, ‘48’, ‘50’)

that could be analyzed with confidence [50].

The time series that were analyzed by GFNT are those corresponding to the NN intervals,

i.e., Xk=NNk, k = 1, 2, . . . N (cf. these intervals are obtained [70] from the ECG annotation

files by using the option ‘-c -PN -pN’, which yields only intervals between consecutive normal

beats and intervals between pairs of normal beats surrounding an ectopic beat are discarded
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from the output). Additionally, following Ref. [19], we eliminated the outliers due to missed

beat detections that may give rise to large intervals included in the NN time series. For each

of the 134 NN time series χH(q) was estimated for scales l in the range 5 to ≈ N/4, where

N is the total number of NN intervals in the time series and typical examples are shown

in Fig.5(a). Here, we note that since we analyze interval time series from ECGs that have

been digitized with different sampling rates we focus on the region of positive q-values since

the small fluctuations enhanced by negative q’s are expected to be significantly affected by

digitization. According to the procedure described above in subsection II B, we constructed

τ(q), see Fig.5(b), and from a three-point differentiation we obtained the spectra shown in

Fig.5(c). As it has been established [11, 19, 71–74], the multifractal properties of the heart

beat intervals time series convey useful information concerning a well-functioning healthy

heart.

In view of this fact, we quantify here the multifractal spectrum by means of the quantities

αmax, i.e., the value of α at which the parabolic approximation used maximizes, and |α′−α′′|,

which is the width of the parabolic spectrum at f(α′) = f(α′′) = 0.75, that were defined in

subsection II B. Figure 6 depicts αmax versus |α′ − α′′| for all the 134 time series analyzed.

A quick look at this figure reveals that the points corresponding to healthy individuals fall,

as expected, within a well-defined region bounded by the cyan ellipse of Fig.6 . Apart from

the 72 healthy, this ellipse encloses only 6 (out of 18) SCD and more interestingly only 2

(out of 15) New York Heart Association (NYHA) class IV CHF patients. For CHF patients

of NYHA classes III and II only 36% fall outside the cyan ellipse, whereas for NYHA class

I only 1 (out of 4) does so. Finally, it is worthwhile to mention that the separation between

different heart patients based on Fig.6 can be considered as complementary to other methods

suggested on the basis of natural time for the same reason. For example, the case of the SCD

individual labeled ‘47’ mixes with H in Fig.5 of Ref. [51] while in Fig.6 the corresponding

point lies well outside the cyan ellipse of the healthy. Moreover, a comparison with the data

depicted in Fig.5 of Ref. [51] with Fig.6 reveals that only one (‘chf12’) NYHA class IV CHF

patient mixes with the healthy.
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IV. CONCLUSIONS

Generalizing the fluctuations of natural time under time reversal in a way similar to

the transition from DFA to MFDFA, we constructed a method named GFNT based on an

exponent χH(q) which can capture the scaling properties of multifractal time series. As it

has been shown by the applications presented here, the generalized scaling exponents χH(q)

are very close to the theoretically expected values as well as to those found by MFDFA and

MFCMA . For negative q values, GFNT may be more accurate though less precise than

MFDFA. Finally, GFNT has been also applied to NN interval time series obtained from

ECG recordings. The results exhibit a robust behavior for the healthy group that allows

the separation of 13 (out 15) NYHA class IV CHF patients.
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APPENDIX A: BRIEF DESCRIPTION OF MFDFA

The multifractal detrended fluctuation analysis usually abbreviated MFDFA constitutes

the generalization of DFA [26, 27]. MFDFA methodology consists of five steps [12]. Sup-

posing that we have a time series Xk comprising of N points:

1. Firstly, we calculate the ‘profile’ time series y(i) =
∑i

k=1(Xk − X̄) where X̄ =∑N
k=1Xk/N .

2. As a second step, we divide the profile time series in Ns non-overlapping segments of

equal length s, Ns = N/s.

3. Then, we calculate the trend for each segment s via the methodology of least-square

fit by using a polynomial of order n and determine the variance

F 2(s, v) =
1

s

s∑
i=1

{
y[(v − 1)s+ i]− yv(i)

}2

(A1)
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where yv(i) is the fitting polynomial at the i-th point of the v-th non-overlapping

segment.

4. Averaging over all segments results in the q-th order fluctuation function

Fq(s) =

{
1

Ns

Ns∑
v=1

F 2(s, v)
q/2

}1/q

(A2)

where the index variable q can be assigned with any real value except zero. For q = 2,

DFA is retrieved.

5. Finally, for the determination of the scaling behavior of time series, we analyze log-log

plots of Fq(s) versus s for each value of q to end up at the set of generalized scaling

exponents h(q) according to

Fq(s) ∝ sh(q). (A3)

Due to the summation in step 1, we have to subtract unity from h(q) in order to

compare with χH(q), when the original analyzed time-series Xk is used for GFNT.

APPENDIX B: BRIEF DESCRIPTION OF MFCMA

The multifractal centered moving average analysis usually abbreviateed MFCMA con-

sists [33] of the following steps. Supposing that we have a time series Xk comprising of N

points:

1. Firstly, we calculate the ‘profile’ time series y(i) =
∑i

k=1(Xk − X̄) where X̄ =∑N
k=1Xk/N .

2. As a second step, a centered moving average of an odd window length s is obtained

for every point i of the profile y(i)

CMAs(i) =
1

s

[s/2]∑
j=−[s/2]

y(i+ j), (B1)

where [s/2] is the integer part of s/2 which is [s/2] = (s − 1)/2 since s is odd. For

indices i at the edges of the profile (e.g. for i ≥ 1 and i ≤ [s/2]) the centered moving

14



average does not exist. One may ignore these points, or (which the case used in the

present manuscript) use a cyclic continuation of the time series by connecting the very

last part of the profile to the beginning by assuming y(0) = 0.

3. As a third step, the profile time series is divided in 2[N/s] non-overlapping windows ν

of equal length s. For each window ν = 0, . . . , [N/s]− 1 the fluctuation of the profile

around the centered moving average (in the forward direction) is given by

F 2
CMA,ν(s) =

1

s

s∑
i=1

[y(νs+ i)− CMAs(νs+ i)]2, (B2)

whereas for the backward direction and ν = [N/s], . . . , 2[N/s]− 1

F 2
CMA,ν(s) =

1

s

s∑
i=1

{y [N − (ν − [N/s] + 1)s+ i]− CMAs [N − (ν − [N/s] + 1)s+ i]}2 .

(B3)

4. Then, the fluctuation measure of MFCMA is defined as

FMFCMA,q(s) =

 1

2[N/s]

2[N/s]−1∑
ν=0

[F 2
CMA,ν(s)]

q/2


2

(B4)

5. Ideally, FMFCMA,q(s) follows a power law for a certain range of scales s,

FMFCMA,q(s) ∝ sh(q), (B5)

and the generalized exponent h(q) can be determined by straight line fits in the log-log

plots of FMFCMA,q(s) versus s. Due to the summation in step 1, we have to subtract

unity from h(q) in order to compare with χH(q). For the case of fBm studied in

subsection III A and in order to minimize summation errors, we employed the above

procedure for the fBm increments, i.e., the corresponding fractional Gaussian noise.

Obviously, in this case h(q) can be directly compared with χH(q).
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and S. Kryszewski, Physiological Measurement 32, 1681 (2011).

18



[68] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,

J. E. Mictus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Circulation 101, E215 (see also

www.physionet.org) (2000).

[69] D. S. Baim, W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F.

Gauthier, B. J. Ransil, W. Grossman, and E. Braunwald, J. Am. Coll. Cardiol. 7, 661 (1986).

[70] G. B. Moody, computer code ann2rr available from

http://www.physionet.org/physiotools/wag/ann2rr-1.htm.

[71] Y. Ashkenazy, P. C. Ivanov, S. Havlin, C. K. Peng, Y. Yamamoto, A. L. Goldberger, and

H. E. Stanley, Comput. Cardiol. 27, 139 (2000).

[72] Y. Ashkenazy, P. C. Ivanov, S. Havlin, C.-K. Peng, A. L. Goldberger, and H. E. Stanley, Phys.

Rev. Lett. 86, 1900 (2001).

[73] L. A. N. Amaral, P. C. Ivanov, N. Aoyagi, I. Hidaka, T. Tomono, A. L. Goldberger, H. E.

Stanley, and Y. Yamamoto, Phys. Rev. Lett. 86, 6026 (2001).

[74] A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E.

Stanley, Proc. Natl. Acad. Sci. USA 99, 2466 (2002).

19



0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-10 -5 0 5 10

GFNT

MFDFA

MFCMA

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

-10 -5 0 5 10

GFNT

MFDFA

MFCMA

0.55
0.6

0.65
0.7

0.75

-10 -5 0 5 10

GFNT

MFDFA

MFCMA

0.7
0.75
0.8

0.85

1
1.05
1.1

-10 -5 0 5 10

GFNT

MFDFA

MFCMA

H

q

(a)

(b)

(c)

(d)

H

H

H

FIG. 1: The average generalized scaling exponent estimated from χH(q) of GFNT (blue color) and

h(q)−1 of MFDFA (green color) versus q as it results (see subsection III A) from 3×102 fBm time

series with H = 0.3, H = 0.5, H = 0.7, and H = 0.9 (cf. these theoretical values are indicated

by the black horizontal lines). The red inverted triangles correspond to the results obtained when

using MFCMA. The colored regions refer to ± one standard deviation.
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FIG. 2: The generalized scaling exponents h(q) calculated by MFDFA (green color) and χH(q)

by GFNT (blue color) versus the theoretical set (red line) of generalized scaling exponents h(q)

for binomial multifractal time series with α = 0.7 (a), 0.8 (b), and 0.9 (c). The cyan inverted

triangles correspond to the results obtained when using MFCMA. The colored regions indicate the

estimation error.
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Eq.(19) is depicted with the solid curve in each case, while that calculated on the basis of the

exponents χH(q), with a step of δq = 0.1, of GFNT is shown with the solid squares.
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stable process with αL = 1.5 (red thick line). The cyan inverted triangles correspond to the results

obtained when using MFCMA. The colored regions indicate the estimation error.
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FIG. 5: The values of χH(q) estimated from GFNT for scales l in the range 5 to ≈ N/4, where N

is the number of heartbeats available in each record, are depicted in (a). These values are firstly

converted to τ(q) through Eq.(15) as shown in (b) and then a three-point differentiation leads

to the singularity spectrum depicted in (c). Examples of a healthy individual, labeled ‘16265’, a

congestive heart failure subject, labeled ‘chf07’, and a sudden cardiac death individual, labeled ‘36’

are included in these panels. In (c), the estimation of the quantities αmax and |α′ − α′′| based on

a parabolic fit is also shown.
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