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Abstract 
Much work has been conducted in the past on the influence of the rigidity of structural 
joints on the behavior of steel frames. Buckling of a column is fundamental to the design 
of load bearing structures mainly when the analysis of such frames takes into account the 
effect of the connection flexibility. 
The present work deals with such an effect on the elastic buckling load of plane steelframes. 
The proposed model consists in the development of comprehensive approach taking into 
account, the effects of the joint rigidity, the elastic buckling load  for both sway and non-
sway frames. Only one element is required over the length of the element to model stability, 
which let to solve practical problems with little computational effort. Some practical 
formulas for determining critical load for plane steel frames are then presented. The elastic 
buckling load is found to be strongly affected by semi-rigid joints and reveals that the 
proposed model is computationally very efficient with the expressions presented being 
general. 

Keywords:Steel structures; connection flexibility; plane frames;elastic buckling load. 

1. Introduction
Conventional analysis and the design of steel

frames assume either perfectly rigid or pinned 
joints. However, the real behaviour of the joints 
is between these two extreme cases; in this 
intermediate case of semi rigid joints, some 
rotation with corresponding bending moments 
will develop between the beam and column 
elements. The concept of semi rigid joints in 
steel structures is well accepted as structural 
benefits of using semi-rigid joints are widely 
recognized and there is a general agreement to 
include the beam-column joint deformations in 
structural analysis. 

Significant research has been carried out 
using mechanical models to study the joint’s 
behaviour and to introduce their effect in the 
analysis of structures.Simões da Silva [1] 
proposed a generic model for steel joints under 
generalized loading.  Ihaddoudène [2] presented 
a mechanical model of the connections, where 
the rigidity of the joint is represented by means 
of rotational and translational springs 

introducing the concept of non deformable 
element of nodes, thus describing relative 
displacements and rotations between the nodes 
and the elements of the structure. Eurocode 3 
Part 1-8 refers [3], for the characterization of the 
joint mechanical response to the component 
method based on some different researches and 
amongst them Jaspart [4]. Several authors [5-9] 
have presented models for determining the 
effective length factor of a beam-column with 
end restraints. Ermopoulos [5] presented a model 
for determining an equivalent buckling length of 
compression columns with semi rigid joints. 
Essa [6] proposed a design method for the 
evaluation of the effective length for columns in 
unbraced multistory frames. Raftoyiannis [7] 
presented the effects of the joint flexibility and 
elastic bracing system on the buckling load. 
Mageirou and Gantes [8], Gantes and Mageirou 
[9] proposed a model of an individual column 
representing a multistory frame where the 
member contributions converging at the bottom 
and top ends of the column are represented by 
equivalent springs. 
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2. Mechanical model 
The mechanical model adopted (Ihaddoudène 

[2]) is based on the analogy of three springs. A 
bar element subjected to both a compression 
axial force N and bending moments iM  and 

jM with semi-rigid joints (Fig. 1 and Fig. 2) at 
each end, is considered. The modified stiffness 
matrix including both the effects of axial force 
and connection flexibility, one needs to consider 
different situations [10]. 

In the local reference system, the stiffness 
matrix which is represented by the nodal degrees 
of freedom ( 1V , 1  , 2V , 2 ) of an element is 

given by:
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2.1.1Bar element under unit rotation 1i  

 
Fig. 1. Bar element subjected to a unit rotation. 

Horizontal force equilibrium 

HHH ji                                             (2) 

Moment equilibrium at the distance x  

jMHxNy)x(M                               (3) 

Moment equilibrium at end ""i  

MHlM i                                             (4) 

The equilibrium of this column in its buckled 
condition is described  

jMHxNy"EIy                                (5) 

EI
M

EI
Hxy"y j2 

                                
(6) 

Where 

EI
N2                                                          (7) 

The general solution of equation (6) is 

EI
M

EI
HxxcosBxsinA)x(y 2

j
2 

 
   

(8) 

where A  and B are the constants of integration 
to be determined from the boundary 
conditions for 0)0( y  and 0)( ly  

The solution of the system of equations obtained 
is given (27) by: 

)v(
l
wH 1

                                                
(9) 

)v(wM 1j                                               (10) 

)v(wM 2i                                                (11) 

In which: 

D
)vsinvwkvcos1(v)v( 2

2

1

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(12-a) 

D
)vsinv(v)v(1




                               
(12-b) 

)v()v()v( 112                              (12-c) 

Where 

)k,k,v()vsinvvcos22(D 21   (12-d) 

EI
Nllv                                          (12-e) 

And 

l
EIw 

                                                      
(12-f) 

A similar procedure is conducted for the bar 
element of the Fig. 2, the reaction H  and the 
moment equilibrium at the distance x  has the 
same expressions as given respectively by the 
Eq.(1) and Eq.(2); the expression of the moment 

iM  is given as (Ihaddoudène and Jaspart [11]):  
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ji MHlNM                                       (13) The entire modified stiffness matrix derived [10] 
is then as follows: 
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With: 

s)vw(kkvwc)kk( 2
2121           (15-a) 

vwsk11                                                 (15-b) 

vwsk22                                                 (15-c) 

“s” and “c” are sin and cos of an angle. 

The proposed model which is based on 
functions accounting for semi-rigid connections 
and predominant axial load has the advantage of 
being explicit and simple to solve practical 
problem with little computational effort. Some 
practical formulas can be derived from the 
proposed formulation as reported in the section 
below. 

3. Practical formulas 

3.1. “Semi-rigid /pinned” element 
Let us consider the element of Fig. 2 below 

with semi-rigid at end “i” and pinned at end “j”, 
one can derived the expressions of the functions 
respectively for unit rotation and unit 
displacement as: 

3.1.2Beam element for unit rotation 1i   
Parameters in Fig. 2a: 
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For the particular case of  01 k  the function   
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a-Unit rotation 1i b- Unit translation 1 i  

Fig. 2. “Semi-rigid/pinned” element 

3.1.2Beam element for unit displacement 
1 i  

Parameters in Fig. 2b: 
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Some particular cases can be considered: 

01 k  
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(17-a) 
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2
2 v)v(  and 0)v(4                       (17-c) 

3.2. “Semi rigid at i , fully rigid at j ”  
The beam element of Fig. 3 below is 

considered for unit rotation and unit 
displacement: 

3.2.1Beam element for unit rotation 1i  

Parameters in Fig. 3a: 
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Where : vwskc1A 11                       (18-a) 

wsvkvcsA 2
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Particular cases: 

For    01 k  

vvcv2
sv)v(

2

1



                              

(18-c) 

)vvcs2)(c1(
)sv(vs)v(1





                 
(18-d) 

)vvcs2)(c1(
)vcs(vs)v(2





               
(18-e) 

 

a – Unit rotation 1i  b– Unit translation 1 i  

Fig. 3. “Semi-rigid/rigid”element. 

3.2.2Beam element for unit 
displacement 1 i  

Parameters in Fig. 3b: 
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3.3. “Pinned- fully rigid” ends. 

3.3.1Beam element for unit rotation 1i  

For the element with the pinned-fully rigid 
ends of the Fig. 4a, the solution of the differential 
equation gives the expression of the deflection 
such that: 

EI
HxxcosBxsinA)x(y 2

 
       

(19-a) 
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By determining the integrating constants A 
and B corresponding to the cases under   
consideration, we obtain the relation: 

)v(
l

3H 1



                                          

(19-b) 

Where:            

)vv(tan3
vtanv

)vcs(3
sv)v(
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1





           (19-c) 

EI
Nllv                                       (19-d)     

Hence the bending moment: 

)v(3HlM 1i                                ( 19-e) 

For 0v (then for 0N ), 1)(1 v  

3M i    and  
l

3H 
  

3.3.2Beam element for unit displacement 
1 i  

For the element of the Fig. 4b the deflection 
which has the expression as : 
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v
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The bending moment at node "i"  











3
v)v(

l
w3

l
wv)v(

l
w3M

2

1

2

1i 

 
(21-a) 
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Noting that: 

)v(
)vtgv(3

tgvv
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a-Unit rotation 1i        b-Unit translation 1 i  

Fig. 4. “Rigid- pinned” element. 
 
For 0v  which corresponds to 1)0(1   

l
w3M i 

    
and   2l

w3H   

4. Sway and non-sway frame 
Some examples previously published [8, 9] are 
given, for which the proposed approach is 
demonstrated and the results are compared and 
validated. The two situations of sway and non 
sway frames shown in Fig. 5a and Fig. 5b are 
considered, respectively. Table 1 and Table 2 
give the value of the critical load obtained for 
these two cases using the different considered 
methods. 

The characteristics of the structural elements 
are given below:  

For the beam 












kNEA
mkNEI

896490
.48573 2

 and for 

the column  












kNEA
mkNEI

1272600
.90699 2

 

and the flexibility mkNradk ./150/11   
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     a-Sway frame         b-Non Sway frame 

Fig. 5. One story frame [8] 

Table 1. Comparison of the critical load values for 
sway frame. 

Methodsuse

d 
)(kNPcr   %

,

,

MEFP
MEFPP

cr

crcr   

OSSA2D 

[12] 
14.76 0

EC3 [8] 78.898 56.5983
EC3 clause 

5.2.1 (4)B [3] 
14.76 0 

Reference [8] 77.14 0

Current study 7.14  -0.406

For the sway frame, the critical load obtained by 
the proposed method is very close to that given 
by Mageirou et al. [8] and is respectively equal 
to kNPcr 7.14 and kNPcr 77.14 and is in a good 
agreement with that obtained with the method 
clause 5.2.1(4)B of EC3 [3]. 

Table 2. Comparison of the critical load values for 
non sway frame. 

Methods 

used 
)(kNPcr   %

,

,

MEFP
MEFPP

cr

crcr   

F.E.M- 

MSC-

NASTRA

N [8] 

67.8980 0

F.E.M - 

OSSA2D 

[12] 

8739.5 -2.7 

EC3 [8] 
74.9980 14.11

EC3 

Clause 

5.2.1 (4)B 

[3] 

8987.5 0 

Reference 

[8] 
67.8980 0

Current 

study 
6.8980  0008.0

The results as reported in the reference (Gantes 
and Mageirou [11]) ( See Tables 1 and 2 ) 
calculated with Eurocode 3 [8] for sway and non-
sway frames are very different from those 
obtained by the authors with EC3 clause 
5.2.1(4)B [3]. 

The results obtained using this analytical 
formulation are clearly consistent with those 
obtained by the above references, the finite 
element method and the application of  EC3 
clause 5.2.1(4)B for both sway and non sway 
frames. The formulation provides a simple 
solution for each of the design situations that 
refer to the concept of elastic critical resistance. 

5. Conclusions
A mechanical model for determining the

elastic buckling load for both sway and non-
sway plane of steel frames with semi-rigid 
connections was presented and a corresponding 
practical formula are derived. Only one element 
is sufficient over the length of the element to 
model stability. The proposed model which is 
based on functions accounting for semi-rigid 
connections and predominant axial load has the 
advantage of being explicit and simple to solve 
practical problem with little computational 
effort. The determination of the critical load is 
very sensitive to the rigidity of the joint, even 
when the structure is almost a mechanism; the 
results obtained from the formulation presented 
were not affected.The results obtained using the 
proposed analytical formulation are clearly 
consistent with those obtained from the 
literature, for both sway and non-sway frames. 
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