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Abstract 

   

1. Intensive cropping systems select for a low diversity of weeds tolerant of chemical control, 

leading to persistent weed-crop competition and declining biodiversity. Crop rotation can mitigate 

this by introducing variable filters on the weed community through increasing management 

diversity. In this study we investigate the effect of integrating livestock into no-till crop rotations to 

complement chemical weed control. 

2. We analysed twelve years of weed seedbank data from a trial of eight rotation systems with 

different crop sequence diversities, of which four included grazed forage phases. Linear mixed 

models and ordination were used to assess how weed abundance, diversity and community 

composition responded to management filters, defined in terms of levels of disturbance strength 

and diversity (grazing and herbicides), and resource availability and diversity (inorganic 

fertilisers, legumes and manure). 

3. Grazed rotation systems had less herbicide applied than ungrazed rotation systems, and had 

the lowest weed abundance and highest weed diversity. Herbicides and grazing apply 

contrasting selection pressures on weeds, and this combination was more effective in reducing 

weed pressure than increasing herbicide quantity or mode-of-action diversity. Lower resource 

availability and higher nitrogen source diversity in grazed systems may have further reduced 

weed abundance and promoted diversity. 

4. Crop sequence diversity also reduced weed abundance and promoted weed diversity, 

indicating that variable crop-weed interactions can enhance weed management. In addition, 

yields in the main cash crop (wheat) were highest where crop diversity was highest, regardless 

of whether the system contained grazed phases. 

5. Synthesis and applications. Diverse rotation systems produced high yields, and the inclusion 

of grazed forage phases maintained these yields at lower applications of herbicides and 

fertilisers: integrated livestock can therefore improve the sustainability of no-till systems. The role 

of grazing as a filter imposing a contrasting selection pressure to other weed control options 

could be further explored to improve weed management in different farming systems.  
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1. Introduction 

 

In recent decades, farming systems have become increasingly specialised to produce a 

small number of crops on large scales in short rotations, and to separate crop production 

from livestock production. This has been facilitated by the introduction of high yielding 

cultivars in a few major crops, inorganic fertilisers, pesticides and specialised equipment. 

However, the long-term prospects of this ‘Green Revolution’ are in doubt: the environmental 

impacts and the tendency of such systems to select for a small number of highly injurious 

pests, weeds, and diseases, have led to recent calls for the re-diversification of cropping 

systems as part of the drive for ‘sustainable intensification’ (Pretty and Barucha 2014). 

Increasing cropping system diversity can increase both agricultural productivity and 

sustainability (Isbell et al 2017), and diverse crop rotations in particular have been shown to 

improve soil fertility, suppress pests and diseases, support beneficial biodiversity, and 

stabilise incomes (Davis et al 2012, Wezel et al 2014). These benefits may be further 

enhanced by re-integrating cropping and livestock systems (Sanderson et al 2013, St-Martin 

et al 2017). 

 

Long-term experiments that investigate the functions of diversity across whole farming 

systems make an important contribution to re-diversification, by enabling the study of 

processes that manifest over decadal time scales, such as weed community dynamics (Paul 

et al 1998, Storkey et al 2016). Previous findings indicate that the multiple benefits of crop 

rotations can result from the different ecological and economic properties of different crops, 

but are often also driven by variation in management associated with different crops (Davis 

et al 2012, Gaba et al 2013, Wezel et al 2014). Intensive cropping systems lacking in 

management variation tend to have weed communities dominated by only a few species 

with strongly ruderal traits that confer advantage in resource-rich, frequently disturbed 

environments (Storkey et al 2010, Storkey et al 2012, Reich 2014), and herbicide resistant 

species are also common (Neve et al 2009, Mortensen et al 2012). This indicates that 
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consistent management actions reduce weed diversity, but fail to suppress species tolerant 

to those actions. Weed-crop competition therefore persists, despite substantial investment in 

weed control, whilst the ecosystem services offered by a diverse weed community are lost 

(Petit et al 2015, Gaba et al 2016). 

 

Crop management actions can be interpreted as filters on the weed community, allowing 

species that possess traits conferring tolerance to the disturbances and conditions imposed 

by management to thrive, and limiting the survival of those that do not. Varying management 

between years alters the pattern of this selection pressure each year, reducing the chance 

that any single weed species is driven to extinction, but increasing the chance that all 

species would encounter limits to their survival and reproduction at some point (Booth and 

Swanton 2002, Navas 2012). This also limits the opportunities for weeds to adapt to a 

consistent set of conditions, as has occurred with the evolution of herbicide resistance in 

response to the frequent cultivation of a limited number of crops reliant on a small range of 

herbicide active ingredients (Neve et al 2009, Mortensen et al 2012). 

 

Several studies have shown that crop rotations involving differences in the techniques and 

timings of sowing, harvest, soil preparation and herbicide use are effective for weed 

management (Anderson 2015, Blackshaw et al 2015, Petit et al 2015). However, it remains 

unclear whether crop rotation itself is sufficient, if different crops are not associated with 

different management (Smith and Gross 2007, Mortensen et al 2012). In this context, a 

major limitation of the recent spread of no-till cropping practices is the loss of tillage as a 

weed control option, and the reliance of these systems on herbicides. One option to increase 

the diversity of weed selection pressure in no-till systems is to integrate livestock, by adding 

grazed forage crop phases to the rotation. This practice is widespread in some regions of 

the world and appears profitable for farmers, but remains relatively understudied with regard 

to weed management (Sanderson et al 2013). Grazing would be expected to directly 

suppress weeds, and in addition, the combination of a forage legume and livestock manure 
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may further enhance weed diversity through increasing nitrogen resource diversity (Smith et 

al 2010). 

 

In this study, we compared long-term weed seedbank trends between rotation systems with 

different crop sequence diversities, and between crop-only systems and integrated crop-

livestock systems. Ungrazed systems with low crop diversity were subject to agrichemical-

intensive management, resulting in a strong consistent disturbance induced by herbicides, 

and high resource availability from fertilisers. In contrast, diverse systems with livestock 

incorporated grazing, legumes, herbicides and fertilisers, resulting in more diverse 

disturbances and nutrient sources. By comparing the different rotation systems, we thus 

explored the following hypotheses: 

 

(1) The diversity of management filters (disturbance diversity and resource diversity) 

reduces weed abundance and increases weed diversity. 

(2) The strength of management filters (disturbance intensity and resource 

availability) increases weed abundance and reduces weed diversity. 

 

 

2. Methods 

 

2.1 Trial location, layout and timing 

 

This study used weed seedbank data from the Langgewens Long-Term Crop Rotation Trial, 

which investigates the agronomic performance of eight different crop rotations under 

conservation agriculture practices. The trial is located in South Africa’s Western Cape 

Province (33°17'0.78"S, 18°42'28.09"E; Fig. 1). The site receives an average annual rainfall 

of 376mm, with approximately 80% received during the winter months. This constrains 

regional production to one crop per year, sown in April and harvested in November, with a 
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fallow period over summer. The trial began in 1996, but weed data was only systematically 

collected across all systems since 2005, thus the twelve years in this study span 2005 - 

2016. The eight systems are each replicated twice in a randomised block design, and within 

each replication all crop types are planted each year in the order of the specified rotation 

(Table 1). See the appendix for a full explanation of the trial design. Plot sizes vary between 

0.5 and 2 ha, depending on the system diversity and whether the system is grazed, but the 

data used here is based on weed seeds collected in the same amount of soil from each plot, 

so plot size would not affect the sample. The use of seedbank data allowed us to quantify 

trends without the confounding effect of stochastic processes that can influence the 

emerged weed flora in any given year. 

 

Crop species included in the trial are wheat (Triticum aestivum), canola (Brassica napus), 

lupins (Lupinus angustifolius), and annual self-regenerating medic species (Medicago 

truncatula and M. polymorpha) and white clover (Trifolium repens) (Table 1). Wheat and 

canola function as cash crops, lupins as ungrazed cover crops (with seeds harvested for 

income), and annual self-regenerating medics and clovers as forage crops grazed by sheep 

(Ovis aries), at a stocking rate of four sheep ha-1 (standard local practice; Basson 2017). 

Sheep are moved onto the forage crops when the medic and clover pastures begin to 

establish in April or May (these regenerate each year but are sprayed off in cash crops). In 

system H, sheep are kept aside in additional pastures to forage on saltbush (Atriplex 

nummularia) for approximately six weeks until the annual medic/clover mix has reached at 

least 90% groundcover. Sheep also graze winter crop residues over the summers in 

systems E-H, and are occasionally used for short periods (four to five days) toward the end 

of the summer fallow period in the ungrazed systems, as their trampling can break up high 

residue loads to ease planting. This is done before the first rains and prior to planting, and 

the lack of summer rainfall in the region means that few, if any, weeds are present at this 

time and thus briefly introducing sheep in this way would have minimal impact on weeds in 

otherwise ungrazed systems. All rotation systems are managed according to local best 
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practices and industry recommendations, resulting in variation in agrichemical use between 

rotation systems and over time (Fig. 2). From 1996 to 2001, the trial was under minimum-

tillage (a disc harrow was used to prepare the seedbed), and since 2002 the trial has been 

under no-till practices with a tine planter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The location of Langgewens Research Farm in the Western Cape, South Africa. 
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Table 1: The composition of the crop rotations in the eight different rotation systems included 

in the Langgewens Long-Term Crop Rotation Trial. Crop phases marked with (G) were grazed 

by sheep. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Data collection 

 

2.2.1 Weed seedbank samples 

 

Seedbank samples were collected in late March or early April prior to planting each year. 

From each plot, 80 soil cores of 105 mm diameter and 5 cm depth were combined to form a 

single sample. The experiment is a no-till system so weed seeds were assumed to be 

concentrated in this surface layer. Directly following sampling, the soil was placed in 

400x250mm trays in a layer approximately 20mm thick over sterilised river sand, under 

shade-nets with regular irrigation to promote germination. Seedlings that emerged were 

counted with removal between two and four times until September. Occasionally seedlings 

could not be identified; these constituted 4.3% of the seedlings observed and were not 

included in the dataset. ‘Volunteer’ seedlings belonging to the crop species used in the trial 

Code Rotation system 

A Wheat – Wheat – Wheat – Wheat 

B Wheat – Wheat – Wheat – Canola 

C Wheat – Canola – Wheat – Lupins 

D Wheat – Wheat – Lupins – Canola 

E Wheat – Medic (G) – Wheat  – Medic (G) 

F Wheat – Medic/clover mix (G)  – Wheat  – Medic/clover mix (G) 

G Medic (G)  – Wheat  – Medic (G)  – Canola 

H 
Wheat  – Medic/clover mix* (G)  – Wheat  – Medic/clover mix* (G) 

*with saltbush pastures to rest medic/clover pastures 
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were also not included. This direct germination method was used rather than a seed 

extraction method due to the lower risk of under-representing species with small and light-

coloured seeds (Gross 1990). Both methods are suitable for detecting seedbank changes in 

response to agricultural management (Ball and Miller 1989). 

 

During the twelve-year timeframe each plot completed three full four-year rotations, allowing 

the seedbank to be assessed at the level of the whole rotation with three time periods. 

Seedling counts were averaged across each four-year rotation period: 2005 to 2008 = 

Period 1, 2009 to 2012 = Period 2, and 2013 to 2016 = Period 3. ‘Weed abundance’ 

subsequently refers to the average number of seedlings per year within each period. ‘Weed 

diversity’ is the average species diversity of seedlings per year, calculated using Fisher’s log 

series alpha. This diversity index is insensitive to differences in abundance (Magurran 2003), 

and was selected due to large differences in weed abundance between treatments. 

 

2.2.2 Agronomic data 

 

The amount of fertilisers and herbicides applied to each plot were aggregated to a total 

amount per hectare over each four-year period. Herbicide quantities were standardised 

within each active ingredient (to the proportion of the maximum dose of that ingredient 

applied in the trial) to take account of differences in potency among different active 

ingredients. Wheat was harvested each year with a combine harvester, and the yield (wet 

grain weight standardised to 14% moisture) for each plot was converted to the proportion of 

the average yield within the trial for that year. This accounted for inter-annual yield variation 

in response to climate variables such as rainfall, allowing any consistent effect of rotation 

system on yield to be identified across different years. 

 

2.3 Data analyses  
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All analyses were undertaken in R Version 3.4.3 (R Core Team 2017), using the packages 

lme4, afex, lsmeans, effects and vegan. Prior to analyses, weed abundance was converted 

to the natural logarithm of the abundance plus one. 

 

2.3.1 Differences in weed abundance, weed diversity, and wheat yield between systems 

 

Differences in weed abundance, diversity and wheat yield between rotation systems were 

investigated using linear mixed regression models. As fixed effects, the models for weed 

abundance and diversity included the main effects and interaction terms for rotation system 

and period. The wheat yield model included only rotation system, as variation between 

periods had been accounted for by using yields standardised within each year. Plot was 

included in all models as a random effect to account for repeated measures in the same plot 

over time. P-values for the significance of fixed effects were calculated using parametric 

bootstrapping, one of the most reliable methods for mixed models (Halekoh and Højsgaard 

2014). This approach involves comparing differences between the full model and sub-

models, and thus does not generate P-values for each level of a factor, only whether the 

effect of the factor is significant overall. Tukey’s pairwise comparisons were used to assess 

differences between the different rotations and periods in each model. Differences could 

thus be assessed between low and high crop diversity within either the ungrazed or grazed 

systems, or between grazed and ungrazed systems or either lower or higher crop diversities.  

 

2.3.2 Differences in weed abundance and diversity in response to filter strength and filter 

diversity  

 

The same modelling approach as above was employed to explore how weed abundance 

and diversity responded to differences in crop sequence diversity, herbicides, fertilisers, and 

grazing. These variables were used to explore the two hypotheses of this study regarding 

filter strength and filter diversity. The presence or absence of grazing and the number of 



 11 

herbicide mode-of-action groups used indicated the diversity of disturbances, while the 

amount of herbicide applied (grams of active ingredient per hectare) represented the 

strength of the herbicide disturbance. Grazing pressure differed slightly in strength only in 

system H, where sheep grazed the medic/clover pastures for approximately 20% less 

duration each season, but otherwise all grazed systems had two forage phases with four 

sheep ha-1. To minimise the complexity of the analyses, grazing was included as either 

‘present’ or ‘absent’, but the reduced duration in system H was noted when interpreting the 

results.  

 

The number of nitrogen sources available represented resource diversity: these were 

synthetic nitrogen fertiliser, nitrogen released from legume crops, and nitrogen circulated to 

soil through sheep manure and urine. The amounts of synthetic nitrogen, phosphorus and 

potassium fertiliser applied were considered indicators of maximum resource availability. 

The trial is managed to provide adequate nutrition to each crop through fertilisers, crop 

residues and/or livestock manure, and thus the overall quantity of nutrients that become 

available over the season within each system can be assumed to be similar. However, 

research suggests that nutrients from organic sources such as crop residues and manure 

are released gradually over the season, whilst synthetic fertilisers provide a flush of nutrients 

at the time of application, and thus a high peak of nutrient availability (Poudel et al 2002, 

Crews and Peoples 2005). Furthermore, this peak would occur early in the season when the 

majority of fertiliser is applied, when crop seedlings are too small to efficiently capture 

nutrients and competition imposed on weeds would be weak. A higher maximum nutrient 

availability resulting from higher fertiliser applications is therefore expected to increase weed 

abundance and reduce weed diversity, whereas the longer duration but lower maximum 

resource availability resulting from nitrogen resource diversity is expected to be associated 

with fewer weeds with a greater diversity. 
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Crop sequence diversity was also included to assess whether it had an independent effect 

on weeds in addition to the disturbance and resource variables. Within-year diversity (i.e. the 

medic/clover mix in systems F and H) was not assessed, nor were the saltbush in system H, 

as these perennial shrubs were located on separate plots outside the rotation.  

 

Indices for each of the above variables were calculated for each plot in each period and 

scaled to between 0 and 1 (Table 2; Fig. 2) to standardise the different metrics of 

disturbance. All variables, except for crop sequence diversity, were collinear (detected 

through high variance inflation factors) and could not be included in the same model. 

Different models were therefore constructed for each collinear variable, and contained 

period, crop sequence diversity, the variable of interest, and the interaction between crop 

diversity and the variable of interest. No interaction with period was included as there was no 

significant interaction between rotation system and period in the previous set of models, thus 

it was not logical to expect period to interact with management differences between 

rotations. Plot was again included as a random effect. The results of these models were 

interpreted by investigating a) whether each variable was significant using the P-values 

calculated by parametric bootstrapping, and b) whether any models had a better fit than 

others, by comparing their Akaike Information Criteria (AIC). All linear mixed models were 

fitted using maximum likelihood, as opposed to restricted maximum likelihood, to ensure that 

parametric bootstrapping and AIC comparisons were valid.  

 

 

Table 2: A description of the indices of management and resource variables investigated in relation to 

weed abundance and diversity. All indices have been scaled to between 0 and 1 to make the model 

effect estimates comparable; this was done by expressing each value of each index as a proportion of 

the maximum value. 
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Variable Description 

Crop sequence diversity The number of non-wheat years multiplied by the number of non-wheat 

crop types in each rotation system.  

Herbicide AI (g ha-1) The amount of active ingredient (AI) (g ha-1) applied to each plot within 

each four-year period (standardised by active ingredient) 

Herbicide diversity The number of different herbicide mode-of-action applied to each plot 

within each four-year period 

N / P / K (kg ha-1) The total amount of fertiliser (kg ha-1) applied to each plot within each 

four-year period. Separate indices were calculated for nitrogen (N), 

phosphorus (P) and potassium (K). 

Nitrogen source diversity The number of different types of nitrogen resource (nitrogen fertiliser, 

legumes, and sheep manure/urine) available within each rotation system 

Grazed/ungrazed Whether the rotation system included sheep forage phases or not (all 

systems with sheep had two forage phases). 
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Figure 2: Variation in management and resource indices among rotation systems for all plots in each 

period: (a) herbicide active ingredient (AI, g ha-1), (b) herbicide diversity, (c) crop diversity index, (d) 

nitrogen resource diversity, (e) nitrogen fertiliser (kg ha-1), (e) phosphorus fertiliser (kg ha-1), and (g) 

potassium fertiliser (kg ha-1). Box plots indicate the median, interquartile range, and minimum and 

maximum (open circles are points more 1.5 times the interquartile range from the median). 
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2.3.3 Weed community composition 

 

A non-metric multidimensional scaling (NMS) ordination based on the Bray-Curtis distance 

measure was employed to explore variation in weed community composition between each 

plot in each period. An NMS is an unconstrained ordination technique, and was chosen over 

a constrained ordination approach as constrained ordinations are based on linear 

regression, and would thus have been unreliable due to the collinearity among management 

variables.  

 

3. Results 

 

3.1 Weed diversity and abundance and wheat yield in different rotations 

 

Rotation system had a significant effect on all three responses investigated: weed 

abundance, weed diversity and relative wheat yield (Table 3). Pairwise comparisons 

indicated that all rotations containing grazed forage phases (E-H) had significantly lower 

weed abundances and higher weed diversity than ungrazed rotations (Fig. 3). The shorter 

grazing duration in system H did not have an effect, as weed abundance and diversity in 

system H were not significantly different from that of systems E or F. System G, the grazed 

rotation with the highest crop diversity, had a significantly lower weed abundance and higher 

weed diversity than all other rotation systems, excluding E. However, the pairwise 

comparisons did not otherwise indicate that more diverse rotations had lower weed 

abundance or higher weed diversity than less diverse rotations, within either the non-grazed 

(A-D) nor grazed systems (E-F). 

 

Weed abundance was also significantly affected by time period, and increased slightly from 

Period 1 to Period 3 (Fig. 3b); this may have been in response to rainfall differences 
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between periods, or may indicate evolution of herbicide resistance amongst weed 

populations. For relative wheat yield, the monoculture wheat system A had a significantly 

lower yield than the four most diverse rotations (C, D, G, and H), and there was a general 

trend that wheat yields increased with crop diversity (Fig. 3). Absolute wheat yields (not 

standardised within each year) were also explored for any obvious trends over time, but the 

inter-annual variation in response to rainfall was too great to identify any trends in absolute 

yields (results not shown). 

 

 

Table 3: Fixed effect estimates and P-values from the models of weed abundance, weed diversity and 

relative wheat yield in response to rotation system and time period (see also Fig. 3). Time period was not 

included in the yield model (variation over time was accounted for by using yield standardised within each 

year). Estimates for Periods 2 and 3 and relative to Period 1. The model estimates for the interaction 

between each level of period and rotation are not shown, as the interaction was not significant (NS). 

 

 Abundance Diversity Wheat yield 

 Estimate P-value Estimate P-value Estimate P-value 

System B 1.47 

<0.001 

-0.45 

<0.001 

-0.17 

0.027 

System C 1.1 -0.3 -0.07 

System D 0.92 -0.23 0.05 

System E 0.82 -0.19 0.04 

System F -1.03 0.42 0.03 

System G -0.72 -0.06 -0.03 

System H -2.01 0.77 0.08 

Period 2 -0.22 

0.033 

-0.03 

0.654 - - 

Period 3 0.04 -0.02 

Interaction 

(rotation x period) 
NS 0.155 NS 0.138 - - 
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Figure 3: Relationships between weed abundance, weed diversity, wheat yield and rotation system and 

time period: (a) log weed abundance in the different rotation systems; (b) log weed abundance in the 

different time periods; (c) Fisher’s log series alpha diversity index of weeds in the different rotation systems; 

(d) relative wheat yield in the different rotations. Categories with significant pairwise differences (P<0.05) 

do not share letters along the base of the plot. Refer to Table 1 for rotation system crop sequences, and to 

Table 3 for model statistics. 

 

 

  

a b 
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3.2 Weed diversity and abundance in relation to management and resource diversity and 

intensity/availability 

 

Of all the management and resource indices, only crop diversity had a significant main effect 

on weed abundance and weed diversity (Table 4). However, grazing, herbicide amount, 

nitrogen availability and nitrogen source diversity all had significant interactions with crop 

diversity (Table 4). The lack of a significant main effect may be due to the experimental 

design in relation to the variables tested. For example, there were no grazed systems at low  

crop diversities, and thus the model had no information with which to estimate an effect of 

grazing in the absence of crop diversity. The significant interaction indicates that grazing 

affected the relationships between crop diversity and weed abundance and diversity: Figure 

4 illustrates that as crop diversity increases, weed abundance decreases; but if the rotation 

system contains sheep, then weed abundance decreases further for a given increase in crop 

diversity (Table 4; Fig. 4, Figs 5a and 5b). The same trend exists for herbicide amount, 

nitrogen source diversity and nitrogen availability. Herbicide group diversity, and phosphorus 

and potassium fertiliser availability, were not significantly associated with either weed 

abundance or diversity (results not shown). 

 

 

Overall, the model results indicate that higher weed abundances and lower weed diversity 

occurred in ungrazed rotations and were associated with decreased crop diversity, 

increased quantities of herbicides and higher maximum nitrogen availability, and reduced 

nitrogen source diversity (Table 4, Fig. 4, Fig. 5). The individual contribution of each variable 

to the variance in weed abundance and diversity could not be attributed, given the 

collinearity between them. However, the AIC is lowest for the model containing crop diversity 

and grazing (Table 4), suggesting that these are the strongest drivers of differences in weed 

abundance and diversity.  
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Time period had a significant effect in some models, although the effects were small 

compared with the effects of the management and resource variables. The models suggest 

either a small decrease or increase in weed abundance in period 2 from period 1, then a 

larger increase in period 3 (see also Fig. 3b). Both periods were typically associated with a 

small decline in diversity, although this was significant only in the model including the total N 

fertiliser index. Rainfall also increased in Period 3, possibly explaining this trend (results not 

shown). 

 

3.3 Weed community composition in relation to rotation system, time period, management 

and resource indices 

 

Ten weed species emerged from the seedbank samples over the twelve years (Table 5), 

excluding volunteer crop seedlings and the occasional unidentifiable seedling. Lolium spp., 

(a hybrid complex primarily between L. rigidum and L. perenne; Ferreira et al 2001) was by 

far the most dominant weed in the system: on average 77% of seedlings in each sample 

were Lolium seedlings (Table 5). 

 

A two-dimensional NMS solution was selected to represent variation in the relative 

frequency of these species across the trial. Two dimensions reduced stress to an acceptable 

level (ordination stress = 0.17 and non-linear R2 = 0.97), and whilst the addition of a third 

dimension reduced stress further (to 0.12), it did not alter any trends shown, and was thus 

omitted to conserve interpretability. The ordination indicates that ungrazed systems were 

associated with consistently high abundances of Polygonum aviculare and Lolium spp., 

while species composition varied more within grazed systems (Fig. 6a). It also illustrates the 

association between grazed rotations and reduced weed abundance, increased weed 

diversity, and increased wheat yields (Fig. 6b).  
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Figure 4: The relationship between weed abundance (a) and weed diversity (b), for grazed (dark shading) 

and non-grazed (light shading) rotation systems. The lines and ribbons indicate the regression coefficient 

and 95% confidence interval. This illustrates the interaction between grazing and crop diversity: the effect 

of crop diversity is greater in grazed than ungrazed systems. 
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 21 

Table 4: The results of the linear mixed models for each index of filter strength or diversity (Table 2). 

Results for weed abundance are shown in the left column and for weed diversity in the right, with values 

given for the fixed effect estimates (random effects not shown) and the P-values calculated by parametric 

bootstrapping. The Akaike Information Criteria (AIC) is given to compare the goodness-of-fit of models for 

the different indices, and should be compared amongst abundance models and amongst diversity models, 

not between the two.  

 

  Abundance  Diversity 

  Estimate P-value  Estimate P-value 

Model: herbicide AI (g ha-1)    

Herbicide total AI (g ha-1) index 0.40 0.676  -0.53 0.335 

Crop diversity -5.37 <0.001  1.72 0.001 

Interaction (crop div x HX ha-1) 6.01 <0.001  -1.86 0.019 

Period 2 -0.13 
0.006 

 -0.06 
0.019 

Period 3 0.33  -0.13 

AIC 396.9  222.2 

Model: grazing     

Grazed 0.17 0.548  0.2 0.228 

Crop diversity -1.9 <0.001  0.94 <0.001 

Interactions (crop div x sheep) 1.19 0.003  -0.67 0.005 

Period 2 -0.27 
0.005 

 0 
0.916 

Period 3 0.08  -0.02 

AIC 353.6  217.2 

Model: N fertiliser (kg ha-1)    

N fertiliser (kg ha-1) index 0.06 0.949  0.32 0.610 

Crop diversity -5.51 <0.001  2.05 <0.001 

Interaction (crop dix x N fertiliser) 8.6 <0.001  -2.88 0.004 

Period 2 0.01 
0.002 

 -0.08 
0.058 

Period 3 0.34  -0.09 

AIC 373.4  226.4 

Model: N source diversity    

N source index 0.31 0.756  -0.84 0.120 

Crop diversity 4.38 <0.001  -1.53 0.007 

Interaction (crop div x N sources) -7.35 <0.001  3.01 <0.001 

Period 2 -0.27 
0.006 

 0 
0.910 

Period 3 0.08  -0.02 

AIC 369.1  221.9 
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Figure 5: Interaction plots showing the change in the effect of crop diversity on weed abundance and 

diversity between grazed and ungrazed systems (a and b), as the amount of herbicide applied increased (c 

and d), nitrogen fertiliser applied increase (e and f) and the diversity of nitrogen sources increased (g and 

h). These interactions result in the relationships between crop diversity and weeds illustrated in Figure 4: 

grazed systems had lower amounts of herbicide applied, less fertiliser applied and higher nitrogen source 

diversity than non-grazed systems (Fig. 2, Table 4). 

 

 

Table 5: Species observed to emerge in the seedbank samples from the Langgewens Long-Term Trial 

over the 12 years from 2005 to 2016, and the average proportion of abundance of each species across all 

plots in all periods of the trial. Lolium spp. could not be identified to species level due to hybridisation. 

 

Code Latin name Afrikaans name English name Status 

Average proportion of 

abundance across all plots 

in all periods 

acal Arctotheca calendula gousblom capeweed native <0.01 

bdia Bromus diandrus predikantluis ripgut brome alien <0.01 

calb Chenopodium album wit hondebossie fat hen alien <0.01 

cot Cotula spp. gansogie goose-eyes both 0.04 

eaus Emex australis dubbeltjie devil’s thorn alien <0.01 

emos Erodium moschatum turknaal musk heron's bill alien 0.04 

lol Lolium spp. raaigras ryegrass alien 0.77 

mpar Malva parviflora kiesieblaar mallow alien 0.03 

pavi Polygonum aviculare litjiesgras knotweed alien 0.09 

rrap Raphanus raphanistrum ramenas wild radish alien <0.01 
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Figure 6: Two-dimensional non-metric multidimensional scaling ordination of the weed communities of 

each plot in each period. Symbols indicate plots belonging to the different rotation systems; shaded 

symbols are grazed systems. Labels on (a) represent the species associated with samples in different parts 

of the ordination, based on weighted averages (see Table 5 for species abbreviations). Arrows on figure (b) 

represent significant correlations (P<0.05) between variation in community composition and management 

and resource indices (Table 2), as well as weed abundance (“log.abund”), Fisher’s alpha diversity 

(“F.alpha”) and wheat yield (“yield”). The length of the arrows is relative to the strength of the correlation. 

Time is plotted as a continuous variable: change between periods was significant, but the direction of 

change sufficiently small that plotting periods as category centroids is confusing to the eye. 
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4. Discussion 

 

In this trial, diverse cropping systems with integrated livestock offered the best outcomes for 

farm productivity and environmental protection: fewer agrichemicals were applied, weed 

abundance was lower, weed diversity was higher, and wheat yields were higher. The 

greatest differences in weed management were between grazed systems (E-H) and 

ungrazed systems (A-D), but crop sequence diversity also contributed. Overall, the most 

diverse grazed system (G) performed best, while the wheat monoculture (system A) 

performed worst. The results of the models of management and resource indices further 

support that grazing and crop diversity are the strongest drivers of weed abundance and 

diversity within this trial (Table 4, Fig. 4, Fig. 5). 

 

The strong impact of grazing on weeds supports our first hypothesis that the diversity of 

management filters, in particular disturbance diversity, can suppress weed abundance and 

promote weed diversity. Introducing a grazed phase to a rotation adds a disturbance with a 

distinct selection pressure from herbicides, which may explain why grazing was found to 

have an impact on weed abundance and diversity, but herbicide group diversity was not 

(Table 4). Although different herbicides target different species, all herbicides would impose 

selection pressure for traits that permit general herbicide tolerance of avoidance (such as 

lower leaf permeability, variable germination times or early maturity; Gaba et al 2017). In 

contrast, grazing selects for traits that confer unpalatability or resilience to physical 

defoliation. This suggests that maximising differences in selection pressure between 

management filters results in more effective weed management.  

 

Findings from other studies on integrated crop-livestock systems support this conclusion that 

it is filter diversity, rather than grazing in itself, that offers the greatest benefits for weed 

management. For example, Miller et al (2015) found that replacing herbicide-based or 

tillage-based management of a forage crop with grazing did not consistently improve weed 
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suppression, while Lehnhoff et al (2017) show that grazing can reduce reliance on tillage in 

organic systems but not completely eliminate the need for it. Thus, it is combining distinct 

selection pressures that is most effective to suppress weeds. Where integrating forage crops 

and livestock is not practical for farmers, incorporating a mown cover crop may have similar 

benefits through exerting a similar filter on weeds (McKenzie et al 2016), except in cases 

where problematic weed species are particularly susceptible to grazing (Leon and Wright 

2018). 

 

In this study, the greater dominance of Lolium spp. and P. aviculare in crop-only systems 

(Fig. 6) illustrates the effect of the contrasting selection pressures between herbicides and 

grazing, and the specific effects of grazing on susceptible weeds. Both weeds possess traits 

conferring herbicide tolerance but both are palatable to sheep. As such, Lolium spp. and P. 

aviculare could be viewed as additional forage species promoted by cash crop phases, and 

the grazing phases as an important strategy for managing these weeds, particularly for any 

herbicide resistant populations. Resistant Lolium is a widespread problem in the Western 

Cape, and although it is not known whether Lolium present in the trial was resistant, this 

could explain the dramatic differences in weed abundance between the grazed and 

ungrazed systems. It remains uncertain whether mowing would have similar benefits in 

these systems. 

 

Previous long-term studies that included two weed control measures with different selection 

pressures, such as herbicides and tillage, have often not observed reductions in weed 

biomass when compared with chemical control only (e.g. Chikowo et al 2009, Benaragama 

et al 2016). However, in such studies, both management actions are typically applied in 

every year, regardless of crop type. This would create a stronger filter for weed species that 

can tolerate both management actions, rather than enhancing filter diversity by selecting for 

tillage-tolerant weeds in one year and herbicide-tolerant weeds in another. In contrast, trials 

involving more inter-annual variation in management appear to achieve better weed 
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outcomes (Blackshaw et al 2008, Davis et al 2012, Anderson 2015). In this study, 

management in the grazed systems varied between high herbicide use in cash crop years, 

and low herbicide use with grazing in forage crop years. Varying selection pressures 

between years may therefore be key to successful integrated weed management, although 

this has yet to be explicitly tested. 

  

In addition to higher filter diversity, the grazed systems in this study also had less herbicide 

applied (lower disturbance strength), less nitrogen fertiliser applied (lower maximum 

resource availability), and a higher nitrogen source diversity than ungrazed systems (Fig. 2). 

From an applied perspective, this provides evidence that integrating livestock permits weeds 

to be suppressed and yields to be maintained at lower levels of agrichemical inputs, offering 

both environmental and economic benefits (Petit et al 2015, Basson 2017). However, from a 

theoretical perspective, this collinearity makes it difficult to distinguish the relative roles of 

the mechanisms identified in our hypotheses: the effect of disturbance diversity induced by 

grazing may have been further enhanced by these other attributes of grazed systems 

(Storkey et al 2010, Smith et al 2010, Gaba et al 2013, Reich 2014). 

 

The effect of crop diversity on weed abundance and diversity in this study was smaller than 

that of grazing (Fig. 3, Fig. 4), but still important, given that other management variables 

were significant only in interaction with crop diversity (Table 4, Fig. 5). Crop diversity could 

affect the weed community through variation in filters imposed by competition, as different 

crops compete more strongly with certain weeds than others (Petit et al 2015, Nichols et al 

2015). Differences in the timing of crop sowing often play a role in determining which weed 

species emerge, but in this trial all crops were sown at the same time. Several other studies 

on weed responses to crop rotation have found little or no effect of crop diversity 

independent of management diversity (Smith and Gross 2007), but the functional differences 

between the crops in this study were relatively large, and thus may have had a greater effect 

on weeds.  
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In contrast to weed abundance and diversity, average wheat yields were more strongly 

related to crop sequence diversity than to grazing, and were highest in the four most diverse 

systems (C, D, G and H). Crop diversity contributes to yield in several ways, for example 

through increasing soil nutrient content and reducing disease, and such effects may be more 

important to yield than weed suppression (Davis et al 2012, Benaragama et al 2016). The 

main advantage of integrating livestock into rotation systems is thus not necessarily to 

improve crop yields, but to decrease the amount of herbicide required for satisfactory weed 

management. A separate study investigating the economics of the rotation systems in the 

Langgewens Long-Term Trial found that although yields were comparable between diverse 

grazed and ungrazed systems, the reduced cost of inputs and increased diversity of 

marketable outputs in grazed rotations resulted in higher long-term farm profits (Basson 

2017). 

 

This study emphasises the benefits that diverse cropping systems with integrated livestock 

can offer to farmers, agroecosystems, and the natural environment (Davis et al 2012, 

Sanderson et al 2015). Forage crops provide an opportunity to increase crop diversity, which 

benefits cash crop yields and reduces fertiliser requirements, while the grazing action of 

livestock improves weed management and facilitates reductions in herbicide use. Integrating 

livestock forage phases may therefore prove valuable to sustain arable crop production in 

the face of herbicide resistance, and to reduce the risks associated with intensive 

agrichemical use, particularly in no-till systems where non-chemical weed management 

options are limited. Likewise, there may be potential to improve weed management in 

organic and low-input cropping systems using grazed forage phases to provide an additional 

filter alongside mechanical weeding and tillage. Future research could focus on how 

management actions that apply different selection pressures to weeds can best be 

integrated in rotation systems, to allow farmers to optimise the use of the weed management 

tools that are available to them. 



 29 

Acknowledgements 

 

We acknowledge the Western Cape Government Department of Agriculture for providing the 

data from the Langgewens Long-Term Trial, and thank all Langgewens Research Farm staff 

involved in the trial, particularly Samie Laubscher. Our collaboration was supported by the 

EcoDry Project (612686 FP7-PEOPLE-2013-IRSES). C.M. is the recipient of a Coventry 

University Doctoral Studentship, and J. Storkey is supported by research programme 

NE/N018125/1 LTS-M ASSIST - Achieving Sustainable Agricultural Systems, funded by 

NERC and BBSRC (BBS/E/C/000I0120). 

 

Author contributions  

 

J. Strauss manages the Langgewens Long-Term Trial and oversaw all data collection for 

this study. C.M., J. Storkey and K.D. planned how to analyse the data to answer the 

questions posed in this article, and C.M. undertook the data analysis with support from J. 

Storkey. CM drafted the manuscript with advice from P.S. and K.D. All authors contributed 

critical revisions to the manuscript. 

 

Data accessibility 

 

The data used in this article has been uploaded with the DOI 10.5281/zenodo.1308220, and 

can be accessed through www.zenodo.org. 

 

References 

Anderson, R.L., 2015. Integrating a complex rotation with no-till improves weed management in 

organic farming. A review. Agron. Sustain. Dev. 35, 967–974. 



 30 

Ball, D. and Miller, S. 1989. A Comparison of Techniques for Estimation of Arable Soil Seedbanks 

and Their Relationship to Weed Flora. Weed Res. 29 (5), 365–373 

Basson, C. 2017. A financial analysis of different livestock management approaches within different 

crop rotation systems in the Middle Swartland. Masters thesis, Stellenbosch University. 

Benaragama, D., Shirtliffe, S.J., Gossen, B.D., Brandt, S.A., Lemke, R., Johnson, E.N., Zentner, R.P., 

… Moulin, A.,  Stevenson, C., 2016. Long-term weed dynamics and crop yields under diverse 

crop rotations in organic and conventional cropping systems in the Canadian prairies. F. Crop. 

Res. 196, 357–367. 

Blackshaw, R.E., Pearson, D.C., Larney, F.J., Regitnig, P.J., Nitschelm, J.J., and Lupwayi, N.Z. 

(2015) ‘Conservation Management and Crop Rotation Effects on Weed Populations in a 12-Year 

Irrigated Study’. Weed Tech. 29, 835–843 

Booth, B.D., Swanton, C.J., 2002. Assembly theory applied to weed communities. Weed Sci. 50, 2–

13. 

Chikowo, R., Faloya, V., Petit, S., Munier-Jolain, N.M., 2009. Integrated Weed Management systems 

allow reduced reliance on herbicides and long-term weed control. Agric. Ecosyst. Environ. 132, 

237–242. 

Crews, T.E. and Peoples, M.B. 2005. Can the Synchrony of Nitrogen Supply and Crop Demand Be 

Improved in Legume and Fertilizer-Based Agroecosystems? A Review. Nutr. Cycl. Agroecosys. 

72 (2), 101–120 

Davis, A.S., Hill, J.D., Chase, C.A., Johanns, A.M.,  Liebman, M., 2012. Increasing Cropping System 

Diversity Balances Productivity, Profitability and Environmental Health. PLoS One 7.  

Ferreira, M. I., Reinhardt, C. F., Lamprecht, S. C., Sinclair, M., MacKenzie, L.,  van Coller, G. 2015. 

Morphological identification of the ryegrass hybrid Lolium multiflorum×Lolium perenne and 

isolation of the pathogen Fusarium pseudograminearum in the Western Cape. S. Afr. J. Plant 

and Soil 32(1), 9-15. 



 31 

Gaba, S., Perronne, R., Fried, G., Gardarin, A., Bretagnolle, F., Biju-Duval, L., Reboud, X., 2017. 

Response and effect traits of arable weeds in agro-ecosystems: a review of current knowledge. 

Weed Res. 57, 123–147. 

Gaba, S., Gabriel, E., Chadœuf, J., Bonneu, F., Bretagnolle, V., 2016. Herbicides do not ensure for 

higher wheat yield, but eliminate rare plant species. Sci. Rep. 6, 30112.  

Gaba, S., Fried, G., Kazakou, E., Chauvel, B., Navas, M.L., 2013. Agroecological weed control using 

a functional approach: A review of cropping systems diversity. Agron. Sustain. Dev. 34, 103–

119. 

Gross, K. (1990) ‘A Comparison of Methods for Estimating Seed Numbers in the Soil’. J. Ecol. 78 (4), 

1079–1093 

Halekoh, U., Højsgaard, S., 2014. A Kenward-Roger Approximation and Parametric Bootstrap 

Methods for Tests in Linear Mixed Models. J. Stat. Softw. 59. 

Isbell, F., Adler, P.R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., … Scherer-Lorenzen, M., 

2017. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–

879. 

Lehnhoff, E., Miller, Z., Miller, P., Johnson, S., Scott, T., Hatfield, P., and Menalled, F.D. 2017 Organic 

Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems : Managing Weeds 

and Reducing Tillage Intensity. Agriculture 7 (33) 

Leon, R.G. and Wright, D.L. 2018. Recurrent Changes of Weed Seed Bank Density and Diversity in 

Crop—Livestock Systems. Agron. J. 110(3), 1068-1078 

Magurran, A.E. (2003) Measuring Biological Diversity. Blackwell, Oxford.  

McKenzie, S.C., Goosey, H.B., O’Neill, K.M., and Menalled, F.D. 2016. Impact of Integrated Sheep 

Grazing for Cover Crop Termination on Weed and Ground Beetle (Coleoptera:Carabidae) 

Communities. Agric. Ecosyst. Environ. 218, 141–149 



 32 

Miller, Z.J., Menalled, F.D., Lenssen, A.W., and Patrick, G. 2015. Integrating Sheep Grazing into 

Cereal-Based Crop Rotations: Spring Wheat Yields and Weed Communities. Agron. J. 107, 

104–112 

Mortensen, D.A., Egan, J.F., Maxwell, B.D., Ryan, M.R., Smith, R.G., 2012. Navigating a Critical 

Juncture for Sustainable Weed Management. Bioscience 62, 75–84.  

Navas, M.L., 2012. Trait-based approaches to unravelling the assembly of weed communities and 

their impact on agro-ecosystem functioning. Weed Res. 52, 479–488.  

Neve, P., Vila-Aiub, M.  Roux, F. (2009) Evolutionary-thinking in agricultural weed management. New 

Phytol. 184(4), 783-93. 

Nichols, V., Verhulst, N., Cox, R., Govaerts, B., 2015. Weed dynamics and conservation agriculture 

principles: A review. F. Crop. Res. 183, 56–68. 

Paul, E., Keith, W.T., James, R., Peter, R., 1998. Long-term agroecosystem experiments: Assessing 

agricultural sustainability and global change. Science 282, 893-896. 

Petit, S., Munier-Jolain, N., Bretagnolle, V., Bockstaller, C., Gaba, S., Cordeau, S., Colbach, N., 2015. 

Ecological intensification through pesticide reduction: weed control, weed biodiversity and 

sustainability in arable farming. Environ. Manage. 56, 1078–1090.  

Poudel, D.D., Horwath, W.R., Lanini, W.T., Temple, S.R., Bruggen, A.H.C. Van, 2002. Comparison of 

soil N availability and leaching potential, crop yields and weeds in organic, low-input and 

conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137. 

Pretty, J.  Bharucha, Z.P. (2014) Sustainable intensification in agricultural systems. Ann. Bot. 114(8), 

1571-96. 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. 



 33 

Reich, P.B., 2014. The world-wide “fast–slow” plant economics spectrum: a traits manifesto. J. Ecol. 

102, 275–301. 

Sanderson, M. A., Archer, D., Hendrickson, J., Kronberg, S., Liebig, M., Nichols, K., … Aguilar, J., 

2013. Diversification and ecosystem services for conservation agriculture: Outcomes from 

pastures and integrated crop–livestock systems. Renew. Agric. Food Syst. 28, 129–144. 

Smith, R.G., Mortensen, D.A., Ryan, M.R., 2010. A new hypothesis for the functional role of diversity 

in mediating resource pools and weed-crop competition in agroecosytems. Weed Res. 50, 37–

48.  

Smith, R.G., Gross, K.L., 2007. Assembly of weed communities along a crop diversity gradient. J. 

Appl. Ecol. 44, 1046–1056. 

St-Martin, A., Vico, G., Bergkvist, G., Bommarco, R., 2017. Diverse cropping systems enhanced yield 

but did not improve yield stability in a 52-year long experiment. Agric. Ecosyst. Environ. 247, 

337–342. 

Storkey, J., Moss, S.R., Cussans, J.W., 2010. Using assembly theory to explain changes in a weed 

flora in response to agricultural intensification. Weed Sci. 58, 39–46.  

Storkey, J., Meyer, S., Still, K.S., Leuschner, C., 2012. The impact of agricultural intensification and 

land-use change on the European arable flora. Proc. R. Soc. B Biol. Sci. 279, 1421–1429.  

Storkey, J., Macdonald, A.J., Bell, J.R., Clark, I.M., Gregory, A.S., Hawkins, … Whitmore, A.P. 2016. 

The Unique Contribution of Rothamsted to Ecological Research at Large Temporal Scales. In 

Advances in Ecological Research, Vol 55: Large-Scale Ecology: Model Systems to Global 

Perspectives (eds A.J. Dumbrell, R.L. Kordas  G. Woodward), pp. 3-42. Elsevier Academic 

Press Inc. 

Wezel, A., Casagrande, M., Celette, F., Vian, J.F., Ferrer, A., Peigné, J., 2014. Agroecological 

practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. 

 



 34 

 


