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Enhanced cooperative navigation by data fusion from IMU, ambiguous
terrain navigation, and coarse relative states

Nicolas Merlinge, James Brusey, Nadjim Horri, Karim Dahia, Hélène Piet-Lahanier

Abstract— GNSS denied IMU correction is a practical chal-
lenge in aerospace vehicle navigation. In the context of several
vehicles flying in formation, navigation accuracy can be en-
hanced by communication between the vehicles. In this paper,
a collaborative navigation strategy is presented to deal with
coarse and ambiguous measurements. An absolute navigation
filter provides a first estimate of the navigation solution, while
a relative observer rebuilds the neighbors relative states from
embedded seekers. A high-level Master Filter fuses information
provided by those two low-level filters to enhance the navigation
solution. Absolute navigation measurements are terrain eleva-
tion data correlated with a Digital Elevation Model map. Since
they are highly ambiguous and nonlinear, they are processed by
a Box Regularized Particle Filter. The relative measurements
under consideration suffer a high level of uncertainty, especially
on the relative distance between vehicles. By fusing all uncertain
data, a complete and accurate navigation solution is obtained.
Numerical results are presented and show an enhancement in
navigation performance by exchanging information, in terms
of RMS estimation error (63% more accurate in position),
estimation confidence (78% more precise in position), and
computational load (requires 83% less operations).

I. INTRODUCTION

Autonomous aircraft formation flying is an active research
area (e.g., Wu [1]), but often requires accurate absolute
navigation. Aircraft navigation systems rely on an Inertial
Measurement Unit (IMU) to estimate their position and
attitude. Given that this IMU uses an iterative scheme of
acceleration integration, it drifts and needs to be corrected
using additional measurements. In order to be independent
from any external navigation systems that can be jammed or
disturbed, e.g., Global Navigation Satellite System (GNSS),
more autonomous sensors can be used, such as optical
seekers or electromagnetic sensors.

A possible approach is terrain navigation, i.e. measure-
ments of the ground relative elevation combined with an
embedded Digital Elevation Model (DEM) map. However,
such measurements are highly nonlinear and ambiguous due
to terrain similarities, and cannot be efficiently processed
by classic methods such as Kalman Filters. Multi-hypothesis
filtering methods, such as Particle Filters, are proven to be
able to handle this issue (e.g., Dahia [2]). Nevertheless,
they often suffer from low robustness to terrain ambiguities
and are complex to compute. More recently, an interval
analysis based particle filter has been proposed, called Box
Regularized Particle Filter (BRPF, Merlinge [3]). Taking
advantage of both studies on interval-based particle filters

(e.g., Gning [4]) and probabilistic kernel estimation (e.g.,
Musso [5]), the BRPF offers a high robustness to terrain
ambiguities. However, it may converge slowly and its esti-
mated confidence often remains too pessimistic for accurate
formation flying. A possible solution is to take advantage of
the other vehicles to make the estimator converge faster with
a reduced estimated uncertainty by observing the vehicle’s
neighbors’ relative states and by receiving information about
their own navigation estimate.

An observability study was presented in Sharma [6] show-
ing that the IMU drift can be constrained using inter-vehicle
coarse absolute state communications fused with relative
measurements. The simplest way to fuse those measurements
is a single layer architecture made of one global navigation
filter (e.g., [6], [7]). However, this architecture cannot guar-
antee that a given combination of relative measurements will
not make the estimate navigation accuracy deteriorate. Fur-
thermore, the computation load of the fusion algorithm can
be high, as shown later in the article for a BRPF. To achieve
a robust decentralized architecture, two layers architectures
have been proposed (e.g., [8], [9]), inspired by the theoretical
work of Carlson [10]. In those approaches, absolute IMU
correction and relative observations are tackled separately in
a first layer and then fused with the communicated states in
a second layer.

In this paper, a two stages decentralized navigation archi-
tecture is proposed to refine robust terrain navigation per-
formed by a Box Regularized Particle Filter by exchanging
states between vehicles. The practical value of the approach
is shown through a computation load complexity analysis
and numerical simulations.

The article is organized as follows. Section II presents
the terrain navigation based IMU correction scheme and the
relative tracking model. Section III presents a cooperative
navigation enhancement strategy and compare it with a single
layer architecture. Numerical results are presented in Section
IV.

II. PROBLEM STATEMENT

We consider a fleet of N UAVs flying in formation. The
state vector Xi of each vehicle i ∈ J1, NK consists of:

Xi =
[
piT ,ViT ,ψi

T
]T
∈ R9 (1)

where pi =
[
piλ, p

i
φ, p

i
h

]T
is the geographical position

(respectively latitude, longitude, altitude), Vi ∈ R3 is the ve-
locity vector, and ψi ∈ R3 is the attitude. The IMU provides
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Fig. 1. Elevation measurement mi in terrain navigation

position, velocity, and attitude information in Earth fixed
reference frame by integrating the measured accelerations
and angular rates. The inertial observations are expressed
as:

X̃
i

=

[
p̃i
T
, Ṽi

T

, ψ̃i
T

, Γ̃i
T

, Ω̃i
T
]T
∈ R15 (2)

where Γ̃
i ∈ R3 is the measured acceleration and Ω̃

i ∈ R3

is the measured angular rate. However, IMU measurements
suffer uncertainty that results in a growing drift.

A. IMU correction by ground altitude measurements

1) Dynamical model: inertial error: The IMU errors can
be modeled as a state vector Xierr defined by:

Xierr =
[
δXiT , δViT , δψiT ,bia

T
,big

T
]T
∈ R15 (3)

where δXi is the position error converted in m, and δViT ,
δψiT , bia

T
, big

T
are respectively the inertial error on ve-

locity, attitude, and the accelerometers and gyrometers bias.
Estimating the IMU errors Xierr by using additional sensors
(e.g., GNSS, Radar-altimeter) makes it possible to correct the
inertial measurements X̃

i
. The inertial error evolution can be

described by the following dynamical model:

Ẋ
i

err = AiXierr + wi (4)

where Ai ∈ R15×15 is the transition matrix coupling the
dynamics of inertial error and wi ∈ R15 a process noise
quantifying the dynamical model uncertainty. Dahia [2] pro-
vides a complete derivation of inertial equations and inertial
error.

2) Observation model: ground altitude measurements: A
radar altimeter provides elevation measurements (the relative
height mi, see Fig. 1) along the aircraft trajectory at discrete
time values. By comparing onboard elevation measurements
with a Digital Elevation Model (DEM : R2 → R),
it is possible to reconstruct the absolute position of the
aircraft. The DEM gives the absolute elevation as a function
of the geographical coordinates (piλ, p

i
φ). The measurement

equation is:
mi = g(Xi) + v (5)

where v ∈ R is the measurement noise modeling the sensor
error and the DEM map uncertainty, and

g(Xi) = pih −DEM(piλ, p
i
φ) (6)
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e3 

Fig. 2. Relative measurements (βij , εij , rij)

is the observation function. There is no analytic description
of g, since DEM is obtained from an embedded terrain map.

B. Relative state observation

In order to use navigation information from other vehicles,
each vehicle needs to estimate the relative state for each
neighbor, based on measuring its relative position.

1) Relative dynamical model: Let Xij be the relative state
vector between the current vehicle i and vehicle j:

Xij =
[
xij , yij , zij , V ijx , V

ij
y , V

ij
z

]T
(7)

where x, y , and z denote the three axis of a relative frame
aligned on the absolute one and centered to the vehicle.
Vx, Vy , and Vz are the associated velocities. The relative
dynamical evolution can be written as:

Ẋ
ij

= ΦXij + B
(
Γj − Γi

)
+ wij (8)

with Φ =
[ I3 03×3

03×3 03×3

]
. Id and 0d×d are respectively the

identity matrix and the zero matrix of dimension d. The
current vehicle acceleration can be provided by the IMU
corrected by the navigation filter. Neighbor j acceleration
Γj is assumed to be communicated every ∆tcom . Since the
communication frequency may be lower than the relative
system dynamics, this acceleration may suffer uncertainty,
modeled by an additive noise wij ∈ R6.

2) Relative observation model: The measurements consist
of the bearing βij and elevation εij angles, and the relative
range rij , which can be expressed as mij = h

(
Xij
)

+ vr.
with vr ∈ R3 the observation uncertainty and

h
(
Xij
)

=

βijεij
rij

 =

 atan2
(
yij , xij

)
atan2

(
z,

√
xij2 + yij2

)
√
xij2 + yij2 + zij2

 (9)

Measurements are illustrated in Figure 2. In the case of pas-
sive embedded relative sensors, the range is usually obtained
with a low accuracy and a low update rate, which results in a
highly uncertain relative estimate. The next section presents
a two-layers data fusion architecture that is robust to large
estimation uncertainty while reducing the computational load
with respect to a single layer architecture.

III. PROPOSED FUSION ARCHITECTURE

In this section, a fusion architecture is described. It
consists of two levels. The first level is composed of two
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Fig. 3. Proposed two layers fusion architecture

parallel low-level filters processing absolute navigation mea-
surements on the one hand and relative measurements on
the other hand. For absolute navigation, a Box Regularized
Particle Filter (BRPF) provides a first version of the navi-
gation solution (IMU error estimation from radar-altimeter
measurements). For relative navigation, an EKF rebuilds the
relative states between neighbors j and vehicle i. Then, a
high-level filter, called Master Filter in what follows, fuses
the low-level filters’ output with communicated low-level
navigation solutions from other vehicles.

A. Absolute and relative navigation filters
To correlate terrain elevation measurement with a DEM

map, a Box Regularized Particle Filter has been proposed by
Merlinge [3] and is briefly described here. In what follows,
k denotes a discrete time. The BRPF defines a cloud of
Box Particles [Xik] ∈ IRd (with IR the interval set on R
and d the state dimensionality.). In this section, i denotes
the index of each particle. Each Box Particle is associated
with a weight wik that quantifies its likelihood to contain
the real state Xerr (inertial error vector) to be estimated.
This likelihood is computed from the current measurements
box [mk] constructed as a confidence interval around the
sensor value. No additional probabilistic hypothesis about
the measurement uncertainty is needed excepted its support.

Figure 4 describes the algorithm. Matrix FA is the dis-
cretized form of A in (4). A box [a] ∈ IRd is defined as a
d-dimensional vector of intervals. In what follows, Cik ∈ Rd
stands for the ith box particle center. The volume of a
box |[a]| ∈ R is defined as the product of the length of
each interval. An extensive description of interval analysis
is available in [11]. An associated empirical covariance
P̂nav ,k ∈ Rd×d can be computed to quantify the estimate
confidence. The whole number of elementary operations (ad-
dition, substractions, multiplications, divisions) performed
during one iteration of the algorithm described in figure 4
has been evaluated using the same methodology as in [12]:

cBRPF (d,Np) = Np(12d2 + 2d+ 1) (10)

Initialization (k = 1): Generate Np box particles {[Xik]}i∈J1,NpK
for each time-step k = 1 to kend do

for each particle i = 1 to N do
Prediction: [Xi

k|k−1
] = FA[Xik−1] + [wk]

Correction:
• Box contraction: find the smallest box [Xi

k|k] that contains{
Sik
}

=
{

Xk ∈ [Xi
k|k−1

]
∣∣g(Xk) ∈ [mk]

}
• Likelihood: λi =

|[Xi
k|k]|

|[Xi
k|k−1

]|

• Weight update: wik = wik−1λi

• Weight normalization: wik ←
wi

k∑N
j=1 w

j
k

if 1/
∑Np

i=1 w
i
k
2
< θeffNp with θeff ∈ [0, 1] then

Resampling by subdivision:
resample to create Np new particle boxes with weights equal
to 1/Np. Perform a kernel regularization (see Merlinge [3])

end if
State estimation:
• Estimate: X̂err,k =

∑Np

i=1 w
i
kCik and confidence: P̂nav,k

end for
end for

Fig. 4. Box Regularized Particle Filter algorithm

When GNSS is unavailable, this algorithm makes it possible
to solve the navigation problem with high robustness to
terrain ambiguities, but converges slowly and may remain
pessimistic. For relative navigation, the dynamical model
(8) is linear, and measurements (9) are somewhat nonlinear.
Thus, an Extended Kalman Filter (EKF) is an efficient
solution. The relative estimate is denoted X̂

ij
∈ R6 and

associated to covariance confidence P̂
ij
∈ R6×6.

B. Master filter

The Master Filter fuses current vehicle filters’ output with
communicated information from neighbors. In what follows,
i denotes the current vehicle index and j 6= i denote its
neighbors.

1) Communication strategy: A vehicle cannot emit and
receive data at the same time. Therefore, communication is
constrained by this condition. As proposed in Leung [13],
an a priori communication order has been defined for the
communication period ∆tcom . Each vehicle has a time range
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∆tcom

N to send its data to others. This communication protocol
is illustrated in Figure 5. The assumption is made that all
vehicles are time-synchronized. The hypothesis is made that
the communication graph is fully connected and that received
data are immediately available. Vehicle j sends its estimated
absolute position and velocity, its acceleration, and their
associated uncertainties. The communicated absolute state
and its uncertainty are respectively denoted ξinav ∈ R6, and
Rinav ∈ R6×6. Information flow is illustrated in Figure 3.

2) Master Filter: Each time the current vehicle receives
ξinav and Rinav , it can translate them in terms of its own
position and velocity through its relative navigation solution
X̂
ij

. This pseudo-measurement ξi|j ∈ R6 of state i given
state j is defined as:

ξi|j = ξjnav −GgeoX̂
ij

(11)

where Ggeo transforms metric distance to angular geographic
difference. The associated uncertainty is, under the hypoth-
esis of ξjnav and X̂

ij
being statistically independent:

Ri|j = Rinav + P̂
ij

(12)

The geographic state ξi|j must be converted to inertial error
with respect to the current vehicle IMU data X̃

i
: ξi|jerr =

Gm

(
ξi|j −HX̃

i
)

where Gm transforms angular geographic
difference to metric distance and H =

[
I6 06×9

]
. As stated

in III-A, the navigation filter provides a first estimate of
IMU errors X̂err ∈ Rd. The IMU error model has a linear
formulation and the relationships between ξjnav , X̂

ij
, and

X̂err are linear. This is a sufficient condition for the iterative
least square estimator to be minimum variance (Oudjane
[14]). It is known as the Information Filter, in other words the
information formulation of the Kalman Filter (Grocholsky
[15]). The Master Filter output is thus:

X̂
i

err,k,MF = P̂ik,MF

(
P̂ik|k−1,MF

−1X̂
i

err,k|k−1,MF + iik
)
(13)

with
X̂
i

err,k|k−1,MF = FAX̂
i

err,k−1,MF (14)

P̂ik|k−1,MF = FAP̂ik−1,MF FTA + QMF (15)

where FA is the discretized transition matrix defined in II-A
and QMF ∈ R15×15 the process covariance uncertainty,
iik = HT P̂inav ,k

−1X̂
i

err ,k +
∑N
j=1
j 6=i

αijk HTRi|jk
−1
ξ
i|j
err ,k and

P̂ik,MF =
(

P̂ik|k−1,MF

−1
+ HT P̂inav ,k

−1
H

+
∑N
j=1
j 6=i

αijk HTRi|jk
−1

H

)−1

where αijk = 1 if vehicle

i receives information from vehicle j and 0 else). As the
low-level filters may present divergences, it is of interest
to introduce an outlier rejection procedure on the Master
Filter inputs. An efficient way to reject outlying inputs
is setting αij to 1 only if the input is consistent with
the Master Filter estimate and predicted uncertainty. This
can be done by defining an ellipsoid region to which the
input measurement must belong. This ellipsoid corresponds
to a given admissible covariance level on the predicted
measurement provided by the Master Filter. For any
available communication from vehicle j at time k:

αijk =

{
1 if yik

T P̂ik|k−1,MF

−1yik ≤ γG
0 else

(16)

with yik = HX̂
i

err,k|k−1,MF − ξ
i|j
err ∈ R6 and γG ∈ R+∗

is obtained from a table of chi-square distribution (see Bar-
Shalom [16]).

C. Comparison to a single layer fusion architecture

In this section, the proposed two layers architecture is
compared with a single layer fusion, where the LOS mea-
surements, the communicated states, and the terrain naviga-
tion measurements are fused at the same time in a BRPF.
Therefore, in addition to the basic cost cBRPF (10), the box
contraction operation derived from (9) requires 176Npnm
more elementary operations (addition, substractions, multi-
plications, divisions), with Np the number of box particles
and nm the number of received communications at cur-
rent time. according to the aforementioned communication
strategy, nm = 1. With Np = 900 and d = 15, the
single layer architecture would require 2.5× 106 operations
per time-step. Since this architecture does not require any
additional filtering layer and fuses only one communicated
measurement at a time, the computation load is independent
from the number of vehicles N . However, it holds a high
cost that can be dramatically reduced with the proposed two
layers strategy.

On the basis of previous studies about filters complexity
analysis [17], the proposed two layers fusion architecture
computational cost can be evaluated as follows. A con-
ventional Kalman Filter requires cEKF (d, dm) = 4d3 +
3d2dm + 2dd2

m + d3
m/6 operations, with d and dm respec-

tively the state dimension and the measurements dimension.
Based on the same methodology, the proposed Master Filter
requires cMF (d, dm, nm) = 4d2 + 6d3 + d3

mnm − d3
m +

3d2
mnm − 2d2

m − 2d + dm operations. Then, the proposed
architecture requires the following number of operations:
ctotal = (N−1)cEKF (dEKF , dLOS )+cBRPF (dBRPF , Np)+
cMF (dMF , dEKF , nm), with dEKF = 6, dLOS = 3, dMF =
15, N the number of vehicles, and nm = 1. Since the
attitude and bias estimation are switched from the BRPF
to the Master Filter, the BRPF dimension can be reduced
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Fig. 6. UAVs trajectories (green) above a mountainous terrain (gray-scale)

to positions and velocities only (dBRPF = 6). Therefore,
the whole architecture requires a total number of operations
of 1, 301N + 440, 163. In the example presented in this
article, with N = 4, the cost is of 445, 367 operations
per time-step, which represents a reduction of 83.3% with
respect to the single layer architecture. Theoretically, the two
architectures would be equivalent in terms of computational
load for N = 1, 706 vehicles. Furthermore, the two layers
architecture is theoretically more robust to relative measure-
ments undetected outliers, since they are not introduced in
any communicated data and spread through the network.

IV. NUMERICAL RESULTS

A numerical simulation is considered with four fixed-
wing UAVs flying in formation over a mountainous ter-
rain, as illustrated in Figure 6. Table I describes the sim-
ulation parameters. A hundred Monte-Carlo simulations
have been run. The first evaluation criterion is the Root
Mean Square Error (RMSE) defined for each agent i by
RMSE i

k =
√

1
NMC

∑NMC

j=1 ‖x̂k,j − xk,j‖2, where NMC =

100 is the number of runs. Vector x̂k,j stands for estimate
position, velocity, or attitude at time-step k for run j.
Vector xk,j stands for actual vector to be estimated. In
order to get a more general interpretation of the multi-
agents estimate RMSE, one can define the global RMSE by
RMSEk = 1

N

∑N
i=1 RMSE i

k. The second evaluation crite-
rion is the mean estimate uncertainty, defined as ±3‖σ̂ix‖,

where σ̂ix = diag
(

P̂
i

x

)1/2

∈ R3 with P̂
i

x ∈ R3×3 the
considered filter estimate covariance confidence of a vector
x ∈ R3 (position, velocity, or attitude) for agent i. A global
criterion can be defined as the average value among the float:
± 1
N

∑N
i=1 3‖σ̂ix‖.

Global RMSE and global estimate uncertainty are pre-
sented in Table II for the navigation BRPF, the Master
Filter, and a single layer architecture that consists of a
BRPF directly fusing all the measurements. The Master
Filter’s RMSE (159 m) remains significantly lower than
the navigation BRPF (431 m) and of the same order of
magnitude than the single layer architecture (145 m). As
shown in Figures 7 and 8, the two layers Master Filter uncer-

TABLE I
SIMULATION CONFIGURATION

General Value
Communication update rate ∆tcom = 1 s

Relative distance 103 m
Absolute velocity 200 m/s

IMU initial position error (std)
[
103, 103, 102

]
m

IMU initial velocity error (std) [2, 2, 1] m/s
IMU initial attitude error (std)

[
5 × 10−3, 5 × 10−3, 5 × 10−3

]
rad

IMU accelerometer bias (std)
[
10−2, 10−2, 10−2

]
m/s2

IMU gyrometer bias (std)
[
10−4, 10−4, 10−4

]
rad/s

Measurements
Radar-altimeter error (support) vk ∈ [−45,+45] m

Relative angles error (std) σβ = 1◦ and σε = 1◦

Relative range error (std) σr = 500 m
Radar-altimeter update rate ∆tRA = 0.1 s
Relative angles update rate ∆tβ = 0.1 s and ∆tε = 0.1 s
Relative range update rate ∆tr = 5 s
Navigation Filter (BRPF) Np = 900, θeff = 0.5

Master Filter
Process noise in position (std) [80, 80, 10] m/s

Process noise in velocity (std) [2, 2, 1] m/s2

Process noise in attitude (std)
[
10−3, 10−3, 10−3

]
rad/s

Accelerometer bias (std)
[
10−6, 10−6, 10−6

]
m/s3

Gyrometer bias (std)
[
10−8, 10−8, 10−8

]
rad/s2

p
o
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o
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 R
M

SE
 (

m
) 

Fig. 7. Position RMSE for navigation filter and cooperative Master Filter

tainty (±374 m) is significantly lower than the one obtained
with the navigation filter (±1, 736 m), or the single layer
architecture (±1, 172 m). Moreover, despite the very coarse
relative measurements (σr = 500m for the range, which
is very close to an angles-only problem), the two layers
Master Filter significantly improves the velocity estimation,
and performs better than the single layer estimation (4.1 m/s
of RMSE with a confidence of ±9.6 m/s for the Master
Filter and 4.6 m/s of RMSE with a confidence of ±26 m/s
for the navigation filter and the single layer architecture).
Attitude estimation is also enhanced with an improvement in
uncertainty from ±5× 10−2 rad to ±1× 10−2 rad. Indeed,
the Information Filter converges more efficiently than a
particle like filter in the case of the state variables that
are not directly observed. This highlights the merits of the
proposed architecture: by only measuring ground altitude
and rough relative position, a complete state estimation has
been performed. The additional computation time needed to
perform the high-level cooperative fusion appears reasonable,
since it represents an increase of only 8.4 % with respect
to the low-level processing, and a computational reduction
of 55 % with respect to the single layer architecture. The
difference with the theoretical percentage estimated in III-C
is due to the Matlab parallelization process.



TABLE II
SIMULATION RESULTS AT FINAL TIME

Navigation Single layer Two layers
Filter architecture architecture

(BRPF) (BRPF) (MF)
RMSE in position 431 m 145 m 159 m

Uncertainty in position ±1, 763 m ±1, 172 m ±374 m
RMSE in velocity 4.6m/s 4.6m/s 4.1 m/s

Uncertainty in velocity ±26 m/s ±26 m/s ±9.6 m/s
RMSE in attitude 9× 10−3 9× 10−3

rad rad
Uncertainty in attitude ±5× 10−2 ±1× 10−2

rad rad
Average computation
time (Desktop CPU 3.5GHz 8.7 ms 20 ms 9.5 ms

running Matlab R2014b)

Confidence on absolute 
navigation without cooperation

Confidence on absolute 
navigation with cooperation
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Fig. 8. Confidence estimation with cooperation (Master Filter output) and
without (low-level absolute navigation filter output) for vehicles 1, 2, 3 and
4.

V. CONCLUSION

In this paper, a two-level fusion filter is presented to enable
accurate absolute navigation in a GNSS denied environment
for a fleet of vehicles. The fusion architecture consists of
two low-level filters and a high-level Master Filter. A Box
Regularized Particle Filter provides an initial estimate of
the navigation solution using a terrain navigation technique.
Relative navigation is performed by an EKF. An information
filter fuses those two filters’ outputs with communicated
navigation information from neighbors. The resulting filter
makes it possible to enhance IMU error estimation from
incomplete and ambiguous measurements, such as ground
altitude data and roughly estimated relative states. This
approach offers the advantage of being computationally
lighter than a single layer BRPF, and does not introduce
any hierarchy between vehicles, since each one broadcasts
its state and uses other vehicles communicated information,
if available and consistent. The use of IMU errors makes it
possible to rely on a linear dynamical model, independent
from the vehicle dynamical model. Therefore, the proposed

approach does not require any simplification or assumption
about the vehicle dynamics, contrary to many collaborative
localization approaches. Another advantage is that most ap-
proaches assume availability of accurate navigation sensors,
such as GNSS receivers, or are limited to partial state vector
estimation. The use of fused Box Regularized Particle Filters
makes it possible to accurately correct each IMU error using
very coarse measurements. From a measured altitude above
the ground and inaccurate relative measurements, a complete
navigation solution for the whole state vector is proposed.
Significant improvements, both in accuracy and predicted
uncertainty, have been shown, compared to the use of the
low level absolute navigation filter alone, or a single layer
architecture.
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