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This experimental study analyzes the relationship between the dimensionality of turbulence and the up- or
downscale nature of its energy transfers. We do so by forcing low-Rm magnetohydrodynamic (MHD) turbu-
lence in a confined channel, while precisely controlling its dimensionality by means of an externally applied

magnetic field. We first identify a specific lengthscale l̂c⊥ that separates smaller 3D structures from larger
quasi-2D ones. We then show that an inverse energy cascade of horizontal kinetic energy along horizontal
scales is always observable at large scales, but that it extends well into the region of 3D structures. At
the same time, a direct energy cascade confined to the smallest and strongly 3D scales is observed. These
dynamics therefore appear not to be simply determined by the dimensionality of individual scales, nor by the
forcing scale, unlike in other studies. In fact, our findings suggest that the relationship between kinematics
and dynamics is not universal and may strongly depend on the forcing and dissipating mechanisms at play.

PACS numbers: Valid PACS appear here
Keywords: Magnetohydrodynamic (MHD) turbulence, Turbulence dimensionality, Inverse energy cascade

Turbulence displays radically opposite dynamics,
whether it is three-dimensional (3D) or two-dimensional
(2D). In the former, kinetic energy follows a direct en-
ergy cascade from the forcing scale down to the smallest
scales1, while the latter features an inverse energy cas-
cade from the forcing scale up to large structures of the
size of the system2. It is, however, still unclear how these
seemingly irreconcilable dynamics relate to each other,
whenever 2D and 3D turbulent structures coexist. This
question is all the more crucial when dealing with real-life
wall-bounded flows, as speaking of two-dimensionality
only makes sense with respect to the presence of bound-
aries, such as no-slip walls. Yet, solid boundaries neces-
sarily introduce three-dimensionality both in boundary
layers and in the bulk3,4. As a result, real flows (such
as oceans or atmospheres) can only be quasi-2D rather
than strictly 2D, and often combine 2D and 3D turbu-
lent structures5. The key question that determines both
transport and dissipative properties of such flows is then
how much, and which kind of three-dimensionality is re-
quired for the inverse cascade to become direct. In other
words: how do the energy transfers relate to the topolog-
ical dimensionality of turbulence?

It is unclear whether this question has a universal an-
swer. For instance, compressing one dimension can yield
a hybrid configuration, in which the energy flux splits into
a direct cascade at small scales and an inverse cascade at
large scales6, while forcing a 3D and three-component
flow in a thick fluid layer can still produce a large coher-
ent vortex, indicative of an upscale energy flux7. Further-
more, within the respective contexts of rotating8, and
stratified rotating quasi-2D turbulence9, horizontal ki-
netic energy flows preferentially upscale, while vertical
kinetic energy flows downscale. Finally, a subset of the
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FIG. 1: Sketch of the Flowcube.

non-linear interactions of any 3D flow is always capable
of transferring kinetic energy upscale10.

This matter is investigated within the context of sta-
tistically steady liquid metal low-Rm magnetohydrody-
namic (MHD) turbulence in a homogeneous magnetic
field12–14. A significant advantage of this approach is that
the level of three-dimensionality of MHD turbulence can
be controlled simply by adjusting the external magnetic
field B0

15–18. In particular, Ref.19 theorised that a criti-
cal lengthscale separates (larger) quasi-2D from (smaller)
3D turbulent structures, by interpreting the effect of the
solenoidal component of the Lorentz force as a “pseudo-
diffusion” of momentum in the direction of the magnetic
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li = 5mm
B0 [T] 1 3 5 7 10

ubot [m/s] 0.180 0.230 0.240 0.250 0.270
Ha 3644 10930 18220 25510 36440
Re 44000 58000 60000 64000 67000

lz(li)/h 0.23 0.59 0.97 1.3 1.7

li = 15mm
B0 [T] 1 3 5 7 10

ubot [m/s] 0.130 0.180 0.200 0.230 0.250
Ha 3644 10930 18220 25510 36440
Re 32000 45000 50000 57000 62000

lz(li)/h 1.3 3.4 5.3 6.9 9.4

TABLE I: Range of non-dimensional parameters for an injected current per electrode of 6A. Data is given for both
electrode separations li, and a selected range of magnetic fields (cf. Ref.11 for more details).

field. The time τ2D(l⊥) required to diffuse the momen-
tum of a turbulent structure of size l⊥ over the distance
lz along B0 is given by τ2D = (ρ/σB2

0)(lz/l⊥)
2, where

σ and ρ are the fluid’s electric conductivity and density
respectively. In the inertial range, the other competing
process is inertia, whose main effect is to redistribute
kinetic energy across turbulent structures, by means of
energy transfers. It takes place over the eddy turnover
time τu(l⊥) = l⊥/u(l⊥), where u(l⊥) is the velocity of
the structure at hand. The scaling law for the range of
action of the Lorentz force follows from the balance be-
tween both effects19:

lz(l⊥) = l⊥
√
N(l⊥), (1)

where N(l⊥, u(l⊥)) = σB2
0 l⊥/ρu(l⊥) is a scale-dependent

interaction parameter. The dimensionality of a structure
is then determined with respect to no-slip walls perpen-
dicular to the magnetic field and distant by h, through
the ratio lz(l⊥)/h20,21. In particular, lz(l⊥)/h 6 1 im-
plies that velocity gradients exist in the bulk, in other
words, that the structure of size l⊥ is 3D. Conversely,
lz(l⊥)/h ≫ 1 implies that the Lorentz force diffuses the
momentum of the structure of size l⊥ over a distance
much greater than h. This process is however blocked by
the no slip-walls. The structure of size l⊥ is thus quasi-
2D. The critical lengthscale lc⊥ separating quasi-2D and
3D structures, for which lz(l

c
⊥)/h = 1, eventually reads19

lc⊥
h

∼
[
σB2

0h

ρu(lc⊥)

]−1/3

= N [h, u(lc⊥)]
−1/3. (2)

Increasing the applied magnetic field thus offers a conve-
nient way of broadening the spectrum of quasi-2D scales.
The problem at hand was tackled experimentally us-

ing the Flowcube11,20,22,23, an experimental platform de-
signed to drive turbulence electrically in a 100mm ×
100mm × 150mm parallelipedic vessel, filled with a
GaInSn eutectic alloy (ρ = 6400 kg/m3, σ = 3.4 ×
106 S/m, kinematic viscosity ν = 4 × 10−7m2/s). Tur-
bulent motions were induced by forcing a DC electric
current I0 through a square periodic array of electrodes
spaced either by li = 5 or 15mm located along the bot-
tom wall11, while simultaneously applying a vertical and
static magnetic field B0 ez, of up to 10T (cf. Fig. 1).
Two complementary measurement methods were used
to diagnose the resulting flow. First, a fine Cartesian
mesh of probes mounted flush to the top and bottom

walls along strips aligned with the ex direction gave ac-
cess to the electric potential distribution at these walls.
The spatial resolution of this method, as given by the
spacing between adjacent probes was 2.5mm. The sig-
nal was time sampled at 250Hz/24-bits over 18mn-long
continuous runs. In the limit of high Hartmann number
(Ha = B0h

√
σ/ρν) and high interaction parameter, the

electric potential along the horizontal walls is a precise
estimate for the stream-function right outside the Hart-
mann boundary layer developing along them24. It thus
provides both velocity components in the same planes.
Second, two ultrasound transducers were used to respec-
tively measure the ux(x, yh, zh, t) and uz(xv, yv, z, t) ve-
locity profiles through the bulk, at the fixed positions
(yh, zh) and (xv , yv) respectively. The transducers of-
fered a spatial resolution of ca. 1mm, and a 5Hz sam-
pling rate. The dimensionality of the flow was controlled
through the single parameter lz(li)/h, where lz(li) is
the diffusion length associated to turbulent structures of
size li and the RMS of the turbulent fluctuations mea-
sured along the bottom wall ubot

11. The Reynolds num-
ber Re = ubot h/ν ranged between 17000 and 71000
throughout, which guaranteed that the turbulence was
fully developed. The Hartmann number and Magnetic
Reynolds number Rm = µ0 σ ubot h, (µ0 referring to vac-
uum permitivity) respectively ranged between 911 and
36400 and 0.029 and 0.12. Selected regimes achievable by
the Flowcube are given in Table I. Except for Fig 4, the
statistics presented hereafter stem from data acquired by
potential measurements. The average operator must be
understood as an ensemble average obtained by averaging
over time and space. Statistics were computed using ca.
107 independent samples, which yielded a convergence
level better than 1% for the third order moments11.

Following Ref.25, we describe the structure of turbu-
lence through the velocity increment δu = u(x+r)−u(x),
computed from turbulent fluctuations. Due to the very
low influence from the lateral walls11, the turbulence
in Flowcube is considered homogeneous in the horizon-
tal plane and axisymmetric. Hence, r and δu are re-
spectively decomposed as r = r⊥ er + r‖ ez, and δu =
δu⊥ + δu‖, with δu‖ = (δu · ez) ez and δu⊥ = δu− δu‖.
We shall focus on δu⊥(r⊥ex) computed along both the
top and bottom plates.

Let us start by analyzing the kinematics of the tur-
bulence and attempt to discriminate 3D from quasi-2D
structures. To do so, we adopt the signature function
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FIG. 2: Scale-wise perpendicular energy density along
horizontal scales. Normalization by

√
2 is introduced so

that the abscissae of Figs. 2 and 5 coincide with each
other (cf. properties of V⊥ in Ref27). The vertical red

lines locate l̂c⊥/li for each lz(li)/h, with quasi-2D scales
lying to their right.

V as a scale-space alternative to the Fourier-space 3D
energy spectrum26, which is expressed in 2D as27

V⊥(r⊥) = − r2⊥
4

∂

∂r⊥

1

r⊥

∂〈δu2
l 〉

∂r⊥
. (3)

Here, δul = [u(x+ rx ex)− u(x)] · ex is the longitudinal
velocity increment measured in the horizontal plane. In
axisymmetric turbulence, quasi-2D structures are invari-
ant with respect to z outside the boundary layers. Their
signature function must therefore be the same whether
measured along the top or bottom walls. Conversely, any
departure from a top/bottom mirror symmetry is an in-
dication of a 3D structure. Fig. 2 shows the scale-wise
distribution of V⊥(r⊥) across horizontal structures, along
the top and bottom walls (referred to as V top

⊥ and V bot
⊥ re-

spectively). As lz(li)/h increases beyond one, V top
⊥ tends

to match V bot
⊥ , both in shape and amplitude. Based on

this observation, a lower bound for the smallest quasi-2D
scale is computed from the location of V top

⊥ (r⊥)’s maxi-

mum l̂c⊥. Interestingly, the superposition of top and bot-
tom energy distributions starts at large scales and works
its way through smaller and smaller scales as lz(li)/h in-
creases. This behavior is in full agreement with Eq. (1),
which states that it takes a higher field [i.e. a higher
lz(li)/h] to make smaller structures quasi-2D. Further-

more, the critical lengthscale l̂c⊥ strikingly coincides with

the scale at which V bot
⊥ and V top

⊥ depart from each other,
thus confirming its physical relevance.

Fig. 3 reports the variations of l̂c⊥/li for all operating
conditions explored against the “true” interaction param-
eter Nt = N(h, uc

⊥) × (li/h)
2 = [lz(li)/h]

2(h/li), which
measures the ratio of diffusion by the Lorentz force to in-

101 102 103

N(h, uc⊥)× (li/h)
2

100

l̂c ⊥
/l

i

2.9Nt
−1/3

l c⊥/li = 0.62

li = 15mm

li = 5 mm

FIG. 3: 3D to quasi-2D critical lengthscale l̂c⊥, as a
function of the “true” interaction parameter

Nt = N(h, uc
⊥)× (li/h)

2. The Nt
−1/3 region proves that

the threshold between 3D and quasi-2D structures is
indeed solely controlled by a balance between the

solenoidal component of the Lorentz force and inertia.

ertia at the forcing scale28. Here, uc
⊥ = [2V top

⊥ (l̂c⊥) l̂
c
⊥]

1/2

is an estimate for the velocity at scale l̂c⊥. All measure-
ments collapse onto a single curve, of which two parts

can be singled out. For Nt . 102, l̂c⊥/li ∝ Nt
−1/3, which

provides an experimental confirmation of Eq. (2). For

Nt & 102, l̂c/li saturates towards a constant value of
0.62, indicating that scales below this limit-size cannot
be quasi-2D no matter how high Nt might be. This limit
likely results from the absence of a mechanism to trans-
fer energy to 2D scales smaller than the energy injection
scale, a phenomenon which is not accounted for in (2).
Having identified quasi-2D and 3D regions of the scale

space, we now seek regions where energy is transferred
up- and downscale. We first recall that the equation gov-
erning energy transfers in statistically steady MHD tur-
bulence is the Kàrmàn-Howarth equation, which reads,
in the inhomogeneous and anisotropic case29

Π(r) = P(r) + T (r) − ǫJ(r)− ǫν(r). (4)

Π(r) = ∇r ·
〈
|δu|2 δu

〉
quantifies the flux of turbulent ki-

netic energy in scale space, P(r) is the rate of production
of turbulent kinetic energy, T (r) is the flux of turbulent
kinetic energy in physical space (due to spatial inhomo-
geneities), ǫJ is the Joule dissipation (occurring in the
bulk and the Hartmann layers13), while ǫν represents vis-
cous dissipation. In low-Rm MHD, the energy transfers
remain confined to the usual non-linear hydrodynamic
term Π(r), which represents a local cumulative flux of
kinetic energy exchanged between scales of size r = ‖r‖
and less, with those of size r and greater8. More specifi-
cally, Π(r) > 0 (resp. Π(r) < 0) implies that, on average,
energy flows towards scales larger (resp. smaller) than r,
i.e. following an inverse (resp. direct) energy cascade.
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FIG. 4: Global estimates for the different contributions
to Π, computed from ultrasound measurements.

Regardless of the dimensionality of the flow, the main
contribution to the cascade is Π⊥

⊥, which can accurately
be measured using potential probes.

Invoking axisymmetry, Π(r) becomes a function of r⊥
and r‖ only, and splits into the four contributions8,9

Πβ
α = ∇α · 〈|δuβ |2 δuα〉, (5)

where α and β independently represent ⊥ or ‖, ∇⊥· =
(1/r⊥) ∂r⊥(r⊥ · ), and ∇‖ · = (∂r‖ · ) · ez. None of Π

‖
⊥,

Π⊥
‖ , or Π

‖
‖ can be precisely obtained from our measure-

ments. Estimates for all contributions may nevertheless

be computed as Π̂β
α = 〈u2

β〉
√
〈u2

α〉/lα. Fig. 4 shows all Π̂β
α

against lz(li)/h. The normalization involves lz(li) and
E0 = [〈u2

⊥〉+ 〈u2
‖〉]/2 to account for the different energy

levels. The only contribution to the energy transfers that

strengthens, as the flow becomes quasi-2D is Π̂⊥
⊥. This

reflects that in quasi-2D channel flows, (i) the vertical
velocity component becomes very small compared to the
horizontal one11,30, and (ii) velocity gradients along the
magnetic field vanish. Consequently, any contribution to
Π involving δu‖ and/or ∂r‖ must dwindle with lz(li)/h.

In the quasi-2D limit (i.e. lz(li)/h → ∞), Π⊥
⊥ coincides

with Π. In any case, since Π⊥
⊥ remains greater than the

sum of all other contributions, whether the flow is 3D or
not, Π⊥

⊥ is representative of the total energy transfer Π.
In 3D MHD turbulence, Joule dissipation induces en-

ergy losses at all scales. The inertial range is accordingly
reduced, and small-scale viscous dissipation is negligible
when N ≫ 1. Conversely, quasi-2D scales only experi-
ence dissipation through friction in the Hartmann lay-
ers if their turnover time exceeds the Hartmann friction
time τH = h2/νHa. In other words, energy is not con-
servatively transferred across the inertial range of MHD
turbulence whether up- or downscale. Hence, the energy
cascade does not necessarily incur a plateau region of con-
stant energy flux. The sign of Π⊥ is however enough to

100

r⊥/li

-0.5

0

0.5

1.0

1.5

Π
⊥
(r

⊥
)
[m

2
/s

3
]

×10−4

Πbot
⊥ Πtop

⊥ lz(li)/h = 0.63

lz(li)/h = 1.10

lz(li)/h = 3.60

FIG. 5: Horizontal transfers of horizontal turbulent
kinetic energy along the top and bottom walls, showing

an inverse cascade (Π⊥ > 0) at large scales.
Counter-intuitively, two-dimensionalization promotes a
direct cascade (Π⊥ < 0) at smaller scales. Red lines

locate l̂c⊥/li.

determine the direction of the transfer, as in Refs3,8,9,31.
Note that none of our experiments displayed condensa-
tion into large turbulent structures, unlike other compa-
rable studies7,32,33. This is due to a natural energy sink
at large quasi-2D scales in the form of Hartmann friction,
which always acted at an intermediate scale between the
size of the forced region and that of the domain. This
specific feature of the Flowcube ultimately enabled us to
sustain statistically steady turbulence over long times.

Fig. 5 displays the horizontal transfer of horizontal ki-
netic energy between horizontal scales Π⊥

⊥(r⊥), computed
along the top and bottom Hartmann walls (referred to

as Πtop
⊥ and Πbot

⊥ respectively). The bulk of the transfers
occurs in the range r⊥/li > 0.4, for which Πbot

⊥ (r⊥) and
Πtop

⊥ (r⊥) are overall positive, thus indicating an upscale
energy flux. The upper end of this region is dominated
by oscillations, whose wavelength is close to li. These
oscillations therefore likely result from the spatial inho-
mogeneities introduced by the forcing pattern, and/or by
the non-random formation and breakup of forced vortex
pairs23,34,35. The floor of these oscillations lies however
well above noise level, which confirms, together with the
continuous nature of the signature function, that random
energy transfers add-up to an upscale flux at larger scales.
Indeed, non-random energy transfers would translate into
energy being exclusively localized at selected wavelengths
only. This picture is consistent with DNS in periodic
domains36 showing that the energy cascade in MHD tur-
bulence is local and inverse at large scales. Surprisingly,

the inverse cascade extends well below l̂c⊥, implying that
3D scales can also sustain an inverse cascade. What is
more, two-dimensionality simultaneously promotes a di-
rect cascade at the lower end of the spectrum (indicated
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by a negative value of Π⊥
⊥), at scales lying below the

saturation scale observed in Fig. 2. This behavior con-
firms the presence of irreducible three-dimensionality at
the smallest scales. While it is not surprising that quasi-
2D structures always undergo an inverse cascade, it is
remarkable that some 3D scales do, and that the direct
cascade affects a wider range of small scales, while two-
dimensionality is promoted. These observations contrast
with DNS of partly 2D and partly 3D turbulence6,10,37,
which feature sharp cascade inversions at the forcing scale
only. This crucial difference may be explained by the
presence of strong Joule dissipation in our setup31,36,
and/or the “broadband” nature of our forcing.
To conclude, this study shows that energy transfers

are not simply governed by the topolological dimension-
ality of turbulence, but may also depend on the mecha-
nisms promoting two-dimensionality and/or dissipation.
In particular, MHD turbulence provides a remarkable ex-
ample where an inverse energy cascade extends to topo-
logically 3D scales. The link between turbulence kine-
matics and dynamics is therefore unlikely to be universal
and calls for a new understanding.
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