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Abstract 

The Big Data driven approach has become a new trend for manufacturing optimisation. In this paper, 

an innovative Big Data enabled Intelligent Immune System (I2S) has been developed to monitor, analyse 

and optimise machining processes over lifecycles in order to achieve energy efficient manufacturing. 

There are two major functions in I2S: (1) an Artificial Neural Networks (ANNs)-based algorithm and 

statistical analysis tools are used to identify the abnormal electricity consumption patterns of 

manufactured components from monitored Big Data. An intelligent immune mechanism is devised to 

adapt to the condition changes and process dynamics of machining systems; (2) a re-scheduling 

algorithm is triggered if abnormal manufacturing conditions are detected thereby achieving multi-

objective optimisation in terms of energy consumption and manufacturing performance. In this research, 

Computer Numerical Controlled (CNC) machining processes and industrial case studies have been used 

for system validation. The novelty of I2S is that Big Data analytics and intelligent immune mechanisms 

have been integrated systematically to achieve condition monitoring, analysis and energy efficient 

optimisation over manufacturing execution lifecycles. The applicability of the system has been 

validated by multiple industrial trials in European factories. Around 30% energy saving and over 50% 

productivity improvement have been achieved by adopting I2S in the factories.  
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1. Introduction 

Ambitious goals to achieve significant energy savings in manufacturing have been widely set by 

major economies such as Europe, China and USA (Stark et al., 2017). Recent research has summarised 

that the energy efficiency indicators of manufacturing on a national or sectional level have been defined, 

but relevant sustainable process management solutions for companies have not been effectively 

implemented. There is a strong need to foster the relevant empirical applied research in manufacturing 

companies (Engert et al., 2016). 

In a manufacturing shop floor, dynamics during manufacturing execution lifecycles are major 

challenges preventing companies from maintaining the best energy performance as well as 



manufacturing quality and productivity. The current management systems like process planning, 

scheduling and execution systems used in European factories are based on relatively static 

manufacturing information as a cascading decision making process (ElMaraghy and Nassehi, 2016). 

On the other hand, dynamics could be from various aspects of manufacturing execution lifecycles, such 

as frequent job order or priority changes, ambient working conditions, and unexpected delays. 

Manufacturing systems and tooling are also prone to aging and degrading, resulting in dimensional and 

geometric deviations of manufactured components. The dynamics generate unexpected breaks and 

unnecessary inspection, standby, repairing and maintenance of manufacturing systems, leading to time, 

energy and resource waste (Wang et al., 2015). To address dynamics in manufacturing, smart sensors, 

Cyber Physical System (CPS) and Big Data analytics have been increasingly deployed in industrial 

shop floors to support condition monitoring and diagnosis (Monostori et al., 2016). However, due to 

the large quantities of monitored data and diverse manufacturing models, relevant data collection and 

analysis to support energy efficient manufacturing are still inefficient and error-prone. 

In this paper, an innovative Big Data enabled Intelligent Immune System (I2S) has been designed to 

achieve energy efficient manufacturing optimisation via energy monitoring, analysis and manufacturing 

re-scheduling. Different from conventional management approaches that are based on pre-defined 

manufacturing conditions, I2S is enabled by CPS to collect energy (electricity) consumption data of 

manufacturing processes so as to monitor the dynamics and condition changes of the manufacturing 

systems efficiently. Artificial Neural Networks (ANNs)-based algorithms and statistical analytics tools 

are used to identify the energy consumption patterns of manufactured components. An artificial immune 

mechanism is then applied to counter significantly varying conditions during the lifecycle of the 

manufacturing process. A re-scheduling adjustment is triggered if necessary thereby achieving energy 

savings and maintaining optimised performance (productivity and balanced level of machine utilisation) 

for an entire manufacturing execution lifecycle. In this research, Computer Numerical Controlled (CNC) 

machining processes have been used for system development, validation and industrial deployment. 

 

The research innovations and characteristics of I2S are below: 

 The CPS, ANNs, immune mechanism and re-scheduling optimisation algorithm have been 

effectively integrated as innovative manufacturing intelligence to support energy efficient 

optimisation over manufacturing execution lifecycles. The immune mechanism has been designed 

to address abnormal working conditions in a systematic means; 

 The collected energy data from machining systems are stored as “Big Data”, owing to the long time 

and high frequency of electricity data collection (i.e., 3-V features for Big Data – high Volume of 

collected data, high Velocity of collecting data, and high Variety of data patterns generated from 

different machined components). Deep learning and Convolutional Neural Networks (CNNs) are 

the state-of-the-art artificial intelligent technologies for Big Data processing (Yann, et al., 2015). 

However, their disadvantages are the requirements of long time, high computational power (GPU) 



and large training sets (Najafabadi et al., 2015). To meet industrial requirements, in this research, a 

“divide and conquer” strategy has been designed to improve the efficiency and robustness of Big 

Data analysis. That is, the energy Big Data has been pre-processed and partitioned, and three-layer 

ANNs and statistical analysis tools have been introduced to learn and distinguish patterns efficiently 

so as to support abnormal condition processing; 

 I2S has been validated through real-world industrial deployment into some European machining 

companies located in Sweden, U.K. and Spain for over six months respectively to demonstrate the 

significant potentials of the system’s applicability in practice. Significant sustainability 

improvements on the environmental, economic and social aspects have been achieved by adopting 

I2S into the European factories (less unexpected breaks and scheduling optimisation to improve 

energy efficiency and productivity, intelligent monitoring and prognosis to avoid tedious human 

intervention and errors). 

 

2. Literature Survey 

Scheduling is a critical decision-making stage in manufacturing to minimise lifecycle cost, enhance 

adaptability to manufacturing and improve manufacturing sustainability. In the past decades, scheduling 

optimisation has been widely researched (comprehensive surveys have been made by Wang and Shen 

(2007), Li and McMahon (2007), respectively). In the research, optimisation objectives are from the 

aspects of lead-time, makespan and cost minimisation, and/or the most balanced utilisation level of 

machines. In recent years, in line with the trend on achieving sustainability in manufacturing 

management, energy efficiency has been increasingly considered as an important optimisation objective. 

Based on various developed energy models, scheduling optimisation algorithms have been developed 

and applied to improve the energy efficiency of manufacturing processes (Wang et al., 2014). An 

improved Particle Swarm Optimisation (PSO) approach was designed to address dynamic scheduling 

under unexpected disruptions to reduce energy consumption and makespan simultaneously (Tang et al., 

2016). A new multi-objective Genetic Algorithm (GA) and NSGA-II algorithm was developed to 

minimise the total non-processing electricity consumption and total weighted tardiness (Liu et al., 2016). 

In the algorithm, a function for parent and children combination and elitism to improve optimisation 

further was developed. In the work of Yan et al. (2016), based on a multi-level energy model and grey 

relational analysis to optimise machining parameters, a GA was developed to optimise the makespan 

and energy consumption. Based on real-time monitored data, an enhanced Pareto-based bee algorithm 

was designed to optimise energy consumption and productivity (Xu et al., 2016). Salido et al. (2017) 

developed a memetic algorithm to minimise energy consumption under makespan constraints. However, 

the above research is based on relatively static machining resource information (e.g., the optimisation 

algorithms are based on prior experimental results before manufacturing execution) so that dynamics 

during manufacturing execution lifecycle are unable to be considered effectively (e.g., machining 

resources and working conditions are assumed unchanged though there are various ambient elements 



and job dynamics during the execution lifecycle of customised production). To overcome the limit, Cai 

et al. (2016) designed an intelligent immune algorithm that is analogous to the biological immune 

mechanism to eliminate disturbances produced during manufacturing scheduling operations. In the 

research, a framework to map an intelligent manufacturing process into an artificial immune system 

was developed. Based on the biological immune system that potentially offers interesting features to 

face the threats (bacteria, viruses, cancers, etc.), Darmoul et al. (2017) investigated the application of 

intelligent immune algorithms to monitor and control manufacturing systems at the occurrence of 

disruptions. However, the above immune works are not employed to practical applications yet. 

Meanwhile, the reported immune systems are based on a Non-self/Self (N/S) mechanism, which 

considers non-self elements as problems. This mechanism is not flexible enough to effectively process 

various dynamics of manufacturing processes (analysis is given in Section 4.2). A summary of the 

above related research is given in Table 1. 

Another trend is to use in-process monitoring data and Big Data analytics for manufacturing 

optimisation such as scheduling and condition-based maintenance to achieve manufacturing lifecycle 

optimisation. A review of data mining technologies applied to manufacturing was given by Choudharya 

et al. (2009). A new scheduling system for selecting dispatching rules in real time by combining the 

techniques of simulation, data mining, and statistical process control charts was developed (Metan et 

al., 2010). In the research, the developed scheduling system extracts knowledge from data coming from 

manufacturing environments. The knowledge provides the system the adaptiveness to changing 

manufacturing environment and enhanced adaptability and quality of its decisions. Data analytics were 

also developed for condition-based maintenance and real-time manufacturing optimisation. A data 

mining technique to conduct logical analysis of data for condition-based maintenance was proposed by 

Bennane and Yacout (2012). Kusiak and Verma (2012) established ANNs to identify bearing faults in 

wind turbines based on real-time data. An anomaly detection-based data mining approach was 

developed to discriminate defect examples of rolling-element bearing failures (Purarjomandlangrudi et 

al., 2014). Two features, i.e., kurtosis and Non-Gaussianity Score (NGS), are extracted to develop 

anomaly detection algorithms. Lee et al. (2013) summarised the latest advances and trends in predictive 

manufacturing systems in a Big Data environment. Nevertheless, the above works have not actually 

been designed for processing “Big Data” sets (the data are still primarily based on limited experimental 

data). A Big Data conceptual architecture for cleaner manufacturing and maintenance processes of 

complex products was proposed by Zhang et al. (2017). Detailed design and industrial applications for 

specific machining processes, however, have not been reported. 

Based on the literature survey and industrial survey conducted during some latest research projects  

by the authors, the following research gaps have been identified: 

 For CNC machining execution lifecycles, there are lacking systematic integration of Big Data 

collection, analytics and manufacturing re-scheduling optimisation to address various dynamic 

working conditions adaptively for achieving energy efficient optimisation; 



 Majority of the developed systems are still in laboratorial environments while industrial deployment 

and validation by using industrial case studies to prove the applicability of the systems to practical 

applications are imperative. 

 

The goals of I2S are: (1) to design and integrate Big Data analytics and intelligent immune 

mechanisms, hence to conduct condition monitoring, analysis and energy efficient optimisation over 

manufacturing lifecycles systematically, and (2) to prove its industrial applicability through system 

deployment into manufacturing companies. 

 

Table 1: Recent research for sustainable and lifecycle manufacturing. 

Works Input Optimisation targets Research methods 

Metan et al. 

(2010) 

Data coming from the 

manufacturing environment 

Average tardiness 

minimisation 

Process control charts to 

monitor and update the 

performance of the decision tree 

Fang et al. 

(2011) 

Machining width, feed per 

tooth, machining speed and 

specific machining energy 

Makespan, peak power 

demand, and carbon 

footprint 

Empirical models and case 

studies of machining cast iron 

plates with slots 

He et al. 

(2012) 

CNC codes Energy consumption for 

spindle, axis feed, tool 

changes, coolant pump 

and fixed energy 

consuming units of CNC 

machines 

Empirical models for spindle,  

axis feed, tool changes, coolant 

pump and fixed energy 

consuming units 

Yan and Li 

(2013) 

Material removal rate, idle 

power, machine tool 

specific coefficients and 

standby power 

Energy consumption 

model 

Thermal equilibrium and 

empirical 

Winter et al. 

(2014) 

Machining depth, machining 

speed and dressing speed 

Energy consumption Sensitivity analysis method 

Purarjomand

langrudi et 

al. (2014) 

Monitoring data for rolling-

element bearing failures 

Minimisation of failure 

rate 

Kurtosis and Non-Gaussianity 

Score (NGS) 

Wang et al. 

(2015) 

Spindle speed, machining 

speed, depth of cut and 

width of cut 

Number of machines and 

the number of jobs to be 

processed 

Surface quality, energy 

consumption  and 

machining removal rate 

Energy consumption for 

idle, working, tool 

change and set-up 

ANNs to establish a model for 

surface quality and energy 

consumption 

Empirical models for idle, 

working, tool change and set-up 

Yan et al. 

(2016) 

Material removal rate, 

spindle speed 

Number of machines and 

the number of jobs to be 

processed 

Idle power and operation 

power, energy 

consumption for 

processing  

set-up, transportation, 

standby, and overhead 

Off-line experiments for grey 

relational analysis 

 Empirical models for 

processing, set-up, 

transportation, standby and 

overhead 

Dai et al. 

(2016) 

Manufacturing components, 

sequences, manufacturing 

resources 

Schedule, process 

planning 

Non-Self/Self immune system, 

Artificial Neural Networks 



Darmoul et 

al. (2016) 

Material unavailability, 

resource failures, 

unavailability of operators, 

rush orders 

Monitoring and control 

of manufacturing systems 

at the occurrence of 

disruptions 

Non-Self/Self immune system 

framework 

 

3. System Framework 

For a machining process, it is usually managed as a series of production cycles. During each cycle, 

the types of components for production are certain while the quantities of each component for 

production could be varying. When a new production cycle starts, the types of components will be 

adjusted. That is, new types may be added for machining during this cycle and old types during the last 

cycle may be discontinued. For such a cycle, it requires optimised scheduling for multiple components 

to be machined in multiple machines to achieve good energy and manufacturing performance. Due to 

disruption and uncertainty during manufacturing execution lifecycles (e.g., dynamic changes of job 

priority, unexpected delay, aging or degrading of tooling and machines), it is essential to update 

scheduling adaptively (i.e., re-scheduling) when machining conditions are changed. I2S, which supports 

the above process, consists of the following functions (also shown in Figure 1): 

 Vibration or acoustic sensors have been frequently used for machine condition monitoring. In this 

research, an electricity sensors-based Wireless Sensor Network (WSN) is integrated with CNC 

machines as a CPS for measuring the energy consumption of the CNC machines. The underlying 

consideration is that, in comparison with vibration and acoustic sensors, the developed electricity 

measurement sensors-based WSN is more flexible in terms of configuration and deployment. 

Experiments show that the energy consumption status can reflect machine and tooling conditions 

effectively (Zhou et al., 2016). In this research, the electricity Big Data is used to support not only 

energy consumption optimisation but also machine condition monitoring to address dynamics of 

machining processes. A Big Data infrastructure has been developed for collecting, storing and 

processing the real-time energy data from CNC machines; 

 I2S defines an innovative architecture for manufacturing execution lifecycle. That is, a machining 

cycle is divided into two stages: learning at beginning, followed by execution: 

(1) During the learning stage, typical components are machined to generate energy consumption 

patterns of machining components for ANNs’ training. Two ANNs, i.e., energy modelling-

ANNs and component classification-ANNs, are trained. The two ANNs are designed to model 

the energy consumptions for machined components and to monitor the energy patterns of the 

machining components respectively. A scheduling optimisation, which is based on the energy 

modelling-ANNs, will generate an optimised scheduling plan to support the execution stage. 

The learning stage and the set-up of the relevant energy modelling-ANNs is reported by the 

authors’ research group (Liang et al. 2017); 

(2) During the execution stage, with the support of the component energy classification-ANNs, I2S 

is used to analyse and process monitored energy data to address various dynamic conditions 



over machining execution lifecycles. A re-scheduling optimisation will be employed to generate 

an optimised re-scheduling plan whenever significantly different energy patterns are identified 

which indicate the necessity of adjusting manufacturing plans. The details of the execution stage 

will be introduced in detail in this paper. 

 

Figure 1: I2S for monitoring, analysing and optimising manufacturing for energy efficiency. 

 

4. Intelligent Immune Mechanism 

4.1 Processing of monitored energy data 

During the execution stage, the machining operations of identical components should generate 

similar energy consumption patterns with slight deviations. Abnormal energy patterns indicate 

significant condition changes of machines and/or tooling. As thus, a need for machine maintenance or 

tooling replacement is necessary, leading to re-scheduling optimisation. 

For Big Data processing, deep learning and CNNs have pros and are also limited in terms of complex 

computing, high computational power requirement (GPU) and large training sets (Najafabadi et al., 

2015). In I2S, a “divide and conquer” strategy has been designed to improve the efficiency and 

robustness of the energy Big Data analysis: partitioning energy Big Data into component level-energy 

data, training the component classification-ANNs and conducting statistical analysis on energy pattern 

deviations to support intelligent immune and optimisation processes. 

 

Energy data partition 

As illustrated in Figure 2, to support the component classification-ANNs and further statistical 

analytics for energy deviation, monitored energy data are partitioned into a series of energy patterns for 

machining individual components. The partition process is below: 

A machining cycle for customised production 
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 The energy data consist of several stages, e.g., machine start-up/shut-down, idle, machining, 

component loading/unloading into a CNC machine. The data partition process is based on the power 

range and thresholds to separate these different stages. The ranges and thresholds for specific 

machines and materials are determined via experiments; 

 During the process of machining two consecutive components, there is a stage for unloading the 

component when its machining process has been completed, and for loading a new component for 

machining. Based on ranges and relevant thresholds of unloading/loading, the energy data of 

machining each component  are partitioned from the monitored Big Data. 

 

Figure 2: Examples of energy partition into individual energy patterns for individual components. 

  

Training and application of the component classification-ANNs 

 The component classification-ANNs is a three-layer Multi-Layer Feed-Forward neural networks 

(MLFF) with a back-propagation learning algorithm. It is used to classify the partitioned energy data 

of machining components, so as to support the analysis on energy deviation conditions. 

 The ANNs design is illustrated in Figure 3 and Table 2. The training data for this ANNs are from 

the learning stage. The input is a vector of the energy input of machining each component (e.g., three 

points for one second), and the output is a vector representing a component category for the input 

energy pattern. The vector length of the input n is the maximum length of each pattern. For a 

 
(a) Energy consumption in a single day 

(b) Two energy patterns for two individual components from the daily energy 

Threshold defining 

the working range 

for machining 

Component 1 

Component 2 



component with a smaller length, 0 will be added at the end of the pattern to standardise the vector 

lengths of all the patterns to be in the same length to facilitate the ANNs’ processing. In terms of 

output, o is the total number of component types. For instance, if the output is for Component 1, the 

output will be [1 0 0 ··· 0]. The details of the ANNs design are explained in Section 5. 

 If a pattern for a component is judged significantly different from its standard pattern of the 

component, the pattern will be further processed by using the immune process described later on. 

 

Figure 3: Design of the component energy classification-ANNs. 

 

Table 2: Input and output of the component energy classification-ANNs. 

Input vector Output vector 

Energy input point 1 Component category 1 [1, 0, 0, …, 0] 

Energy input point 2 Component category 2 [0, 1, 0, …, 0] 

Energy input point 3 Component category 3 [0, 0, 1, …, 0] 

… … … … 

Energy input point n Component category o [0, 0, 0, …, 1] 

 

4.2 The immune mechanism 

As indicated in the literature survey, inspired by biological immune mechanisms, there are some 

studies on applications of intelligent immune mechanisms for manufacturing systems recently 

(Darmoul et al., 2013; Cai et al., 2016). The research is based on a N/S (Non-self/Self) immune 

mechanism, which distinguishes what belongs to the body, i.e., the self, from what is foreign to the 

body, i.e., the non-self for problem identification. However, N/S has the following limitations (Silva 

and Dasgupta, 2016):  

 The research works have been designed as conceptual frameworks and they are not reported to apply 

to practical processes yet. 
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 Noises generated during the machining processes, and various dynamics of machining processes, 

could lead to new energy consumption patterns, which are not necessarily judged as problems. The 

N/S mechanism is rigid, which hinders the robustness and accuracy of the immune process. 

 The machining system changes over its lifetime (analogous to the human body’s aging process), the 

N/S immune mechanism does not take into account such self changes. 

 

A danger theory is a more flexible immune mechanism (Silva and Dasgupta, 2016). In I2S, an 

innovative danger theory-based immune mechanism has been designed to monitor, analyse and control 

machining systems at the occurrence of disruption during machining processes. Key concepts and 

processes are below (also illustrated in Figure 4): 

 Antigens – in an immune mechanism, an antigen presents the characterising features of problems 

from machines, tooling and/or jobs, such as tool wear, spindle failure, machine breakdown, rush 

order/order modification/cancellation, control system failure, timing anomaly, etc. 

 Danger signals - for the temporal series of energy consumption of the machining system functioning 

over time (monitored Big Data), anomalies are automatically detected from the temporal analysis of 

energy consumption to determine whether deviations exceed tolerable variations in an energy 

consumption pattern. If danger signals are matched with pre-defined antigens, they are processed 

accordingly. For danger signals that do not match any samples in the antigen databases in its danger 

zone, the danger signals will be reported to engineers for problem identification. The relevant antigen 

databases are updated accordingly. 

 Danger zone – each component is associated with a danger zone, which constrains the working scope 

of matching between danger signals and antigen databases for the zone. Within a danger zone, the 

component classification-ANNs and statistical analytics are used for danger signal identification. 

 Antibody and re-scheduling optimisation algorithm – to handle abnormal conditions detected as 

antigens and carry out re-scheduling optimisation if necessary. 

 

Danger signal detection (antigen detection) 

The anomaly detection process consists of two steps: (1) detecting anomalies by inputting the 

monitored energy data to the component classification-ANNs. If it is aligned with the standard energy 

patterns of corresponding components within the similarity threshold, it is judged that there is no 

anomaly detected and the system will do nothing. Otherwise, the newly input energy pattern is classified 

as anomalousness and the energy consumption pattern needs to be further analysed in the second step; 

(2) comparing the pre-defined statistical metrics between the new pattern and the normal (standard) 

patterns to identify the types of potential danger signals: 

 Machine breakdown - no energy consumption incurred.  



 Machine not working - the energy of machining a component is close to or below the standby energy 

for a long duration. 

 Machine over-consumption and under-consumption - the power exceeds the machine-specific limits; 

 Tool wear - level shift up (vertical shift up) of the energy during machining, but the energy during 

idle is kept unchanged; 

 Cutter breakdown - energy consumption during material removal is close to that of air cutting. 

 Spindle failure - energy spike unaccompanied by shift in spindle Rotation Per Minute (RPM), 

followed by increased energy for machining the component and then idle energy.  

 Timing anomaly of control system - unexpected time shift (horizontal shift) of energy pattern 

between different stages. 

 Rush order, new patterns - due to customised production, there are new energy consumption patterns 

generated which are different from the previous patterns leading to new danger signal generation. 

 Order modification, order cancellation - unexpected energy consumption patterns against the 

original scheduled plan. 

 

Figure 4: The danger theory-based I2S framework. 

 

In order to identify the potential danger signals in the measured energy pattern Smeasure against a 

standard pattern Sstandard, different statistical metrics in time domain are calculated and measures are 

applied to determine the anomaly type. The details are given below. 

Lower bound (PL) and upper bound (PU) of a standard energy pattern for machining a component - 

these are the bounds of possible powers for a specific machine to make the component. If the total 

number of measured power points at the machining stage for a component exceeds its bounds by a 

certain level (e.g., 10%), or the continuous duration of measured power outside the bounds is more than 

a specific number (e.g., 5), it is treated as over-consumption or under-consumption for machining this 

component. The definition is given in Eq. 1. 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖,𝑖=1:𝑁1)>𝑃𝑈)

𝑁1
> 10% → 𝑜𝑣𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛                                                                     

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖, 𝑖 = 1:𝑁1) > 𝑃𝑈) > 5 → 𝑜𝑣𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖,𝑖=1:𝑁1))<𝑃𝐿 )

𝑁1
> 10% → 𝑢𝑛𝑑𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛                                                                

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡 (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖, 𝑖 = 1:𝑁1) < 𝑃𝐿) > 5 → 𝑢𝑛𝑑𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

    (1) 

Where N1 is the total number of the measured power points in Smeasure. 

 

Limit of the standby duration - it is defined as the maximum continuous standby duration when the 

machine is treated as on normal operations. If the continuous standby duration of the measured power 

at the machining stage exceeds the limit, a non-working alarm will be sent out for further check (e.g., 

the machine door is not properly closed or a cutter is broken down).  Based on the results of experiments, 

it is defined as 60 seconds in I2S. 

     

Cross-correction coefficient Xcoef - cross-correlation takes one pattern (Smeasure), and compares it with 

a shifted pattern (Sstandard). The cross-covariance between the pair of patterns (𝜎𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒,𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) is 

defined below: 

𝜎𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒,𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑇) =  
1

𝑁−1
∑ (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑁
𝑡=1 (𝑡 − 𝑇) − 𝜇𝑚𝑒𝑎𝑠𝑢𝑟𝑒)((𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑡) − 𝜇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)  (2) 

Where 𝜇𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝜇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 are the means of time series. N is the bigger number of the samples 

of the two patterns. Zero-padding the shorter pattern is to make the two patterns the same length before 

calculation. 

 

The values of cross-covariance at different time shifts 𝜎(𝑇, 𝑇 = 1:𝑁)) are then calculated and 

normalised by the variance of each pattern as the cross-correction coefficients: 

 𝑋𝑐𝑜𝑒𝑓 = max (𝑋𝑐𝑜𝑒𝑓(𝑇, 𝑇 = 1:𝑁)) =
𝜎𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

(𝑇,𝑇=1:𝑁) 

√𝜎𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑚𝑒𝑎𝑠𝑢𝑟𝑒(0)𝜎𝑠𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(0)
   (3) 

 

 The maximum cross correction coefficient Xcoef  is used to calculate the time delay. 

Time delay t21 – Two patterns collected from different sensors or times need to be aligned first before 

comparison. The time delay can be found using the calculated cross-correlation below: 

𝑡21 = 𝑇  𝑤ℎ𝑒𝑛 𝑋𝑐𝑜𝑒𝑓(𝑇) 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  (4) 

 

Mean Absolute Percentage Error (MAPE) – it is the average absolute percent error between the 

measured pattern and the standard pattern for each time period:  

𝑀𝐴𝑃𝐸 = 
1

𝑁
∑

|𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖)−𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑖)|

𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑖)
𝑁
𝑖=1   (5) 

 



The MAPE should be calculated after the two patterns are aligned based on the Time delay t21 and 

truncated to the same length N. Here, two bounds MAPEL and MAPEU are defined to classify the pattern 

based on MAPE. That are:  

{

𝑀𝐴𝑃𝐸 < 𝑀𝐴𝑃𝐸𝐿  → 𝑠𝑎𝑚𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)                                           
𝑀𝐴𝑃𝐸𝐿 < 𝑀𝐴𝑃𝐸 < 𝑀𝐴𝑃𝐸𝑈  →  𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙)          

𝑀𝐴𝑃𝐸 > 𝑀𝐴𝑃𝐸𝑈 → 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑜𝑟 𝑠ℎ𝑖𝑓𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙)
  (6) 

 

The two bounds MAPEL and MAPEU are determined using the F1 score (F1 is a measure of a test's 

accuracy according to the statistical theory; its range is within [0, 1]) on a cross validation dataset: 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

Where Precision is the proportion of all the positive predictions that are correct and Recall is 

proportion of all the real positive observations that are correct. They are decided using the numbers of 

True Positive (TP), False Positive (FP) and False Negative (FN) when applying MAPEL and MAPEU 

bounds to the cross validation dataset: 

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 

Various values of MAPEL and MAPEU are tested to identify the best bounds based on maximising 

the F1 score approaching 1. When  𝑀𝐴𝑃𝐸 > 𝑀𝐴𝑃𝐸𝑈  , a further calculation is needed to classify 

whether it is a different pattern or a vertical shift of the pattern. To this end, the measured signal is first 

determined using the following: 

𝑀𝐸 =
1

𝑁
∑ 𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) − 𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑖)
𝑁
𝑖=1

𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) = 𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) −  𝑀𝐸           
 (10) 

Where ME is the average difference between two patterns;  𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is the shifted Smeasure to Sstandard. 

  

MAPE of  𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  is calculated again to determine the anomaly type. If 𝑀𝐴𝑃𝐸 <

𝑀𝐴𝑃𝐸𝐿   , these two patterns are similar but shift vertically. If ME > 0, the pattern is shifted up, which 

may relate to a spindle failure or tool wear. 

 

Based on the combination of the above statistical metrics, the types of danger signals can be 

identified by comparing the measured signal and standard signals based on the component modelling-

ANNs. Detected danger signals could be from three aspects: (1) pattern deviations due to machine 

system problems, (2) pattern deviations due to the aging condition of the manufacturing system, (3) 

newly found patterns due to new types of machined components or from other aspects. Detailed steps 

for the immune process can be described below: 



Immune process 

1. Check if the power is close to zero during scheduled machining. If yes, send “Machine breakdown” 

message; otherwise, go to next step; 

2. Check if the power during machining is close to the air cutting power. If yes, send a “Cutter broken” 

message; otherwise, go to next step; 

3. Use Eq. 1 to check whether there is over-consumption or under-consumption. If yes, send a 

“Machine over-consumption or under-consumption” message; otherwise, go to next step; 

4. Count the standby duration of power during machining against the limit of standby duration. If the 

limit is exceeded, send a “Machine not working” message; otherwise, go to next step; 

5. Employ the component classification-ANNs to check the corresponding component of the 

measured pattern belongs to.  If the pattern belong to the scheduled component, go to Step 7; 

6. If the pattern belongs to one of the scheduled components to be machined, send an “Order 

modification” message and go to Step 7 for further danger signal detection; otherwise,  no 

scheduled component is found, send a “Rush order, new pattern” message and stop;  

7. Calculate the time delays t21 of two patterns for the same components during machining (one is the 

standard pattern and another one is the monitored pattern). If any time shift is more than 10 seconds, 

send a “Timing anomaly of the control system” message; otherwise, align the two patterns using 

the time delay and truncate the longer pattern to the same length of the shorter pattern; 

8. Calculate the MAPE for the two patterns. If 𝑀𝐴𝑃𝐸𝐿 < 𝑀𝐴𝑃𝐸 < 𝑀𝐴𝑃𝐸𝑈 , send a “Distortion 

pattern” message; if 𝑀𝐴𝑃𝐸 > 𝑀𝐴𝑃𝐸𝑈, go to next step; 

9. Use Eq. 10 to determine whether the monitored pattern is a level shift from the standard pattern. If 

both the pattern during idle and machining is shifted up, send a “Spindle failure” message; if the 

pattern during machining is shifted up and that during idle is at the same level, send a “Tool wear” 

message; 

10. Antibody stimulation will be triggered for the following conditions: (1) if the change of a cutter  is 

needed and re-schedule when necessary (for tool wear), (2) maintenance of spindle by finding an 

alternative machine and re-schedule when necessary (spindle failure), (3) maintenance of a broken 

machine by identifying an alternative machine and re-schedule when necessary (machine 

breakdown, timing anomaly), (4) re-schedule for a rush order;  

11. Antigen databases – antigen databases will be updated if new danger signals are detected and 

processed as abnormal conditions (e.g., on a weekly basis or based on a factory’s requirements for 

configuration). 

 

4.3 Re-scheduling optimisation 

A multi-objective optimisation model and algorithm for scheduling a manufacturing process have 

been developed by the authors’ research group (Liang et al., 2017). This optimisation model will be re-

used for re-scheduling in this paper. Some definitions are given below. 



The energy consumption of a machine is from machining and waiting phases:  

𝐸𝑡𝑜𝑡𝑎𝑙(𝑀𝑖) = 𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) + 𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖)    (11) 

Where Etotal(Mi) represents the energy consumed during all the phases of Machine Mi. 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖)  and 𝐸waiting(𝑀𝑖)  represent the energy consumption of this machine during the 

machining and waiting phases, respectively. 

 

The energy consumption of Machine Mi during the machining phase is computed below: 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) = ∑ (𝐴𝑖𝑗 ×
𝑚
𝑗=1 𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗))     (12) 

Where 𝐴𝑖𝑗  represents whether Machine Mi needs to be machined for Component Jj. 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗) represents the energy consumption of machining Component Jj by Machine Mi. m 

is the total number of components to be machined. Aij can be defined as below: 

𝐴𝑖𝑗 = {
1 
0
        

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐽𝑗 𝑖𝑠 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑑 𝑏𝑦 𝑀𝑖        

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐽𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑑 𝑏𝑦 𝑀𝑖
      (13) 

 

The total energy consumption for all the machining jobs by all the machines can be calculated below: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)
𝑛
𝑖=1         (14) 

Where Etotal represents total energy consumption in all machines. n is the number of total machines. 

 

To calculate the time used during the whole production time: makespan, which is the maximum 

production time for all components in all machines, can be computed below:  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =
𝑛
𝑀𝑎𝑥
𝑗 = 1

(𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖))       (15) 

The balanced utilisation of machines in a shop floor is defined below: 

µ =
∑ 𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)
𝑛
𝑖=1

𝑛
   (16) 

𝑈𝑡𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑣𝑒𝑙 = √∑ (𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖) − µ)
2𝑛

𝑖=1    (17) 

In this research, minimisation of energy consumption, makespan and balanced utilisation level of 

machines are considered. As these three objective functions have very different magnitudes, 

normalisation of the objective functions is required. Since the maximum and minimum values of these 

three objective functions are unknown before optimisation, a suitable normalisation schema that 

normalises the objective functions in the Nadir and Utopia points has been employed (Mausser, 2006). 

The Utopia point 𝑧𝑖
𝑈 provides the lower bound of the 𝑖𝑡ℎ objective function and can be obtained by 

minimising the 𝑖𝑡ℎ  objective function individually, i.e., 

𝑧𝑖
𝑈 = 𝑓𝑖(𝑥

𝑖) = 𝑚𝑖𝑛{𝑓𝑖(𝑥)} (18) 

The upper bound is then obtained from the Nadir point  𝑧𝑖
𝑁 , which is defined as: 

𝑧𝑖
𝑁 = 𝑓𝑖(𝑥

𝑘) = 𝑚𝑎𝑥
1≪𝑗≤𝐼

{𝑓𝑖(𝑥
𝑗)} (19) 



This normalisation schema may be computationally expensive when the problem dimension is very 

large. For this research, the time spent on this calculation is acceptable as the number of optimisation 

parameters is not very large. Hence, the energy consumption, makespan and utilisation level are to be 

normalised individually as: 

{

𝑁𝐸 = (𝐸𝑡𝑜𝑡𝑎𝑙 − 𝑧1
𝑈) (𝑧1

𝑁 − 𝑧1
𝑈)         ⁄

𝑁𝑇 = (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑧2
𝑈) (𝑧2

𝑁 − 𝑧2
𝑈)⁄

𝑁𝑈 = (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 − 𝑧3
𝑈) (𝑧3

𝑁 − 𝑧3
𝑈)⁄

 (20) 

 

The fitness function is calculated as weighted sum of the three objectives below: 

 Fitness: 𝑚𝑖𝑛(𝑤1 ∙ 𝑁𝐸 + 𝑤2 ∙ 𝑁𝑇 + 𝑤3 · 𝑁𝑈),    𝑤1 +𝑤2 + 𝑤3 = 1  (21) 

Where w1, w2 and w3 are weights for optimisation objectives. 

 

An evolutional optimisation algorithm, i.e., Fruit Fly Optimisation (FFO), has been developed and 

improved for re-scheduling optimisation. The algorithm is reported in detail in (Liang et al., 2017). 

 

5.  Industrial Deployment and Case Studies 

5.1 Set-up of machining processes and energy data collection 

I2S has been deployed in some machining companies in Sweden, U.K. and Spain (illustrated in 

Figure 5 and Figure 6). The deployment into a UK company (shown in Figure 6) is used here for 

explanation. The UK company specialises on machining high-precision components for automotive, 

aerospace and tooling applications. A production line, consisting of three CNC machines (MX520, 

Mazak VC-500A 5X and Haas VF-10) and accessory equipment, has been monitored and analysed for 

six months continuously to achieve energy efficient optimisation. 

 

Figure 5: I2S deployed into a Spanish company. 

 

For I2S, a WSN is integrated with the CNC machines as CPS. The CPS is operated through radio 

communication - IEEE 802.15.4 (6LoWPAN (IPv6 over Low power Wireless Personal Area Networks)) 

and WSN producers’ own communication protocols (NXP). Three-phase current and voltage are 

measured by utilising current and voltage sensors. Measured data is transmitted through the 2.4 GHz 

Wi-Fi to a coordinator connected with an Internet-router. Energy data is stored in Hadoop for Big Data 

(a)  Mazak machine (c) Energy measurement  (b) A component machined by Mazak 

Electricit

y sensors 



processing. For each CNC machine, the data rate of energy data for each machine is 3 readings per 

second. Some of the production line and monitored data are shown in Figure 6. 

 

Figure 6: Energy measurement on CNC machines in a UK company. 

 

5.2 Big Data partition and ANNs training 

The machining process was carried out six days per week. During production, the stages include 

machine start-up/shut-down, idle, machining, etc. On Sunday, the machine is set either idle or shut-

down. Before the deployment of I2S and re-scheduling optimisation, the energy consumption for a week 

is shown in Figure 7. For the machining process between consecutive components, there are an 

unloading stage of a component that has been already machined, and a loading stage of raw materials 

for machining another component. The unloading/loading energy profiles are shown in Figure 8.  

(a) Loading/unloading 

towers 
(b) Loading/unloading robot 

(c) Power measurement (d) Energy measurement result 

Component Feeding 

robot arm 

Component 

storage tower 

Electricity 

sensors 



 

Figure 7: Energy consumption monitored for a week (before the re-scheduling optimisation of I2S). 

 

Figure 8: Energy consumption monitored during the unloading/loading stages. 

 

In I2S, 13 types of components with total 78 energy patterns have been utilised to train the component 

classification-ANNs. Different structures have been used for comparison (shown in Table 3). The 

structure of a middle layer with 509 neurons in this layer has been finally selected due to its higher 

efficiency and more accuracy. The number of neurons for the input layer is 1018, and the number of 

neurons for the output layer is the number of component types, which is 13 in this study. 

 

Table 3: Different middle layers and neurons for the ANNs. 

Number of 

middle layers 

Number of 

neurons in 

middle layers 

Average 

training time 

(s) 

Average iterations 

(times) 

Average accuracy 

(%) 

1 509 1.973 26.6 98.97 

2 509 3.244 30.2 98.69 

1 1018 4.018 27.6 97.69 

2 1018 8.475 31 96.92 

1 2036 6.711 26 98.46 

2 2036 19.964 23.6 96.92 

1 2037 7.703 29.2 98.97 

2 2037 24.169 30.6 98.20 

Mon         Tue          Wed           Thu             Fri            Sat          Sun 

Idle stages Machining stages 

Unloading/loading stage 

Start-up/shutdown 

stages 



Figure 9 shows some results by the trained ANNs (last one is the ANNs model trained using the 

aligned dataset (only 3 data samples are potted here). 

 

Figure 9: Training of the ANNs for identical components. 

 

5.3 Immune processes 

Ranges of powers for different stages were measured for individual machines (e.g., for MX520, the 

power for idle/loading/unloading is about 3.5-3.7 kw, for machining it is about 8.0-15 kw, for air cutting 

it is about 6.0-8.0 kw). There are some danger signals (potential issues) to be processed by the immune 

mechanism of I2S. Before various danger signals are identified, the lower and upper bounds for 

detection of new or distortion patterns (MAPEL and MAPEU) are determined by calculating the F1 score 

and trying various values of MAPEL and MAPEU on a group of a cross validation dataset. The best ones 

are selected based on the F1 score. In this experiment, MAPEL and MAPEU are determined as 0.09 (9%) 

and 0.20 (20%) respectively. 

 

Case 1: Tool wear 

Tool wear detection is illustrated in Figure 10. The machining processes for two identical 

components are compared. The energy consumption for the component under an ideal condition is 

defined as a standard pattern (in blue) and the pattern to be inspected is defined as a measured pattern 

(in red). In the standard pattern (in blue), its idle stage lasts from 0 to 50 seconds with a power level of 

2.94KW, and the machining stage runs from 51 to 355 seconds. In the measured pattern (in red), the 

power level at idle stage ( 0 – 56 seconds) remains the same as that of the standard pattern. However, 

the machining energy increment (MAPE) in the machining stages for the two components is 21.8%, 

exceeding the pre-defined upper bound MAPEU (20%). To further determine the deviation type, the 

measured pattern during machining is de-trended using Eq. 10 to obtain the 𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒 . MAPE of 



𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is calculated as +6%. It is below the pre-defined MAPEL (9%). Hence, a tool wear condition 

is detected.   

  

Figure 10: Energy pattern deviation due to tool wear. 

 

Actually, the above calculation is aligned with physical experiments conducted by the authors. In 

the experiment, the component shown in Figure 11 has been repeatedly machined on the CNC machine 

for a number of times to ensure the conclusion is correct statistically. The energy consumption and 

surface roughness for all the machined component have been measured and compared. It is noted that 

when the cutter is in a severe wear condition, the energy deviation between the measured component 

and an identical component under a standard healthy tooling condition is 21.67%, and the corresponding 

average surface roughness is 1.15μm and 3.22μm respectively (shown in Figure 12). For healthy tooling 

conditions, the energy deviation is far below 18% and surface roughness is below 1.15μm. The 

threshold (18%) obtained using the experiments is very close to MAPEU (20%) that is optimised based 

on the F1 score. Therefore, the approach is validated through the experiments. 

 

Figure 11: A component is machined under standard and abnormal conditions. 

 

 

Figure 12: Energy profiles for machining identified components under standard/abnormal conditions 

(energy consumptions are 2.03Kwh and 2.47Kwh respectively - deviation is 21.67%). 

(a) Component under a standard condition (b) Component under an abnormal condition 

(a) Power profile under a standard condition (b) Power profile under an abnormal condition 



Case 2: Timing anomaly 

For timing anomaly, the pattern difference is shown in Figure 13. An unexpected time delay of 35 

seconds at No. 480 seconds in the standard pattern and No. 505 seconds in the measured pattern is 

detected. Such long-time shift is more than timing anomaly threshold so that it could indicate a possible 

timing anomaly. 

 

Figure 13: Energy pattern deviation due to timing anomaly. 

 

Case 3: No working  

No working will generate long standby as shown in Figure 14. The measured power is around the 

standby power (3.6KW for the machine used in this case) for a very long period (as defined previously, 

if the standby time exceeds 60 seconds, a warning message would be sent out). It indicates the machine 

is not working. It is found out that the machine door was not closed properly so that the machine was 

not running.  

 

Figure 14: Energy pattern deviation due to a non-working condition. 

 

Case 4: Cutter broken 

The situation is illustrated in Figure 15. It starts from the No. 214 seconds (the spike in red line), 

and followed by the power level (3.9kW) that is close to the standby level (3.6kW). It is judged the 

cutter was broken from No. 214 seconds.   



 

Figure 15: Energy pattern deviation due to a broken cutter. 

 

Case 5: Spindle failure 

For this abnormal condition, an unexpected energy spike without change in the spindle speed 

followed by increased energy during idle and machining are detected (shown in Figure 16). 

In the standard pattern (in blue line), the idle stage lasts from No. 381 to No. 470 seconds at a power 

level of 3.6KW. The machining stage lasts from No. 471 to No. 760 seconds. In the measured data 

pattern (in red line), an unexpected energy spike is detected in No. 351 second and the following energy 

during idle and machining shifts up at levels of 21.5% and 20.3% respectively. They exceed the pre-

defined threshold 20%. As thus, the measured data is de-trended using Eq. 10 and MAPE of the de-

trended dataset is +4.3% (which is below the pre-defined MAPEL (9%)). As thus, a spindle failure 

condition is detected. 

 

Figure 16: Energy pattern deviation due to a spindle failure condition. 

 

Case 6: New patterns 

It is judged that the signal in Figure 17 is a new component for machining. No any abnormal 

conditions are detected in these patterns. As thus they are recorded as normal patterns and will not be 

handled as a danger signal. The newly generated patterns for machining new components are updated 

into the training set of the component classification-ANNs. Danger signals shown in Figure 18 and 

Figure 19 are new signals and will be reported to maintenance engineers. If judged as abnormal, they 

will be processed and recorded into the antigen databases. 



 

Figure 17: A new energy consumption pattern for a newly machined component. 

 

Figure 18: A danger signal. 

 

 

Figure 19: Another danger signal. 

 

System condition evolving 

The thresholds of machines are adjusted based on experiments to be adaptive to the machine aging 

conditions. The relevant thresholds should be set based on longer term experiments (the research work 

is ongoing). 

 

Re-scheduling due to the breakdown of a machine 

Figure 7 shows one week production before the deployment of I2S into the factory. Due to the 

unexpected breakdown of the Mazak machine, the productivity on Thursday was almost 50% less than 
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other days. Via I2S, the Mazak machine was identified for maintenance so that the components arranged 

for the Mazak need to be shifted to the other two machines, i.e., MX520 and Haas. Meanwhile, it was 

identified that there are more issues like door stuck, insufficient raw material supply during the early 

morning so there were no many machining activities during the periods. Measurements were introduced 

to enable the automatic lines to keep continuous execution during the early mornings as well. Re-

scheduling optimisation made improvements for energy saving and productivity (three-month 

improvement in the factory is shown in Figure 20). 

          

Figure 20: Improvements for three months by using I2S into the production line. 

 

5. Conclusions 

In this paper, an innovative I2S has been developed for energy efficient manufacturing monitoring, 

analysis and optimisation. The system is enabled by effective Big Data analytics and intelligent immune 

mechanisms to adapt to condition changes of machining processes. A re-scheduling algorithm is 

triggered when necessary thereby achieving multi-objective optimisation of energy consumption and 

manufacturing performance. The innovations and characteristics of I2S include: 

 By integrating with CPS, ANNs and re-scheduling optimisation, an innovative immune mechanism 

has been designed to effectively process energy Big Data to achieve energy efficient optimisation 

for manufacturing lifecycles; 

 I2S has been deployed into some European factories for trials for months. Real-world case studies 

have been used for system validation. For the companies, around 30% energy saving and over 50% 

productivity improvement have been achieved. The effective applicability of I2S to industrial 

environments has been proved. By using I2S, sustainability improvements on the environmental, 

economic and social aspects have been achieved (environmental and economic - energy efficient 

manufacturing, less unexpected breaks to improve energy efficiency and productivity, social - 

intelligent monitoring and processing to avoid tedious human intervention and errors as a more user 

- friendly working environment). 

 

There are ongoing research to improve I2S further. Near future research issues include: 

 In practices, the error of measured data could be a very significant issue. Measures to eliminate the 

error effect are under investigation. Longer-term experiments will be carried out to establish more 
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reliable thresholds of machine aging. Meanwhile, optimisation approaches are under research to 

define the lower and upper energy bounds of machined components. 

 Investigations on integrating the immune mechanism and edge computing (a new IT infrastructure) 

are carried out to improve the efficiency and effectiveness of I2S for industrial applications. 
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Nomenclature: 

𝐸waiting(𝑀𝑖)  The energy consumption of Machine Mi during waiting 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗) The energy consumption of machining Component Jj by Machine Mi 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖)  The energy consumption of Machine Mi during machining 

Etotal(Mi)  The energy consumed during all the phases of Machine Mi 

F1    A measure of a test's accuracy 

FN    False Negative 

FP    False Positive 

M   The total number of components to be machined 

MAPE    Mean Absolute Percentage Error 

MAPEL, MAPEU Lower bound and upper bound of Mean Absolute Percentage Error 

ME   The Mean Error between two patterns 

N    The bigger number of the samples of the two patterns 

N1    The total number of the measured power points in Smeasure 

PL, PU   Lower bound and upper bound of a standard energy pattern 

Precision  The proportion of all the positive predictions that are correct 

Recall   Proportion of all the real positive observations that are correct 

Smeasure   Measured energy pattern for machining a component 

Sstandard,   Standard energy pattern for machining a component 

𝑆′𝑚𝑒𝑎𝑠𝑢𝑟𝑒  The shifted Smeasure to Sstandard 

t21    Time delay 

TP    True Positive 

Xcoef    Cross-correction coefficient 

𝑧𝑖
𝑁   The upper bound of the 𝑖𝑡ℎ objective function 

𝑧𝑖
𝑈    The lower bound of the 𝑖𝑡ℎ objective function 

𝜇𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝜇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 The means of time patterns 

𝜎𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒,𝑆𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 The cross-covariance between the pair of patterns 


