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Abstract 26 

1. Realization of the importance of fish passage for migratory species has led to the 27 

development of innovative and creative solutions to mitigate the effects of artificial barriers 28 

in freshwater systems in the last few decades (‘fishways’).  29 

2. In many instances, however, the first move has been to attempt to engineer a solution to the 30 

problem, thus attempting to “fit fish into an equation”. These fishways are often derived from 31 

designs targeting salmonids in the Northern Hemisphere. They are rarely adequate, even for 32 

these strong-swimming fish, and certainly appear to be unsuitable for most other species, not 33 

the least for those of tropical regions.  34 

3. Fishway design criteria do not adequately account for natural variation among individuals, 35 

populations and species. Moreover, engineered solutions cannot reinstate the natural habitat 36 

and geomorphological properties of the river, objectives that have been largely ignored.  37 

4. Here, we discuss the most prominent issues with the current management and conservation 38 

of freshwater ecosystems as it pertains to fish passage. This paper is not intended as a review 39 

on fish passage, but rather a perspective paper on the issues related to fishways, as seen by 40 

practitioners. 41 

 42 
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1. Introduction 51 

Fragmentation of freshwater ecosystems has been identified as one of numerous global river 52 

syndromes characteristic of the Anthropocene (Meybeck, 2003). Continued human 53 

population growth will only serve to increase pressures on water resources, driving further 54 

investment in infrastructure to support water, food and energy security, and to protect land 55 

and property from flooding (Vörösmarty et al., 2010; Garcia-Moreno et al., 2014). For 56 

example, at least 3,700 major hydropower dams (capacity >1MW) are planned or under 57 

construction worldwide, and the number of smaller dams (<1MW) planned is likely to 58 

significantly exceed this (Zarfl, Lumsdon, Berlekamp, Tydecks, & Tockner, 2015). 59 

While ensuring access to food, energy and potable water is fundamental for 60 

supporting the future of human societies, freshwater biodiversity in the Anthropocene is 61 

under great threat due to unsustainable river basin development (Vörösmarty et al., 2010; 62 

Garcia-Moreno et al., 2014; Poff, 2014). Ongoing river fragmentation and dam construction 63 

presents one of the greatest global threats to freshwater biodiversity and ecosystem 64 

functioning (Dudgeon et al., 2006). Disruptions to river connectivity threaten ecosystem 65 

structure and function by interrupting movements of migratory species (Winemiller et al., 66 

2016), blocking the exchange of individuals and genetic information between populations 67 

(Wofford, Gresswell, & Banks 2005; Raeymaekers et al., 2008), modifying aquatic habitats 68 

and altering flow and sediment transport regimes (Bunn & Arthington, 2002). Unfortunately, 69 

consideration of biodiversity and ecosystem functioning tends to take a distant second place 70 

to engineering solutions that meet immediate human needs (Garcia-Moreno et al., 2014). This 71 

is despite the increasing recognition that biodiversity loss impairs and fundamentally alters 72 

the functioning of ecosystems upon which society depends for food, energy and water 73 

security (Vignieri, 2014). 74 
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Globally, freshwater fish are a critical food resource and support economically and 75 

culturally important fisheries (e.g. Winemiller et al., 2016). As a result, the loss of fish 76 

populations during the Anthropocene has probably received greater global attention than any 77 

other freshwater group. Connectivity is fundamental to the structure and functioning of 78 

freshwater fish communities and aquatic ecosystems worldwide, and is active along the 79 

longitudinal, vertical, lateral and temporal dimensions (Tockner, Schiemer, & Ward 1998). 80 

Instream structures, such as dams, weirs, tide gates and culverts, interrupt connectivity in all 81 

dimensions, with the repercussions being observed as species and/or population declines and 82 

extirpations in river systems across the globe (Table 1). 83 

The impact of instream structures on the movements and migration of fish has long 84 

been recognized. In Northern Europe, fishways were already being established by the mid-85 

18th century. Though these early fishways were inefficient (Francis, 1870), their presence 86 

indicates the recognition of connectivity issues. At that time, the main concern was the 87 

upstream passage of Atlantic salmon, Salmo salar, mostly due to its high economic and 88 

recreational value (Katopodis & Williams, 2012). Despite the ever-increasing awareness of 89 

barrier impacts on other fish species (Raeymaekers et al., 2008; Perkin et al., 2015; Branco, 90 

Amaral, Ferreira, & Santos, 2017; Wilkes, McKenzie, & Webb, 2018), contemporary 91 

approaches to fish passage research and management continue to be dominated by salmonid-92 

centric methods, solutions and thinking, and continue to focus on the upstream passage of 93 

fish at larger structures, giving relatively little attention to equally important downstream 94 

movements and small structures. 95 

Increasing realisation of the importance of effective fish passage for sustaining 96 

migratory species has led to the development of innovative and creative solutions to mitigate 97 

the effects of artificial barriers in freshwater systems over recent decades, but management of 98 

fish passage continues to be dominated by an ‘impair-then-repair’ approach (Vörösmarty, 99 
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Pahl-Woslt, Bunn, & Lawford, 2013). For most dams and other instream infrastructure, 100 

fishways continue to be considered an add-on ‘fix’ once the standard structural design is 101 

complete (Katopodis & Williams, 2012). Furthermore, fish passage tends to be treated on a 102 

site-by-site basis, focused only on getting fish from one side of the structure to the other, and 103 

effectiveness monitoring is often absent. Rarely is consideration given to the broader 104 

catchment context of fish passage, or the impacts on aquatic habitats and ecosystem processes 105 

(Pelicice & Agostinho, 2008; Pompeu, Agostinho, & Pelicice, 2012; McLaughlin et al., 2013; 106 

Kemp, 2016; Silva et al., 2018). We argue that this reductionist approach is symptomatic of 107 

the origins of fish passage research, embedded in a philosophy of engineering our way out of 108 

the problems created by human modifications of the riverscape. 109 

A characteristic of the dominant engineering approach to fish passage is determinism 110 

(e.g. ‘the species can swim at x velocity for t time’). A general failure to consider the bigger 111 

picture and a continued focus on trying to ‘fit fish into equations’ cannot account for the 112 

natural variation among individuals, populations and species that is an essential characteristic 113 

of sustainable aquatic ecosystems. We believe that to improve outcomes for freshwater 114 

biodiversity, fish passage research and its applications must embrace this natural variability. 115 

To achieve this there is a need to confront what we view as inherent biases in fish passage 116 

research, policy and practice that derive from the overwhelming dominance of research on 117 

the salmonid species of the temperate Northern Hemisphere. The field of fish passage as a 118 

whole needs rethinking, with the objective of helping fish move up and down rivers with no 119 

adverse effects. 120 

The intent of this paper, therefore, is to contribute to the ongoing debate on fish 121 

passage (e.g. Bunt, Castro-Santos, & Haro, 2016; Kemp, 2016; Williams & Katopodis, 2016; 122 

Silva et al., 2018) by providing a perspective on what we view to be among the most crucial 123 

issues related to the prevailing paradigm of fish passage research and management at a global 124 
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scale. In particular, we consider the question of whether the current approach to the fish 125 

passage problem is fit-for-purpose and suitable for effectively tackling the freshwater 126 

biodiversity crisis of the Anthropocene. We finish by proposing some potential approaches to 127 

progress the fish passage debate by moving beyond some of the biases we identify, and 128 

pursuing a more holistic approach to fish passage research and applications. 129 

 130 

2. Biases in fish passage research and application 131 

 132 

2.1 Long standing focus on salmonids and upstream passage 133 

Much of the knowledge we have about the effects of instream barriers, fishways, and the 134 

ability of fish to pass them is derived from studies based on anadromous salmonids in the 135 

temperate Northern Hemisphere. This focus emerged due to the well-documented declines in 136 

salmonid stocks in river systems around the globe arising from anthropogenic interruptions to 137 

migration routes (e.g. Yeakley, Maas-Hebner, & Hughes, 2014). Due to the economic and 138 

cultural importance of salmonid populations, and often supported by local legislative 139 

requirements, efforts to ‘fix’ the problem emerged. Despite these efforts, there remains a 140 

focus on upstream movements, with less consideration given to getting fish back downstream 141 

(though efforts to address downstream movement have risen in recent years, e.g. Arnekleiv, 142 

Kraabøl, & Museth, 2007; Birnie-Gauvin, Candee et al. in press). 143 

Adult salmonids have very particular needs given their highly directed and relatively 144 

synchronized migration. Salmonid migratory behaviours are some of the most studied, 145 

though downstream movements have received considerably less attention. The behaviour of 146 

downstream migrating salmonid smolts is often simplified and believed to be addressed by 147 

designing screens and bypasses that screen fish only near the water surface (Arnekleiv et al., 148 

2007). In our experience however, a significant proportion of smolts move below the screen, 149 
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with evidence of individuals migrating near the bottom (Svendsen, Eskesen, Aarestrup, Koed, 150 

& Jordan, 2007). Our lack of focus (and knowledge) on this downstream movement, 151 

combined with the observation of highly synchronous upstream migrations, have led to the 152 

perception that these fish have relatively narrow and well-defined needs, with characteristics 153 

that suit the reductionist approach of the engineering discipline. 154 

Historically, designing effective fish passage solutions was challenged by the 155 

constraints (primarily space, cost and flow) typically imposed by having to retrospectively 156 

append fishways to existing structures. Solutions inevitably became a balancing act between 157 

overcoming the fall height created by the obstruction, minimising fishway length, and 158 

maintaining hydraulic conditions in the fishway within the capabilities of the target species 159 

and life stage, and only generating marginal changes to the function of the obstacle in 160 

question. Adult salmonids are agile and highly capable swimmers as they swim upstream 161 

and, thus, have a greater ability to overcome more hydraulically challenging environments 162 

than many other species. This has had a strong influence on the type and hydraulic 163 

performance standards of most fishway designs that exist today (Mallen-Cooper & Brand, 164 

2007). 165 

Fish passage research remains largely entrenched in the early paradigm of salmonid 166 

biology. This long-standing focus has resulted in the same approach being perpetuated all 167 

over the globe, for all species, in all geographical contexts, rather than taking a step back and 168 

rethinking whether it is the right approach in a particular location (e.g. Link & Habit, 2015; 169 

Mallen-Cooper & Brand, 2007; Wilkes et al. in press). Despite the significant differences 170 

between the requirements of salmonids and most other fishes (e.g. Figure 1), including those 171 

from the tropics and temperate Southern Hemisphere, the knowledge, techniques, thinking 172 

and solutions developed from studies of salmonids have been widely transferred to fish 173 

passage design and management elsewhere (Silva et al., 2018). Application of these 174 
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approaches to freshwater systems with native species that have completely different needs 175 

has contributed to repeated failures and poor performance of fishways around the world (Lira 176 

et al., 2017; Wilkes et al., 2018). For example, Mallen-Cooper and Brand (2007) showed very 177 

poor passage of native Australian fish species through a salmonid fishway on the Murray 178 

River, with <1% of the most abundant species ascending. The continued underwhelming 179 

performance of many salmonid fishways (Brown et al., 2013), and ongoing unsuccessful 180 

application of salmonid-centric solutions to non-salmonid species has led some to suggest 181 

that, in a global sense, fishways are a technology in decline (Kemp, 2016).  182 

 183 

2.2 Engineering our way out of the problem 184 

The fundamental dichotomy of the fish passage problem is the need to balance the trade-offs 185 

between doing what would be best ecologically (i.e. remove all barriers), and trying to 186 

engineer our way out of the problem where there is a need for essential infrastructure (e.g. 187 

Nieminen, Hyytiäinen, & Lindroos, 2017). In too many instances, engineered solutions 188 

continue to be the default first step to solving fish passage issues. We suggest this bias has 189 

emerged from the emphasis of early fish passage research on retrospectively engineering site 190 

scale solutions to fix problems for individual species at existing infrastructure. This has 191 

embedded the idea of fish passage solutions as an ‘add on’ to structural designs, rather than 192 

an integral component of the design to be considered from the outset. However, inappropriate 193 

transfer of technological solutions and increasing evidence of the unintended consequences of 194 

providing fish passage (Pelicice & Agostinho, 2008; McLaughlin et al., 2013; Pelicice, 195 

Pompeu, & Agostinho, 2015), along with the broader ecosystem changes (Birnie-Gauvin, 196 

Aarestrup, Riis, Jepsen, & Koed, 2017), raise questions over the continued suitability of this 197 

approach. 198 
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Obviously, there are instances where instream infrastructure is necessary, and hence 199 

there will always be cases where engineered solutions are required. However, current design 200 

philosophies tend to force ecologists to take a reductionist approach, trying to fit fish into 201 

equations suitable for engineers to work out a solution that fits the appropriate hydraulic 202 

design envelope and minimizes costs. This approach has undoubtedly contributed to the less 203 

than satisfactory success of many fish passage solutions, as evidenced in multiple reviews 204 

(Roscoe & Hinch, 2010; Bunt, Castro-Santos, & Haro, 2012; Noonan, Grant, & Jackson, 205 

2012; Lira et al., 2017). The simplified representations of reality required by this approach, 206 

while convenient, inevitably fail to capture the natural variation that is characteristic of all 207 

organisms, ecological communities and ecosystems. Furthermore, the ability to effectively 208 

characterise the full range of hydraulic requirements of multiple species and life stages of fish 209 

in sufficient detail to provide effective hydraulic design criteria is impractical, particularly 210 

when considering ‘megadiverse’ fish communities such as those typical of tropical regions 211 

(Winemiller et al., 2016).  212 

We encourage a more holistic approach, planning infrastructure and designing 213 

structures from the outset with a view to maintaining ecosystem processes and functioning, 214 

including aiming for the seamless movement of organisms. Doing so requires a change in 215 

design philosophy and a shift in expectations of how things should be done at every level. 216 

Scientists, engineers and managers must realise that the difference between removing (or not 217 

installing) a barrier and constructing a fishway is huge; fishways will never be as effective as 218 

the complete absence of barriers for providing fish with sufficient habitat and allowing safe 219 

movement. We argue that the first question we should always ask ourselves (perhaps twice) 220 

is whether that barrier is necessary at all, and if so, whether a fishway will contribute to the 221 

maintenance of viable populations upstream and downstream of the structure (e.g. Pompeu et 222 

al., 2012). There is strong evidence that removing artificial barriers to migration can be cost-223 
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effective and result in rapid recovery of freshwater biodiversity and ecosystem processes, as 224 

seen for American eel  (Anguilla rostrata; Hitt, Eyler, & Wofford, 2012), sea lampreys 225 

(Petromyzon marinus; Hogg, Coghlan, & Zydlewski, 2013), brown trout (Salmo trutta; 226 

Birnie-Gauvin, Larsen, Nielsen, & Aarestrup, 2017; Birnie-Gauvin, Candee et al. in press) as 227 

well as other species (O’Connor, Duda, & Grant, 2015;), yet barrier removal remains 228 

relatively uncommon, even where structures are redundant. Consequently, despite the 229 

growing use of fishways, which are supposedly designed to allow migrating fish to bypass 230 

barriers and reach suitable habitat in which to grow and reproduce, these structures remain 231 

mere pacifiers of the underlying ecological problems (Roscoe & Hinch, 2010; Bunt et al., 232 

2012, 2016; Noonan et al., 2012; Lira et al., 2017). 233 

 234 

2.3 Requirement mismatches and ignoring natural variation 235 

The dominance of salmonid studies and reductionist engineering design approaches have 236 

combined to result in a situation where consideration of natural variations in fish behaviour 237 

and dispersal capabilities are minimised. Migration is a concept which has been known and 238 

studied for centuries. Its occurrence is widespread across all major taxonomic groups and has 239 

piqued the interest and curiosity of scientists for as long as it has been known. For decades, 240 

we have tried to understand its underpinning mechanisms and drivers, making a point of 241 

protecting migratory species as they usually depend on at least two types of environments to 242 

thrive (e.g. eels growing in freshwater and migrating to saltwater to spawn). While many of 243 

the overarching concepts of migration are well known, and largely accepted, the focus on a 244 

relatively narrow range of high status species has biased management actions towards 245 

particular life history strategies. Furthermore, it has led us to stop questioning some of the 246 

basic information we have regarding migration. 247 
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The majority of fish passage solutions have been designed to cater for anadromous 248 

life histories. However, even within the well-studied salmonid species, there is growing 249 

evidence that salmonid smolt migrations occur throughout the year rather than during a single 250 

peak period (Winter, Tummers, Aarestrup, Baktoft, & Lucas, 2016; Aarestrup, Birnie-251 

Gauvin, & Larsen, 2018). Despite this, current fish passage management strategies, such as 252 

spillway opening and dam/weir closure periods, typically only occur during the peak spring 253 

migration for smolts, neglecting to cater for fish that do not fit the currently accepted 254 

salmonid paradigm (Aarestrup et al., 2018).  255 

Another important consideration is the ‘migratory’ versus ‘non-migratory’ or 256 

‘resident’ terminology; it creates the perception that non-migratory or resident fish do not 257 

move, yet they do (Schlosser & Angermeier, 1995; Jepsen & Berg, 2002; Radinger & Wolter, 258 

2014), and they may be impacted by barriers more than is traditionally recognised (e.g. 259 

Branco et al., 2017). The whole fish passage issue has largely focused on obligate migrants, 260 

sometimes classifying facultative migratory species as non-migratory for the purpose of 261 

passage needs. The functional explanations for movement of ‘non-migratory’ or ‘resident’ 262 

fish are manifold, and may involve distances of the same order of magnitude to those 263 

characteristic of ‘migratory’ species. The reasons include: (i) to avoid unpredictable resource 264 

scarcity and perturbances (e.g. Falke, Fausch, Bestgen, & Bailey, 2010); (ii) to repopulate 265 

habitats previously affected by disturbance or disease (e.g. Perkin et al., 2015); (iii) to shift 266 

distribution gradually in response to large-scale environmental change, including climate 267 

change (Hari, Livingstone, Siber, Burkhardt-Holm, & Guttinger, 2006); and (iv) to exchange 268 

adaptive genetic information in the face of environmental change (e.g. Brauer, Hammer, & 269 

Beheregaray, 2016). We stipulate unpredictability in some of the instances listed above 270 

because if the phenomena were predictable the species may well be considered migratory. 271 

Such ‘unpredictability’ also encompasses the effects of climate change, so movement for 272 
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resident fish is likely to become even more important. There is a need in the first instance, 273 

therefore, to recognise this diversity of movements that occur within and between species and 274 

over time, and to cater for this diversity of movements in fish passage research and 275 

applications. There is also a need to consider variation at the individual level. 276 

Individuals vary in their ability and motivation to overcome barriers (Agostinho et al., 277 

2007; Bunt et al., 2012). There also exists variation amongst populations of the same species 278 

(Birnie-Gauvin, Larsen, Thomassen & Aarestrup, 2018; Figure 1). The reductionist approach 279 

typically adopted for fishway design means that this natural variation is often neglected 280 

completely, or is at least poorly accounted for (but see Wilkes et al. in press). Variation in 281 

fish behaviour and requirements is wide-ranging, and often discounted in modelling 282 

exercises, potentially rendering the outcomes invalid when we apply them to real-life 283 

situations. Whilst modelling is a valuable tool, explicit considerations of the uncertainty 284 

created by natural variation need to be implemented. Most modelling approaches in fish 285 

passage research, at their core, are equations. This means that fish must be fitted into a 286 

mathematical phrase, essentially collapsing all natural variation into one ‘magic’ number, 287 

even in situations where swimming behaviour between populations is strongly divergent (e.g. 288 

Link et al., 2017). Whilst the biologist would be calling for explicit recognition of this 289 

divergent swimming behaviour in fishway design, the engineer may instead consider an 290 

equation that does away with this variability.  291 

The requirement to fit fish into equations in a way that is consistent with typical 292 

engineering design practices has seen an emphasis on efforts to quantify fish swimming 293 

speeds. The most convenient way of achieving this is through controlled laboratory 294 

swimming tests. Water velocity design criteria for fishways are typically determined through 295 

controlled swimming tests that force fish to swim at a fixed mean velocity (endurance tests) 296 

or at an incrementally increasing velocity (critical swimming tests) (Beamish, 1978). While 297 
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practical, this raises several issues related to individual variability, for example: turbulence 298 

and fish acceleration and deceleration are often ignored (but see e.g. Plew, Nikora, Larned, 299 

Sykes, & Cooper, 2007); the difference between different measures of swimming 300 

performance remains unclear (Peake, 2004); variations in swimming performance at different 301 

temperatures or under varying water quality are often not considered (but see e.g. Bannon & 302 

Ling, 2003); and species and individuals that do not ‘cooperate’ by swimming in the 303 

laboratory are often selected out rather than being considered a separate behaviour class to be 304 

accounted for (e.g. Santos, Pompeu, & Martinez, 2007). Furthermore, the behaviour of fish in 305 

an artificial laboratory set-up is unlikely to be natural due to the stress of handling and the 306 

change in behaviour that comes with being held in captivity for long periods, as well as the 307 

absence of natural environmental heterogeneity or migration cues (e.g. Vrieze, Bjerselius & 308 

Sorensen, 2010). This has led some authors to suggest that volitional swimming speed tests, 309 

for example measured in open channel flumes, are more appropriate (Haro, Castro-Santos, 310 

Noreika, & Odeh, 2004). However, while this may improve the biological realism of fish 311 

swimming performance evaluations, it still does not overcome the challenge of effectively 312 

characterising the natural variability in performance between individuals and populations and 313 

translating them in to practical design criteria that account for this uncertainty. While general 314 

relationships between hydraulics and swimming behaviour can be investigated, and are 315 

essential for supporting development of hydraulic design criteria, laboratory studies alone are 316 

insufficient for developing absolute criteria and much greater effort should be placed on 317 

incorporating natural variation and uncertainty into results. 318 

As attention in fish passage research begins to move towards catering for multi-319 

species assemblages, a further challenge emerges in trying to also account for the variation 320 

between and among species and life stages. In all but the most extreme cases, fish passage 321 

must be available for more than a single species, each with potentially different requirements, 322 
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at different life stages. How can we accommodate the range of individuals that must 323 

overcome barriers? A mature female on her way to spawn is full of eggs. Are her swimming 324 

abilities reduced? How can fish passage infrastructures accommodate her?  325 

 326 

2.4 Ignoring small-scale barriers 327 

The impacts of large dams have been well documented and have often been the primary focus 328 

of fish passage research. However, in most river basins, small-scale structures such as weirs 329 

and culverts frequently make up the vast majority of obstructions (Gibson, Haedrich, & 330 

Wernerheim, 2011). Small structures, with fall heights as little as 50 mm, can be a complete 331 

barrier for some fish species (Baker, 2003), particularly the small-bodied species 332 

characteristic of many Southern Hemisphere fish communities (Link & Habit, 2015). Despite 333 

their widespread distribution, these smaller barriers continue to receive relatively little 334 

attention, as individually they are often deemed to have small effects (Branco et al., 2017). 335 

However, there is increasing evidence of their impacts on fish movements (Lucas, Bubb, 336 

Jang, Ha, & Masters, 2009; Branco et al., 2017), and it has been suggested that the 337 

cumulative effects of multiple barriers can be at least as severe as large dams (Cooke et al., 338 

2005). 339 

Fish passage through culverts has received some attention, again focussed almost 340 

exclusively on salmonids. Early work investigated the hydraulic effects of culvert baffling 341 

(Rajaratnam, Katapodis, & Lodewyk, 1988; Ead, Rajaratnam, & Katapodis, 2002), and more 342 

recent studies have included observations of fish behaviour during culvert passage (Goerig, 343 

Bergeron, & Castro-Santos, 2017). However, there is a need to develop solutions appropriate 344 

to the target species. For example, David, Tonkin, Taipeti, & Hokianga (2014) investigated a 345 

novel approach for facilitating upstream passage of small-bodied fish through culverts using 346 

mussel spat ropes as a baffling media, showing that culvert passage success could be 347 
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significantly improved. We suggest that increased focus on fish passage at small-scale 348 

structures has the potential for rapid and cost-effective biodiversity gains. For example, there 349 

are several studies from Australia and New Zealand describing positive outcomes for non-350 

salmonid fish species richness and abundance resulting from retrofitting fish passage 351 

solutions to culverts (David & Hamer, 2012; Franklin & Bartels, 2012; Amtstaetter, 352 

O'Connor, Borg, Stuart, & Moloney, 2017). Erkinaro, Erkinaro, & Niemelä (2017) also 353 

demonstrated increases in the distribution of juvenile Atlantic salmon following the 354 

restoration of impassable road culverts in Finland. However, these approaches remain 355 

embedded in the philosophy of trying to engineer a fix to be applied to a structure rather than 356 

taking a more holistic approach to fish passage management. 357 

We suggest that, more importantly, small-scale barriers also offer the best opportunity 358 

for overcoming the bias towards engineered fish passage fixes. Many small-scale structures 359 

are now redundant, no longer serving their original purpose, but are seen as valuable parts of 360 

cultural heritage. There are obvious opportunities for removal here yet fish passage 361 

frequently takes a back seat to cultural interests. Very often, the basis of local arguments that 362 

can be observed or noticed in some way (e.g. the sound of a waterfall, a bridge over a dam, or 363 

a reservoir) win over the problems that cannot be seen by the naked eye (i.e. the fish). But 364 

what benefits are conferred from enjoying the sound of a waterfall? Should these arguments 365 

take precedence over the protection of freshwater biodiversity? The sad reality is that in the 366 

case of small barriers, these arguments will often hold. Removal of such barriers is often 367 

achievable and cost-effective, and should be a priority for achieving rapid, sustained recovery 368 

of freshwater communities (though we acknowledge that dams can sometimes serve as a 369 

barrier to the spread of non-native species; Gangloff, 2013). Removal also has the advantage 370 

of restoring physical habitat and ecosystem processes (Birnie-Gauvin, Aarestrup et al., 2017; 371 
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Birnie-Gauvin, Tummers, Lucas, & Aarestrup, 2017; Timm, Higgins, Stanovick, Kolka, & 372 

Eggert, 2017).  373 

Under circumstances where removal is not an option, it is also feasible and practicable 374 

to rethink design approaches to better accommodate the unhindered movement of organisms 375 

and maintain ecosystem processes. A good example has been the adoption of the stream 376 

simulation approach to culvert design (Forest Service Stream-Simulation Working Group, 377 

2008). The stream simulation approach adopts a more holistic method with the objective of 378 

maintaining continuity of physical habitat and ecosystem processes between the upstream and 379 

downstream reaches. As such, the conditions inside the culvert replicate adjacent stream 380 

reaches and represent no greater impediment to the movement of organisms than progress 381 

through the normal stream environment. Studies of culverts built using this approach indicate 382 

that not only do they provide effective fish passage, but they are also more effective at 383 

maintaining sediment transport (Timm et al., 2017), and are more resilient to large flood 384 

events than traditional hydraulic culvert designs (Gillespie et al., 2014; Barnard, Yokers, 385 

Nagygyor, & Quinn, 2015). It has also been shown that the relatively modest increases in 386 

initial investment to implement stream simulation designs can yield substantial societal and 387 

economic benefits in the long term (Gillespie et al., 2014). 388 

 389 

2.5 More than just safe passage: Critical habitat availability and distribution 390 

Barriers have received so much attention largely because they hinder the movements of fish 391 

by reducing connectivity (Wheeler, Angermeier, & Rosenberger, 2005), and also because 392 

they alter hydrological and thermal processes (Bergkamp, McCartney, Dugan, McNeely, & 393 

Acreman, 2000). However, the modification and loss of aquatic habitats caused by the 394 

presence of barriers is an impact that is often neglected (Franklin & Hodges, 2015; Birnie-395 

Gauvin, Aarestrup et al., 2017). Whilst the knowledge that habitat alterations are in fact 396 
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induced by barriers is common, addressing the implications of losing ecologically-relevant 397 

habitat is rare. Because dams are most often established in river reaches with high-gradient, 398 

there can be a disproportionate loss of rheophilic (i.e., fast-flowing and highly-oxygenated 399 

water) habitat. These areas are essential for rheophilic fish species such as salmonids and eels 400 

that depend on these ‘critical habitats’ to complete their life-cycles. Consequently, even if 401 

those species can overcome a barrier, population viability is still compromised due to the loss 402 

of adequate habitat (Birnie-Gauvin, Aarestrup et al., 2017). Tide gates also have a significant 403 

impact on physical habitats, reducing hydrological exchange and interrupting natural salinity 404 

gradients, in addition to blocking fish movements (Boys, Kroon, Glasby, & Wilkinson, 2012; 405 

Franklin and Hodges, 2015). Fish survival is also severely reduced due to habitat 406 

modifications. Large predatory species, such as the pike (Esox lucius), can thrive in 407 

impoundments, with younger fish as a source of food (Jepsen, Aarestrup, Økland, & 408 

Rasmussen, 1998). Habitat loss should, therefore, be addressed through hydrological and 409 

morphological mitigation, either before or simultaneously (at the very least) with the issue of 410 

fish passage (Birnie-Gauvin, Aarestrup et al., 2017). 411 

The complexity of the fish passage problem in Neotropical South America, Southeast 412 

Asia and Africa, reflecting the diversity of native species assemblages and the wide range of 413 

fish life-histories there, has highlighted the need to consider the distribution of critical 414 

habitats on either side of a barrier (Pompeu et al., 2012). This broader approach was 415 

necessary because fishways were found to be failing as a conservation tool; high percentages 416 

of fish approaching the fishway were passing only to be ‘trapped’ without access to critical 417 

habitats upstream due to reservoirs or the presence of other barriers without fishways 418 

(Pelicice & Agostinho, 2008; Pelicice et al., 2015). In Brazil, therefore, far from protecting 419 

fish populations, policies that require the provision of fish passage at dams have in some 420 

cases been the main threat to their viability (Pelicice et al., 2017). 421 
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 422 

2.6 Lack of post-implementation monitoring: how well does it work? 423 

In many cases, monitoring the effectiveness of fishways is not implemented or is not a 424 

licencing requirement. In other words, asking how well it works is not part of fulfilling 425 

requirements, and thus post-implementation monitoring remains unaccomplished. This is a 426 

major reason for the unsustainable policies prevailing in Brazil, as introduced in the previous 427 

example (Pelicice et al., 2017), and likely many other parts of the world. Part of the answer to 428 

this paradox relates to the deterministic tradition of engineering, as we have previously 429 

discussed. If the effectiveness of fishways is pre-determined, monitoring and adaptive 430 

management is optional. There is rarely a statutory obligation to prove that the fishway is 431 

really achieving its overall goal of sustaining viable fish populations, although it may be 432 

achieving other goals, such as those associated with corporate social responsibility. However, 433 

what difference does it make to have measures in place for fish passage if you do not know 434 

the answer to how many individuals get through and whether that is sufficient to sustain fish 435 

communities?  436 

Herein lies a critical challenge for both fish passage scientists and practitioners; how 437 

do we define objectives for fishways (or more broadly for maintaining connectivity) that are 438 

ecologically meaningful, but are also practical (i.e. specific and measurable)? The lack of 439 

post-implementation monitoring is a lost opportunity. Understanding how existing mitigation 440 

efforts work and do not work may offer significant learnings that will help improve future 441 

rehabilitation efforts (Birnie-Gauvin, Tummers et al., 2017). However, to achieve this there is 442 

a need to provide guidance on what to monitor and how, and this is reliant on having clearly 443 

defined objectives. Definitions such as ‘effective’ or ‘free’ fish passage can be ambiguous, 444 

open to interpretation and/or unachievable. The term ‘free’, for example, is frequently used to 445 

describe fish passage targets, but this is highly unlikely to be measurable given the general 446 
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lack of knowledge on how many fish attempted to pass versus how many fish actually passed 447 

a structure. Furthermore, the term “free” would require that fish are not delayed, which is 448 

seldom the case. Delay may in fact have carryover effects that may lead to future adverse 449 

consequences (McCormick, Lerner, Monette, Nieves-Puigdoller, Kelly, & Björnsson, 2009). 450 

So can fish passage ever be free? Yes, if the barrier is removed, but no if a fishway is present. 451 

Perhaps the correct scientific question to ask is thus “How many individuals who 452 

attempt to pass actually pass?” Along similar lines, the appropriate management question to 453 

ask may be “How many individuals need to get through to meet ecological objectives and 454 

ensure population viability?” Despite their necessity in the context of fish passage, these 455 

questions are almost never inquired, let alone answered. Instead there is almost invariably a 456 

focus on the movement of individual fish in the immediate vicinity of the structure to be 457 

passed. This focus is made possible through the use of biotelemetry, which has emerged as 458 

the ‘gold standard’ in fish passage research (Bunt et al., 2012; Silva et al., 2018). Use of these 459 

techniques have undoubtedly resulted in significant advances in fish passage science by 460 

improving understanding of behavioural and motivational aspects of fish movements 461 

(Aarestrup, Lucas, & Hansen, 2003). However, while ongoing miniaturisation of the tags 462 

used in biotelemetry studies has broadened the size range of fish to which this technology can 463 

been applied (e.g. Baker, Reeve, Baars, Jellyman, & Franklin, 2017), small-bodied fish and 464 

fish that migrate during early life stages (larval and juvenile) remain outside the reach of 465 

these technologies. Consequently, if biotelemetry methods continue to be upheld as the 466 

standard by which fish passage success is to be measured there is a risk of yet again 467 

perpetuating the focus on larger fish species at the expense of considering all parts of the fish 468 

community and all life stages. 469 

 470 

3. Discussion 471 
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Awareness of the impacts of instream infrastructure on fish movements, and hence fish 472 

populations, has increased considerably over the last couple of decades. Despite this, the 473 

reductionist, salmonid-centric, impair-then-repair approach to infrastructure design largely 474 

continues to prevail, and continues to be biased towards upstream movement. We suggest 475 

that this stems from the roots of fish passage research emerging from attempts to 476 

retrospectively engineer fishways as fixes for moving individual iconic species upstream at 477 

existing infrastructure to mitigate for an emerging problem. While we acknowledge the 478 

significant progress that has been made in restoring fish passage following this approach, 479 

including the benefits of studying salmonids in this context, the effectiveness of many of 480 

these structures remains too small to be ecologically meaningful. For example, several recent 481 

meta-analyses have attempted to evaluate the effectiveness and performance of fishways 482 

(Roscoe & Hinch, 2010; Bunt et al., 2012; Noonan et al., 2012). The most consistent 483 

messages that emerge from these reviews are the overwhelming dominance of studies 484 

focusing on anadromous salmonids, and the high variability (ranging from near 0 to near 485 

100%) in fishway performance. As focus has increasingly turned to non-salmonid fishes and 486 

catering for multi-species assemblages in fishways, evidence of failures in the current fish 487 

passage paradigm continues to mount. Largely precipitated by the direct transfer of findings 488 

from the Northern Hemisphere to diverse geographical and ecological contexts, repeated 489 

failures and the emergence of unintended consequences has undermined confidence and the 490 

willingness of practitioners to invest in implementing fish passage solutions (Harris, 491 

Kingsford, Peirson, & Baumgartner, 2016). 492 

While potentially disheartening, we believe that this reflects a failure in the discipline 493 

to adequately recognise and move beyond inherent biases in methods and ways of thinking, 494 

rather than a flaw in the concept of fish passage itself. We are encouraged by recent 495 

contributions to the fish passage debate, particularly emerging from the Southern Hemisphere 496 
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and the tropics, which challenge some of these biases. Pompeu et al. (2012), for example, 497 

propose that fishway efficiency should be assessed based on the capability of the structure to 498 

maintain viable fish populations, rather than a simple metric of the proportion of fish that 499 

ascend a structure. Traditional passage efficiency metrics may have been suitable for species 500 

similar to salmonids that exhibit relatively synchronous, seasonal and highly directed 501 

movements between clearly separated critical habitats (Kemp, 2016), but transferring these 502 

metrics to species and populations with more diverse life-histories and behaviours may not be 503 

the most appropriate measure of fish passage success. Impoundments upstream of dams can 504 

act as ecological traps (Pelicice & Agostinho, 2008; Pelicice et al., 2015) preventing 505 

downstream movement of eggs and larvae necessary to complete fish life cycles. Providing 506 

effective upstream passage for adults past dams, therefore, acts as a population sink with 507 

negative consequences for the long-term sustainability of fish populations (Pelicice & 508 

Agostinho, 2008). Likewise, in New Zealand, juvenile eels (Anguilla dieffenbachii and A. 509 

australis) are regularly transferred upstream of hydropower dams to seed upstream 510 

populations, but in most cases there is no, or only very limited, facility for subsequent 511 

downstream passage of migrant adults through the dams (Jellyman, 2007). Thus, while they 512 

do support fisheries, the long-term value to biodiversity conservation may be questionable. 513 

Harris et al. (2016), in a review of barrier mitigation efforts in Australia, also 514 

highlight the challenges of catering for a mixture of life-history strategies across freshwater 515 

fish communities. They propose that there is a need for river basin-scale management 516 

strategies that integrate fishway construction, where appropriate, with other approaches such 517 

as barrier removal, improved barrier management, environmental flow provision and strategic 518 

prioritisation of mitigation efforts. Furthermore, they also support the idea of broader 519 

definitions of fishway success and the need for performance to be assessed against 520 

predetermined, comprehensive biological criteria including considerations for cumulative 521 
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effects of multiple barriers. The concept of river basin-scale decision making is also 522 

emphasised by Winemiller et al. (2016), who suggest we should strive for more integrated 523 

and strategic planning of dams that also takes in to account the cumulative effects of multiple 524 

structures on hydrology, sediment dynamics, ecosystem productivity, fisheries and 525 

biodiversity. 526 

We echo these calls for the need to take a step back and consider strategies for 527 

managing connectivity at a broader scale, rather than thinking about fish passage on a site-by-528 

site basis in isolation from the wider catchment context, as is commonly done today. Crucial 529 

to progressing the fish passage debate is also the need to move beyond the idea that fishways 530 

provide a universal solution to mitigating the impacts of instream structures on aquatic 531 

communities (Brown et al., 2013; Kemp, 2016). While we do not disagree with the view of 532 

Williams, Armstrong, Katapodis, Larinier, & Travade (2012) that with sufficient investment 533 

in ecohydraulic research effective fishways can be engineered, this belief is still predicated on 534 

the anthropocentric impair-then-repair approach, and the assumption that providing fish 535 

passage at instream infrastructure is inherently good. Additionally, as Kemp (2016) rightly 536 

identifies, in many cases and for the majority of species, knowledge is currently far short of 537 

being able to develop such technical solutions (e.g. Wilkes et al., 2018), and that sufficient 538 

funding and many years of research will be required to fill those knowledge gaps. In the 539 

meantime, we propose some recommendations to address the biases currently limiting fish 540 

passage in Table 2. We emphasise in the first instance the need to avoid creating new 541 

barriers. New structures should be planned in a catchment or regional context and, where 542 

deemed necessary from a socioeconomic perspective, be built in a manner that avoids or 543 

minimises impacts on fish movements. We recognise that remediation of existing structures 544 

can be more challenging due to existing site constraints and legacies, but we highlight the 545 
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need for removal to become the go-to option and for a more holistic approach to finding 546 

solutions where removal is not practicable. 547 

 548 

4. Conclusion 549 

In river ecosystems, fragmentation is a key driver of the Anthropocene biodiversity crisis 550 

(Meybeck, 2003), raising alarm bells in the midst of a global boom in dam building (Zarfl et 551 

al., 2015). Paradoxically, because biodiversity and ecosystem function are inextricably 552 

linked, river basin development aimed at supporting food, energy and water security may 553 

actually be having the opposite effect. The uncritical application of fishway technology has 554 

traditionally been the measure of choice to mitigate connectivity losses, but it is increasingly 555 

seen as a technology in decline. As is typically the case when a solution is not working, the 556 

reasons why lie in its historical development. Early fishways were conceived in response to 557 

the collapse of salmonid stocks due to a proliferation of migration barriers in Northern 558 

Europe. The migratory characteristics of salmonid species meant that application of 559 

traditional, deterministic engineering approaches came to dominate, specifically focusing on 560 

upstream migration. With the realisation that connectivity is important for taxa other than 561 

salmonids, and the sharp increase in dam building outside of the temperate Northern 562 

Hemisphere, came the erroneous assumption that salmonid-type fishways would work 563 

everywhere for all species. Evidence to the contrary is now overwhelming but, as is usual 564 

with a paradigm shift, the response lags behind. However, the debate is rapidly intensifying, 565 

supported by the emergence of revised thinking, particularly from outside of the temperate 566 

Northern Hemisphere, and by increasingly interdisciplinary training of practitioners. We have 567 

attempted to contribute to this debate in the hope that continued discourse will lead to better 568 

conservation of fish biodiversity in the near future. We have highlighted examples that we 569 
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believe represent progress and proposed guiding principles for helping to advance the fish 570 

passage discipline. However, if we fail to address these issues, we will never reverse the loss. 571 
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Table 1. Examples of fish population declines and local extinctions ascribed to river 909 
fragmentation. 910 
 911 
Species Location Fragmentation impacts References 
Atlantic salmon; 
Salmo salar 

Rhine, Seine and 
Garonne basins, 
France 
Gudenaa River, 
Denmark 

Disappearance of whole 
stocks 

Porcher & 
Travade 
(1992); 
Jepsen et al. 
(1998) 

Pacific salmon; 
Oncorhynchus 
spp. 

Pacific Coast, USA 101 stocks at high risk of 
extinction 

Nehlsen, 
Williams & 
Lichatowich. 
(1991) 

Whitespotted 
char; Salvelinus 
leucomaeni 

Hokkaido, Japan Local extinction at 17 sites 
upstream of dams 

Morita & 
Yamamoto 
(2002) 

Dabry’s sturgeon; 
Acipenser 
dabryanus 

Yangtze River Critically endangered 
(possibly extinct) 

Wei et al. 
(1997, 2004); 
Wan, Fan & 
Li (2003) 

Spotted sorubim; 
Pseudoplatystoma 
coruscans 

São Paulo state, Brazil Rapid local extinction after 
dam construction 

Welcomme 
(1985) 

Jullien’s golden 
carp; Probarbus 
jullieni 

Northern Malaysia Possibly local extinction 
(Pahang River) and 
significant population 
decline (Perak River) 

Baird (2006); 
Dudgeon et al. 
(2006) 
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Table 2. Recommendations to address biases in fish passage research and applications. 935 
 936 

1. Avoid building new barriers whenever possible; if unavoidable, build the 
dam/weir/culvert such that it is not a barrier 

2. First choice should always be to remove existing structures rather than to engineer a 
solution 

3. Reconsider removing barrier (#2) 
4. Recognise and embrace diversity of fish movement ecology 
5. Integrate natural variation and build in uncertainty to designs 
6. Use a more holistic approach including the consideration of geomorphic and 

hydrological processes 
7. Stop recommending absolute design criteria from laboratory swimming tests. 

Laboratory experiments are excellent tools for comparative studies, but lack 
biological and environmental realism 

8. Use an evidence-based approach 
 937 
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 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
  952 
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 953 

Figure 1. Burst swimming speeds (the maximum swimming velocity that a fish is capable of 954 

sustaining for up to 20 s) of salmonids and other migratory fish with characteristic body 955 

lengths at the time of upstream migration. All species listed are defined as diadromous or 956 

potamodromous in FishBase (Froese & Pauly, 2016). All studies listed sampled burst 957 

swimming speeds in laboratory flumes. Symbols show modes. Whiskers show range from 958 

selected studies to demonstrate population-level variation. Examples cited: 1Nikora, Aberle, 959 

Biggs, Jowett & Sykes. (2003); 2Plew, Nikora, Larned, Sykes, & Cooper (2007); 3Rodgers et 960 

al. (2014); 4Starrs, Ebner, Lintermans & Fulton (2011); 5Colavecchia, Katopodis, Goosney, 961 

Scruton & McKinley (1998); and 6Tudorache, Viaene, Blust, Vereecken & De Boeck (2008). 962 
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