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ABSTRACT

The galaxy data provided by COSMOS survey for 1° x 1° field of sky are analysed
by methods of complex networks. Three galaxy samples (slices) with redshifts ranging
within intervals 0.88+0.91, 0.91+0.94 and 0.94-+-0.97 are studied as two-dimensional
projections for the spatial distributions of galaxies. We construct networks and cal-
culate network measures for each sample, in order to analyse the network similarity
of different samples, distinguish various topological environments, and find associa-
tions between galaxy properties (colour index and stellar mass) and their topological
environments.

Results indicate a high level of similarity between geometry and topology for
different galaxy samples and no clear evidence of evolutionary trends in network mea-
sures. The distribution of local clustering coefficient C' manifests three modes which
allow for discrimination between stand-alone singlets and dumbbells (0 < C' < 0.1),
intermediately packed (0.1 < C < 0.9) and clique (0.9 < C < 1) like galaxies.

Analysing astrophysical properties of galaxies (colour index and stellar masses), we
show that distributions are similar in all slices, however weak evolutionary trends can
also be seen across redshift slices. To specify different topological environments we have
extracted selections of galaxies from each sample according to different modes of C
distribution. We have found statistically significant associations between evolutionary
parameters of galaxies and selections of C': the distribution of stellar mass for galaxies
with interim C differ from the corresponding distributions for stand-alone and clique
galaxies, and this difference holds for all redshift slices. The colour index realises
somewhat different behaviour.
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>< 1 INTRODUCTION Methods and approaches of network science, see (Al-
bert & Barabdsi 2002; Dorogovtsev & Mendes 2003; Barrat
et al. 2008; Newman 2010; and references therein), have re-
cently proliferated into various disciplines including cosmol-
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term coined in Bond et al. (1996). Numerous approaches . - .
h b devised i it t ¢ v d T q various open problems of cosmology, e.g. clarify the impact
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analyse the geometry and topology of the Cosmic Web, see Kuutma, Tamm & Tempel 2017); quantify the geometry and
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The aim of the present paper is to study of the observ-
able Cosmic Web with the aid of complex networks, develop
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The observable large-scale structure of the Universe appears
to be rich in a variety of shapes and topological features, we
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and validate a universal approach for extracting topological
environments from the observational data, in order to in-
vestigate the relation between properties of a galaxy and its
place in large-scale structures, such as clusters, voids, walls
etc.

We follow the pioneering paper by Hong & Dey (2015)
where three network measures of topological importance (de-
gree centrality, closeness centrality and betweenness central-
ity) have been derived for one galaxy sample from the COS-
MOS catalogue Ilbert et al. (2013), different topological en-
vironments in the Cosmic Web have been selected and their
relationship to evolutionary parameters has been estimated.
This paper Hong & Dey (2015) in turn follows Scoville et al.
(2013), where the same problem was addressed using “tra-
ditional” methods and the same data source.

In comparison with already existing methods developed
for Cosmic Web analysis, network analysis has a number of
potential benefits: (a) it is not built on some ad-hoc as-
sumptions on the nature of the data, e.g. existence of a
continuous density field; (b) it’s computationally effective
in treating discrete data, as no density estimator or Hessian
is computed; (c) it is capable of describing and quantify-
ing the content of data at an adjustable level of detail and
complexity, properly encoding information; (d) it’s equally
applicable to results of simulations and real observational
data, thus allowing for direct comparison between them; (e)
it can go beyond the classification of environments as clus-
ters or filaments, by providing a more holistic view on the
topology of the multi-scale phenomenon of the Cosmic Web.
Thus, network analysis can complement other methods and
effectively integrate them into a framework capable of in-
vestigating the complexity of large-scale structures of the
Universe.

Here, we extend network analysis to include several
galaxy samples and compare constructed networks by in-
troducing other network metrics of interest like: number of
edges, mean node degree, size of the giant connected compo-
nent, average path length and diameter, assortativity. Also,
we advocate the usage of clustering coefficient as a measure
of short-range order which provides a robust technique that
can be applied to generate networks for real observational
data and simulation outputs. Moreover, we assess the appli-
cability, restrictions and accuracy of such a technique.

The paper is organised as follows. In Section 2 we de-
scribe the observational data, the methodology of network
construction and analysis is summarised in Section 3. Sec-
tion 4 is devoted to results and discussion. The conclusions
to be found in Section 5.

2 COSMOS SAMPLES OF GALAXIES

The COSMOS Collaboration' is a grand astronomical en-
deavour which seeks to integrate data produced by a variety
of space and ground-based telescopes. The survey is aimed
at analysing galaxy evolution and designed to collect essen-
tially all possible objects in the field of view, i.e. to be as deep
as possible, meanwhile covering an area of celestial sphere
large enough to mitigate for the influence of cosmic variance.

! http://cosmos.astro.caltech.edu

The datasets for exploration are driven from the cat-
alogue built by Ilbert et al. (2013) on the base of UltraV-
ISTA ultra-deep near-infrared survey, data release DR1 Mc-
Cracken et al (2012). It includes directly observable quan-
tities, such as celestial coordinates for galaxies and photo-
metric magnitudes for a number of broad bands, as well as
colour corrected for dust extinction, Myyv — Mg. More-
over, the dataset includes indirect estimations obtained by
fitting models to photometric data Ilbert et al. (2013): most
important is z, the redshifts for galaxies; basic galaxy classi-
fication according to colour — quiescent or star-forming; and
other physical parameters of galaxies, e.g. stellar mass.

This catalogue was built for studying the mass assembly
of galaxies Ilbert et al. (2013), used for exploring the evo-
lution of galaxies and their environments in Scoville et al.
(2013), as well as for constructing complex networks Hong
& Dey (2015). Thus, this data set could be considered as
a standard for benchmarking different kinds of large-scale
structure analyses.

To achieve the goals of this study, we require inde-
pendent samples of galaxies, meaning each sample should
contain a unique set of galaxies. The samples should also
approximately represent the same statistical population, to
ensure comparisons statistically viable. As the survey covers
quite a modest area of celestial sphere, the optimal region
to be chosen lies in the centre of surveyed area where the
right ascension (R.A.) spans the range 1494 + 1594 and
declination (Decl.) is in the range 17 + 2°77.

The samples of galaxies are derived from the data set
considering neighbouring ranges of redshift: 0.88 < z < 0.91,
0.91 < 2 <0.94 and 0.94 < z < 0.97, to be referred here-
after as z1, z2 and z3 respectively. By this choice we extend
the data analysed by Hong & Dey (2015) for redshift z»
to include neighbouring redshift slices z1 and z3. Such an
extension should minimise the influence of selection effects
meanwhile providing large enough populations of different
types of galaxies, including a high proportion of early-type
(red) galaxies. Also, the central slice reproduces the one used
in Scoville et al. (2013), where it was shown that when z > 1
the relation of galaxy properties within a local environment
abruptly diminishes.

The elaborated analysis of multi-band photometry data
estimates the redshifts of galaxies to a high degree of accu-
racy (at 1% level). The thickness of slicing (redshift intervals
Az) is chosen to be comparable to the errors in z and to en-
sure a large enough sample of galaxies to make statistical
methods meaningful.

For the standard ACDM cosmology with Hy=70
km/s/Mpc and Q4 = 0.7, a one degree distance on celes-
tial sphere at z = 0.91 corresponds to a distance of ~ 54
Mpc. Whilst the redshift interval Az = 0.03 corresponds to
a spatial thickness of ~ 76 Mpc in comoving spatial coordi-
nates. Despite the progress made in redshift determination,
its accuracy is still insufficient to allow for three-dimensional
spatial analysis. Thus, we analyse the each redshift as a two-
dimensional projection of celestial sphere. This projection
brings about some additional systematic bias and noise dis-
torting the cosmic network. A more detailed discussion of
such effects for density estimations can be found in Scoville
et al. (2013).

Given the above mentioned restrictions of the data set,
we still believe the data is good enough for answering the



major questions at hand and validating the approach. The
forthcoming releases of COSMOS and other extragalactic
surveys can potentially mitigate or even remove such re-
strictions.

3 METHODS OF NETWORK ANALYSIS
3.1 Network construction

Contrary to the data coming from computer science, in-
dustrial databases and social networks, the data in cosmol-
ogy are inherently non-networked and contains a substan-
tial amount of noise. Hence, a graph (network) must be
constructed from the data set (catalogue) using appropri-
ate criteria and methodology, and preferably without losing
relevant information. Such a procedure is equivalent to the
transformation of data from an unstructured representation
to a structured network representation (nodes and edges).

Thus, the task is to encode as much information of in-
terest as possible, in this case the existence of structure over
a random distribution of galaxies

There is no universal technique to construct a network
for this kind of data, however the major steps to consider
are the following: (i) Capture similarity between data points;
(it) Adopt some rules based on a similarity function for es-
tablishing the links between data points; (éii) Implement
some criteria to judge whether the network is properly built,
analogous to a “goodness-of-fit” procedure for approxima-
tion.

Different techniques for constructing complex networks
from a galaxy survey are discussed in Coutinho et al. (2016)
on the basis of Illustris cosmological simulation, and it was
shown that proximity is the most relevant similarity crite-
rion for galaxy property studies. So, in this paper we apply
a similarity parameter of proximity, called “linking-length”.

Here, an undirected network is constructed by gener-
ating edges between nodes, if and only if, the Euclidean
distance between two nodes is less or equal to the pre-
scribed linking-length, which is fixed. This simple recipe for
analysing clustering was used for decades as “top-hat fil-
tering” (Bardeen et al. 1986) and is closely related to the
“friend-of-friend” algorithm (Press & Davis 1982), used for
the study of large-scale structures. In the context of unsu-
pervised machine learning, the same approach is applied in
density-based data clustering algorithms, like DBSCAN or
OPTICS (Ester et al. 1997; Ankerst et al. 1999) as an e-
radius method.

So, hereafter a fixed linking length is predefined to be
equal to 070216, this corresponds to a linear scale of 1.2 Mpc
in the standard ACDM cosmology. This value was derived
in Hong & Dey (2015) from particular Poissonian distribu-
tion of node degree, the closest to the observed one in the
dataset.

Such a method is proven to be robust to noise, albeit it
is claimed in Hong & Dey (2015) to not be universal, i.e. dif-
ferent samples would require different linking length. Here,
we implement a goodness-of-fit measure based on the de-
tection of a large connected cluster, or “giant component”,
which is an indication of structure in the network. Also, the
network should not be over-connected, or in other words it
should be as sparse as possible in order to accurately reflect
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Figure 1. Complex networks constructed on the base of the red-
shift slices 0.88 < z1 < 0.91, 0.91 < 25 < 0.94, and 0.94 < z3 <
0.97 (from top to bottom) from the COSMOS field using link-
ing length of 0°0216. The middle figure recovers network that
formerly obtained in Hong & Dey (2015).
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the relations between the nodes, and moreover be robust to
noise.

Here, we investigate three cosmic networks constructed
for the different redshift slices using the same linking length
calculated for central slice (see also section 4.4). This allows
to have consistency between samples and enables compari-
son and tracking differences across samples. As the outcome
does not depend critically on precise value of linking length
and redshift slices are adjacent such simplification does not
introduce bias. In Fig.1 we show the cosmic networks gener-
ated using this prescribed linking length [ for each redshift
slice. In the remainder of this section we will introduce the
main metrics used in network science to quantify different
features.

3.2 Network Metrics

One of the remarkable features of most complex networks
is their heterogeneity. It leads to many unusual properties
within networks. Below, we will introduce some characteris-
tics that will be used to quantify network properties.

3.2.1 Size

The network is globally described by the numbers of nodes
and edges, n and m respectively. For the connected part
of a network, there is always a path between any pair of
nodes ¢ and j. The shortest path length ¢;; between two
nodes i and j can then be described as the shortest route
in terms of number of steps to go from ¢ to j. The average
path length (¢) is then the average number of steps along
the shortest path for all possible pairs of nodes belonging
to the connected part of the network. It gives a measure of
how closely related nodes are to each other. Below, we will
calculate path lengths along the largest connected cluster of
the network (Giant Connected Component, GCC).

The equation used to compute this quantity is:

=—2""3 (1)

9g—1) i#£jeGCC

where ¢ is the total number of nodes in GCC, ¢;; is the
shortest path between nodes ¢ and j, and the summation is
performed over all nodes belonging to the GCC.

This can then be compared with the average path length
for a classical Erdés-Rényi random network (¢,) (Erdos &
Rényi 1960) of the same size, where links are randomly as-
signed between nodes. Fronczak et al. (2004) have found it
to be:

In(g) — a
() = In((k)) + 0.5 @
where o & 0.5772 is the Euler-Mascherroni constant (Weis-
stein 2002) and (k) is the mean node degree defined in 3.2.2.

Another quantity that can be used to characterise the
extent of a network is the longest shortest path between any
two nodes, sometimes called the diameter of network, D.
This path may provide an elegant description of the “back-
bone” of the largest cluster in the cosmic network. In Table
1 we list the quantities n, m, (£), (¢;), D and g determined
for all redshift slices. Percentages in brackets next to values
of D and ¢ indicate the portion of nodes belonging to the
GCC.

3.2.2  Centralities

The importance of different nodes in a network can be deter-
mined by their centralities. For one of the COSMOS galaxy
samples, z2, the centralities of nodes have already been con-
sidered by Hong & Dey (2015). Here, besides calculating
centralities for two more neighbouring redshift slices we eval-
uate not only their point estimates but also assess their dis-
tributions. In turn, this will allow us to compare galaxy sam-
ples in order to investigate how these metrics differ in other
redshift slices. The centralities we consider are Degree, Be-
tweenness and Closeness, see Brandes (2001) and definitions
below.

The degree centrality provides information on the con-
nectivity of a network within a localised area:
Cali) = -1 3)

n—1’

where n is the number of nodes in the network and k; is the
degree (number of links adjacept) of node j, determined in
terms of an adjacency matrix A as follows:

k; = ZAij , (4)

here and below, when not explicitly specified, the summa-
tions indices span the entire network. For a network of n
nodes, A is an n x n matrix with elements A;; = 1 if there is
a link between nodes ¢ and j and A;; = 0 otherwise. Table 1
gives the mean values (k), Cq and their standard deviations
and standard errors (in brackets) for each network.

The betweenness centrality defines how important a
node is in terms of connecting other nodes via shortest path
lengths:

o=y 2l (5)

st(seti) ot

where o is the number of shortest paths between nodes s
and ¢t and os¢(j) is the number of shortest paths between
nodes s and t that go through j.

The closeness centrality reveals how central a node is in
the network. Within any sub-connected component F of f
nodes it is defined as:

. f—1 f—-1
C.(5) = =,
@) n—=1% 74
If the network is disconnected, as is the case for our net-

works, the first term will act to normalise the centralities
for each fully connected subcomponent.

(6)

3.2.3 Correlations

Correlations within networks can be investigated using dif-
ferent techniques, implying both global and local character-
istics. The Clustering coefficient of a network, in comparison
with it random counterpart, can aid in quantifying the exis-
tence of structure within the local vicinity of a given galaxy
and thus estimate its topological environment.

Local correlation is estimated by determining the clus-
tering coefficient of an individual node:

cngé%ﬂ, (7

where k; > 2 is degree of node j and y; is the number of



links between neighbouring nodes of node j. When k; < 2,
then C; = 0 by definition. Averaging over all nodes in the
network yields a mean clustering coefficient for the whole
network, C'= 23" | C(i), the global characteristic of the
network.

To this end, to determine how strongly correlated a par-
ticular network is, we can compare the C' with C,, where
C) is clustering coefficient for a Erdos-Rényi random net-
work of the same size. Random networks are characterised
by low values of C» and (¢;). So, if C substantially exceeds
C- this indicates that the network is highly correlated mean-
ing that links in this network tend to be highly clustered to-
gether. The value of C) is calculated by simply considering
Cr = (ky/n.

Another useful estimator for node correlations is assor-
tativity, » which is usually used to investigate whether nodes
of a similar degree tend to be linked together. This is similar
to the Pearson correlation coefficient:

Aij (ki — B[k])(k; — E[k])
> E[k® — E[k]? ’ ®)

T =

0,3
where A;; is the adjacency matrix elements and k; and k;
are the degrees of node i and j respectively, F[k] is the mean
node degree, (k), and E[k?] — E[k]? is the mean variance of
the node degree.

Thus, with complex networks we can analyse the struc-
ture in a galaxy sample as a whole and in more detail. In par-
ticular, extend analysis beyond the local density and quan-
tify short-range anisotropy of the distribution by clustering
coefficient. Furthermore, we can compare different samples,
retrieving important information which could not previously
be revealed via existing methods. In the following section we
apply network metrics to classify topological environments.
Moreover, the application of complex networks to the Cos-
mic Web analysis places the research into a more general
context of complex systems thus creating opportunities to
search for analogies between different phenomena that oc-
cur in systems of interacting agents of various nature.

4 RESULTS AND DISCUSSION

Our results for different network metrics are listed in Ta-
ble. 1, the columns represent three networks visualised in
Fig. 1. As it was already discussed at the end of Section
3.1, we use the same linking length for all redshift slices to
enable a comparative analysis and reduce undue bias.

In Table. 1 we can see that unique, yet similar samples of
galaxies, produce networks with resembling characteristics.
This serves as confirmation that we have a robust network
generation method which generates a network with suffi-
cient structure and relevant information. Meanwhile, such
comparisons also point to the unbiasedness of the network
generation method that exhibits sufficient sensitivity in de-
tecting structure within galaxy distributions.

By comparing the average clustering coefficients C' and
average path lengths (£) with their random counterparts C
and (), we can see that generated networks are similarly,
highly correlated networks, with evident regular structures
within their GCCs. The GCC is analogous to the super clus-
ter in a network and the diameter D is analogous to the
spine of the largest cluster. From Table 1 we see that all
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networks have slightly different GCCs with similar spines.
This would indicate a variance in largest cluster size be-
tween networks with z3 having the largest cluster and z;
the smallest. Present analysis does not exclude the possibil-
ity that all three GCCs found for slices z1, 22 and z3 belong
to a single extended structure.

We have computed the centrality measures for between-
ness, closeness and degree, which Hong & Dey (2015) con-
sider in their paper, and estimated their standard errors for
three galaxy samples z1, z2 and z3. The distributions for
centralities are summarised in Table 1 and the distributions
for degree centrality is shown in Fig.2.

4.1 Degree centrality

The degree centrality Cg4 characterises the distribution of
node degree in a network, so the mean of such a distribution
directly relates to average degree (k). From Table 1 we can
see that they are fairly similar with values of 7.08, 7.79 and
6.77 for increasing values of redshift. On inspection of Fig. 2
(top row), the distributions on node centrality seem Pois-
sonian in nature for all redshift slices, with z1 and z2 slices
having more extended tails in comparison with z3. This indi-
cates that z1 and z2 have some really tightly packed galaxies
within clusters whereas in z3 the distances between galaxies
are more evenly distributed within the clusters.

4.2 Betweenness centrality

The betweenness centrality (', measures the importance of
a node in terms of maintaining connections between other
nodes. In other words, a node that is involved in a larger
number of shortest paths will be more important with re-
spect to betweenness. Nodes which join two large compo-
nents/clusters together will also have a high betweenness
centrality. This is because many nodes exist in either of the
two large clusters and hence many paths will have to tra-
verse through these joining nodes. This would not be the
case if one of the clusters was small and the other large. By
this definition galaxies linking two larger clusters will dis-
play high betweenness centrality.

As it turns out from the analysis, the distribution of
the betweeness centrality is negatively skewed indicating a
fewer number of high betweenness nodes. The galaxies with
high betweeness might be classified in astrophysical terms
as filaments which join larger clusters together. Fig. 3 de-
picts how galaxies with betweenness centrality greater then
0.002 (shown by red squares) represent only a small portion
of the galaxies and how they all tend to be galaxies that
form paths between larger clusters.

4.3 Closeness centrality

We find that the distribution of closeness centrality C. is
apparently bimodal with two peaks centered about the val-
ues Ce1 = 0.002 and Cc2 = 0.02. They are characterised by
different widths, leading in turn to different variance of the
distributions (see Table 1).

As it follows from a thorough analysis of the data, the
population of galaxies that belong to the second peak corre-
sponds to the largest connected component of the network
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Table 1. Network metrics for three galaxy samples at different redshift, z1, z2, and z3, along with mean values for colour index and
stellar masses. Here, n is number of nodes, m is number of edges; (£), (¢,) are mean shortest path of GCC for real and random networks
accordingly; g is number of nodes and D is diameter (maximal shortest path length) in the GCC; k is node degree; Cg4, C are the degree
and betweenness centralities; Cc1, Ce2 are closeness centralities for the distribution of fragmented clusters and GCC; C, C) are the mean
clustering coefficients for real and random networks accordingly; r is assortativity. The Colour; and Colours are mean colour indexes
for both modes of bimodal distribution, as shown in Fig. 7; log Mgteiiqr is the logarithm of mean stellar mass (in units of solar one).
Where it is applicable, in brackets the standard deviation (o) and standard error (SE), or percentages to indicate the portion of nodes

involved in particular component are given.

0.88< z <0.91 0.91< 2 <0.94 0.94< z <0.97

Mean [lo, SE] Mean [lo, SE] Mean [lo, SE]
n 3318 3678 3606
m 11747 14317 12206
() 37.53 33.6 39.87
() 3.06 3.00 3.12
g 2079 [63%) 2369 [64%) 2828 [78%)
D 116 [3.5%] 113 [3.1%] 117 [3%]
k 7.08  [5.02, 0.087] 779 [5.68, 0.093] 6.77 [4.36, 0.071]
Cy 0.0021  [0.0015, 0.00003] 0.0021  [0.0015, 0.00003] 0.0019  [0.0012, 0.00002]
Cy 0.0045 [0.014, 0.00023] 0.0037  [0.0097, 0.00016] 0.0066  [0.016, 0.00026]
Ce1 0.0019  [0.00012, 0.000033]  0.0028 [0.0018, 0.000029] 0.0018 [0.0013, 0.000047]
Cea 0.018  [0.0041, 0.000090] 0.021  [0.0052, 0.000086] 0.021  [0.0052, 0.000097]
(& 0.604 [0.263, 0.0048] 0.612  [0.261, 0.0043] 0.603  [0.264, 0.0044]
Chr 0.0021 0.0021 0.0019
r 0.85 0.86 0.80
Colour 0.64 [0.66, 0.012] 0.63  [0.68, 0.012] 0.61 [0.67, 0.012]
Colour, 4.02  [0.54, 0.033) 4.20  [0.61, 0.032] 413 [0.66, 0.036)
log Mstetiar 9.29 [0.67, 0.012] 9.50 [0.69, 0.011] 9.44 [0.66, 0.011]

(GCCQC). In turn, the nodes in the centre of the GCC are
characterised by shorter distances to the rest of the nodes,
leading by Eq. (4) to larger values of C.. The periphery
nodes are characterised by larger distances to the rest of the
nodes, therefore they have smaller values of C..

In a similar way, one can identify the population of
galaxies that give rise to the first peak in the C. distribution.
These are the galaxies that belong to the smaller clusters,
that are not attached to the GCC. Here, the central nodes
of the clusters correspond to the right wing of the first peak
and the periphery nodes are those contributing to the left
wing. The possibility to find two distinct populations in the
distribution is caused by the difference in sizes of the GCC
and that of the rest of the network. The larger the difference,
the more distinct the peaks. Indeed, as one can see from Ta-
ble 1, the largest size of GCC (78%) is find for the redshift
interval z3. This which corresponds to the case where the
gap between the two peaks is most pronounced.

4.4 Clustering coefficient

As it follows from Eq. (7), the clustering coefficient C(j)
counts the ratio of triangles of connected nodes to all pos-
sible triples in a given cluster. In this way, the clustering
coefficient is a useful measure for the correlation on a lo-
cal level or short-range correlation. It provides information
on elementary substructures (patterns) that appear in the
network. In Table 1 observing clustering coefficient, one can

see the presence of pervasive pattern-groups of tightly con-
nected galaxies on different sites (see also Fig. 1) since the
high values of average clustering coefficient are obtained for
all redshifts slices.

Before continuing the discussion about the actual prop-
erties of C for the networks under consideration, let us return
back to the origins of network construction. As it was men-
tioned in Section 3.1, the choice of linking length [ is crucial
in defining the network topology, and it appears to be par-
ticularly important with respect to correlation. Indeed, for
a small [ the network is just a set of disconnected nodes and
therefore C' = 0, while as it follows from Eq. (7) for large [
one arrives at the complete graph where C' = 1. In Fig. 4
we illustrate this by plotting C as a function of [ for all red-
shift slices. One can see that I = 070216 chosen to construct
Fig. 1 correspond to C7 = 0.604, C> = 0.612, C3 = 0.603
at z1, z2 and z3 accordingly. So, this value of [ appears to
be optimal as shown first in Hong & Dey (2015) and further
supported by our analysis.

The local clustering of each node can also be considered
in an effort to help construct robust methods of defining sub-
structures within the cosmic network, or, for making selec-
tions to represent certain type of environment. Histograms
for clustering coefficient in Fig. 2 depict complex discrete
distributions with three main peaks at 0, 0.66 and 1. In
most cases galaxies with clustering coefficient C; < 0.1 have
less then two neighbours, so they are located in sparse en-
vironments, where mean distance between galaxies is larger
than the linking length. This selection can be called “stand-
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and clustering coefficient for three ranges

of z from left to right: 0.88 < z1 < 0.91, 0.91 < 23 < 0.94, and 0.94 < 23 < 0.97.
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Figure 3. Galaxies in z2-slice with betweenness centrality greater
than 0.02 are red squares and galaxies with lower value are de-
noted by blue circles.

alone” galaxies represented by singlets and dumbbells re-
siding mostly in sparse regions. The nodes with clustering
coefficient ranging in 0.1+0.9 indicate galaxies that are inter-
mediately packed next to one another. Galaxies with a clus-
tering coefficient larger than 0.9 tend to highlight small clus-
ters, or in other words participate in some “cliques”. Thus,

0.7
g B8
5§ 999§ 6988V
0.6 -
5
0.5 zZ1 O

)

0 0.02 004 0.06 0.08 010 012 0.14

l

Figure 4. Clustering coefficient C for all three redshift slices as
a function of linking length [.

we make three selections of galaxies, and analyse them below
with regard to galaxy properties.

In Fig. 5 three selections of galaxies are mapped onto
spatial distributions, for each of three redshift slices. It is
noticeable, that nodes within denser clusters do not neces-
sarily exhibit higher clustering coefficient than their sparser
counterparts. The main reason is the fixed linking length.
For example, in these large clusters node i will link to all
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Figure 5. Galaxies from different selections marked according to
their clustering coefficient. Red squares denote the “stand-alone”
galaxies, green circles denote the galaxies with interim values
of clustering coefficient, and small “cliques” are denoted by blue
crosses.

nodes within prescribed linking length including node j on
the edge of linking length. However, as the linking length
is smaller than the size of cluster, node j will link to other
nodes in this cluster which are unreachable for node i (not all
neighbours of j will be linked to node 7). Thus, counter intu-
itively, rather smaller clustering coefficients are seen among
highly clustered galaxies, and clustering coefficient takes the
highest values in smaller clusters at the edges of voids.

4.5 Average path length

The evaluation of average path length makes sense only for
the giant connected component, because disconnected nodes
will have no paths between them, which mathematically
leads to infinite lengths. According to Table 1, (£) ranges
between 33 and 40 for different slices, to be compared with
the (£,) of a random network of the same size.

In network theory significant amounts of attention have
been paid to the idea of small worldedness (Watts and Stro-
gatz 1998): a network can be both highly correlated on a lo-
cal level (i.e. nearest neighbour level) and exhibit relatively
small (¢) at the same time. When C of a network exceeds
randomly expected, C' > C, and (¢) is close or smaller than
randomly expected, (£) < (£), then a network is said to be
small world in nature.

The cosmic networks do not display small world char-
acteristics. All three networks satisfy the first condition of
small worldedness in that they are far more correlated then
randomly expected. However, these networks fail on the sec-
ond condition in that (¢) are all much larger than randomly
expected and so can not be considered to be small world in
nature. Therefore, the cosmic network is a large world in this
context. This could well be a result of the constraint that
is imposed by linking length, as this does restrict galaxies
outside a certain distance from being linked and could be a
contributing factor in why the network is a large world.

4.6 Assortativity

For a disassortative network the value of r, Eq. (8), is neg-
ative indicating that nodes of low degree tend to associate
with nodes of high degree. In turn when this value is pos-
itive this indicates an assortative network where nodes of
similar degree link with one another. Fig. 6 provides a qual-
itative perspective where it can be clearly seen that the cos-
mic network displays positive correlation and this can be
further confirmed quantitatively in Table 1 with r for all
redshifts being > 0.80. This indicates that in the cosmic
network galaxies with a similar number of links tend to be
connected to one another.

4.7 Astrophysical quantities vs topology

Another goal of this research is to investigate how galaxy
properties (hereafter the stellar mass and colour index) re-
late to the topological environment of galaxies (hereafter
topological refers to selections according to clustering co-
efficient). The relationship between galaxy properties and
network centrality measures have been considered by Hong
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for the zo redshift slice.

& Dey (2015) for the zo slice. Here we take a different ap-
proach, based on clustering coefficient, and apply it to three
samples of galaxies.

Before embarking into the analysis, we need to address
a number of the limitations caused by the nature of the
data. The exploration of clustering coefficient (bottom panel
of Fig. 2) reveals its discrete and highly non-uniform dis-
tribution, meanwhile the astrophysical parameters are con-
tinuous variables with non-trivial distributions (especially
colour index, see Fig. 7). Given that parametrical methods
for multivariate analysis e.g. correlation analysis, are defi-
nitely inapplicable, and even though the application of non-
parametrical methods cannot ensure feasible results we are
left these methods to apply.

Of course, we can seek for trends by analysing general
differences between distributions in samples, for instance by
comparing their means and standard deviations, as in Ta-
ble 1. However, the statistical significance of such differences
is unknown.

The distributions of variables can be compared by
means of non-parametric methods based on empirical dis-
tribution function (two-sample tests). At some confidence
level, null hypothesis significance testings estimate p-values
to be used for rejecting the null hypothesis, in this case that
both selections are sampled from the same population. Note,
that such tests result in binary answers (yes/no), seek to re-
ject the null hypothesis, and should be taken with a grain
of salt since they assume the univariate nature of variables.

Usually the Kolmogorov-Smirnov test (Kolmogorov
1933; Smirnov 1948) is used as a non-parametric test, as in
Hong & Dey (2015). Although this test is universal tool, it
has a number of limitations, and should be cross-validated by
other approaches, like Anderson-Darling (Anderson & Dar-
ling 1954) or Mann-Whitney-Wilcoxon (Mann & Whitney
1947; Wilcoxon 1945) tests.
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Table 2. The results of Anderson-Darling tests (p-values) for
colour and stellar mass distributions for different clustering coef-
ficients selections: I C' = 0; I1 0 < C' < 1; III C' = 1. The critical
p-value equals 0.05.

Colour Stellar Mass

21 22 23 21 22 23

ITvsIl 0.062 0.018 0.31 51076 0.0048 0.00023
IITvsIII 029 0.025 0.37 0.0032 0.0018 0.014
I vs III 0.74 0.79  0.49 0.19 0.91 0.18

4.7.1 Distributions of galaxy parameters

We first analyse distributions for colour index and stellar
mass (Fig 7), the means and standard deviations are in-
cluded in Table 1. The Hartigans’ dip test (Hartigan & Har-
tigan 1985) proves that bimodalities in the colour distribu-
tions are statistically significant: the null hypothesis of uni-
modality is rejected with p-value < 2.2-107'. The different
heights of the peaks in histogram imply heterogeneity of the
data set, which may be drawn from different populations.

With respect to colour index, non-parametric tests con-
sistently indicate the following: the hypothesis of a common
distribution is strongly rejected when comparing z; and z3
samples, mildly rejected for z; and z2 samples, and mildly
accepted for zo and zs samples. Therefore, the tests have
revealed a weak but still significant evolutionary trend for
colour index over redshifts span.

Although the shape of distribution for stellar mass is
simpler, two-sample tests for stellar mass detect significant
distinctions over redshifts for all pair-wise comparisons ex-
cept in the case of z2 vs z3. Note that colour index is derived
directly from observed photometric measurements. Mean-
while, the stellar mass of galaxies is computed from the same
photometric data using approximations and elaborate mod-
eling of spectral energy distributions (SED).

4.7.2  Selections by clustering coefficient

Given the different nature of distributions we should fol-
low two-step a procedure in order to find out how colour
index and stellar mass of a galaxy are determined by clus-
tering coefficient of the galaxy: split the data set into three
subsamples (or selections) according to local clustering co-
efficient; then compare empirical distribution functions of
galaxy properties for different subsamples by two-sample
tests. Thus, each redshift slice was split into three subsam-
ples: selection I (stand-alone galaxies) C' = 0; selection II
(intermediately packed galaxies) 0 < C' < 1; selection III
(compact cliques of galaxies) C' = 1. Then distributions of
different selections are tested for equality in pair-wise man-
ner. Fig. 8 presents the empirical cumulative distribution
functions of colour index and stellar mass for selections I
(red squares), II (green circles) and III (blue crosses) for
redshift sample z3.

In Table 2 we present the results of the non-parametric
Anderson-Darling tests. Again, here the null hypothesis
states that subsamples are drawn from the same popula-
tion, the alternative hypothesis states the populations are
different. The p-value indicates the statistical significance of
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test, if it is less than 0.05 the null hypothesis can be rejected
with high degree of confidence. Note that the magnitude of
p-values do not reflect the strength of the effect.

We can deduce the following conclusions from Table 2: i)
the samples of selections I and III (stand-alone and densely
packed in small groups of galaxies) are non-distinguishable,
for all z-slices, with respect to both colour and stellar mass;
ii) the distribution of stellar mass for selection II differs from
selection I and III across all z-slices; iii) the distribution for
colour index for selection II does not differ from selections I
and III, expect when considering the z2-slice.

The weakness of the evolutionary effects is understand-
able since the age differences of the nearest and farthest
sample of galaxies do not exceed 400 million years. We have
however to bear in mind the caution expressed already at
the beginning of the paper: the database used here does not
allow one to use coordinates of galaxies in 3D space with
high enough precision. Indeed, the 2D slices of the real-world
pictures (see Fig. 1) result from the projection of their 3D
counterparts. According to Scoville et al. (2013), the binning

matched to accuracy of the redshifts, thus providing optimal
signal-to-noise ratio. For the density estimation the 2D pro-
jections are linearly related to a 3D volume whereas for the
topological environment that might not be the case. Despite
of this obvious limitation one can still retrieve information
on the correlations we are interested in.

The research presented above allows one to approach
probably the most important problem in cosmology, the
mapping of the observable distribution of luminous mat-
ter to the underlying dark matter distribution, sometimes
called the problem of biasing. The results here are derived
from real-world observational data, so they are not just a de-
scription of the spatial structure, they encode information
of extremely complex processes of star formation, gas and
radiation transfer in different environments. So, our findings
on the common behaviour in the evolution of stand-alone
galaxies and cliques bring important confirmation for the
Cosmic Web Detachment model (Argon-Calvo et al. 2016),
identifying the events of detachment in real observations.



5 CONCLUSIONS

Here we have analysed some observed part of the Cosmic
Web (COSMOS catalogue of galaxies (Ilbert et al. 2013))
by means of complex network analysis. A major distinc-
tion of our study is that we analysed galaxy samples in the
same region 1° x 1° of the celestial sphere as the previous
study of Hong & Dey (2015), but for three neighbouring
redshift intervals 0.88 < z < 0.91, 0.91 < z < 0.94 and
0.94 < 2 £0.97, marked by 21, z2 and z3 accordingly.

We have developed and validated the robustness of our
technique for constructing complex networks from galaxy
samples using a fixed linking length method (I = 070216).
For each redshift slice we have calculated the local complex
network measures, namely degree, closeness and between-
ness centralities, clustering coefficient C(j) as well as the
global measures, e.g. average path length (¢), diameter D,
average clustering coefficient C', number of nodes g and di-
ameter D of the giant connected component GCC, mean
node degree k, assortativity r.

We have not found firm evidence of evolutionary
changes across complex networks, either by comparing the
distributions of the local network measures or analysing
global network measures. The main reason maybe due to
the insufficient differences in the cosmological ages of galaxy
samples.

The comparison of the computed measures of our net-
works with corresponding measures of random ones give us
some global characteristics of the Cosmic Web in the context
of complex network theory. Together these properties imply
that constructed cosmic networks are not small worlds in
terms of network science but rather “large worlds”.

The size of Giant Connected Component (GCC) in-
forms about the largest cluster in a network, here it con-
tains 63%, 64% and 78% of galaxies in 21, z2 and 23 sam-
ples accordingly. The high value of assortativity coefficient
r ~ 0.80 + 0.86 means that in the cosmic network galaxies
with a similar number of links tend to be connected to one
another.

Most of the local network measures have non-Gaussian
distributions, often bi- or multi-modal ones (Fig. 2). The lo-
cal clustering of each node C(7) in the cosmic network shows
a three mode distribution which allows for the discrimina-
tion between singlets and dumbbells of galaxies (C' = 0) on
the one hand and cliques of galaxies (C' = 1) on the other.
So, the network metrics analysed here allow for discrimina-
tion between topologically different structures.

Another goal of our study was to analyse the impact of
surroundings on the astrophysical properties of galaxies, in
particular colour indices and stellar masses. Doing so, be-
sides studying the obvious impact of the immediate neigh-
bourhood of a galaxy (which can be and is done by means of
other methods too) we presented here an elaborated method
to study the subtle topological features of galaxy distribu-
tion beyond its local density, as short-range clustering.

The general analysis of trends in means and standard
deviations of colour indices and stellar masses across redshift
slices z1, z2 and z3 has not revealed substantial differences,
see Table 1. Meanwhile, the comparison of distributions via
non-parametric tests detects a weak evolutionary trend over
the redshift span 0.88+-0.97 for the colour index of galaxies.

Comparison (with Anderson-Darling test) of the empir-
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ical distribution functions for astrophysical characteristics
by different selections defined by the modes of clustering
coefficient yields evidence of consistent and statistically sig-
nificant associations between astrophysical quantities and
topological selections, see Fig. 8 and Table 2.

In particular, it was shown that stand-alone galaxies
with C(j) = 0 (selection I) and galaxies densely packed in
small cliques with C(j) = 1 (selection III) are not distin-
guishable by colour index and stellar mass distributions.

Stellar mass distributions for galaxies with interim clus-
tering coefficient (selection II) differ from the corresponding
distributions in selections I and III. This difference holds
for all redshift slices. The analogous difference in colour in-
dex distributions holds however only in the 22 redshift slice.
The latter ze-sample has been intensively studied by other
methods in the papers Scoville et al. (2013) and Hong & Dey
(2015).

The presented results demonstrate the promising use of
complex network theory in the study of the Cosmic Web.
With the improving accuracy of redshift values for galaxies,
we hope that in future, this will allow the cosmic network to
be studied in 3D which will in turn provide more accurate
results.

ACKNOWLEDGEMENTS

This work was supported in part by the projects:
0116U001544 of the Ministry of Education and Science
of Ukraine (S.A. and B.N.); the FP7 EU IRSES project
612707 “Dynamics of and in Complex Systems” (R.dR.,
C.wF., and YuH.) and by the project DFFD 76/105-
2017 "Complex network concepts in problems of quantum
physics and cosmology”. Authors thank the entire COS-
MOS collaboration for available data at COSMOS Archive
http://irsa.ipac.caltech.edu/data/COSMOS.

REFERENCES

Albert R., Barabdsi A. L., 2002, Rev. Mod. Phys., 74, 47

Anderson T. W., Darling D. A., 1954, J. Amer. Stist. Assoc., 29,
765.

Ankerst M., Breunig M., Kriegel H.-P., Sander J., 1999, Proc.
ACM SIGMOD‘99 Int. Conf. on Management of Data,
Philadelphia PA, 49.

Aragon-Calvo M. A., Neyrinck M. C., Silk J., 2016,
arXiv:1607.07881

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, Astro-
phys. J., 304, 15.

Barrat A., Barthelemy M., Vespignani A., 2008, Cambridge: Cam-
bridge University Press

Bond J. R., Kofman L., Pogosyan D., 1996, Nature, 380, 603.

Brandes U.A., 2011,Journal of mathematical sociology, 25(2),
163-77

Brouwer M.M., Cacciato M., Dvornik A. et al., 2016, MNRAS,
462, 4451

Cautun M., van de Weygaert R., Jones B. J. T., Frenk C. S.,
2014, MNRAS, 441, 2923.

Chen Y.-C., Ho S., Freeman P. E., Genovese C. R., Wasserman
L., 2015, MNRAS, 454, 1140.

Chen Y.-C., Ho S., Brinkmann J., Freeman P. E., Genovese C.
R., Schneider D. P., Wasserman L., 2016, MNRAS, 461, 3896.

Coutinho B., Hong S., Albrecht K., Dey A., Baraba’si A.-L., Tor-
rey P., Vogelsberger M., Hernquist L., 2016, arXiv:1604.03236.



12 R. de Regt et al

Dorogovtsev S. N., Mendes J. F. F., 2003, Oxford: Oxford Uni-
versity Press

Ester M., Kriegel H.-P., Sander J., and Xu X., 1996, Proceedings
of the Second International Conference on Knowledge Discov-
ery and Data Mining (KDD-96). AAAI Press. pp. 226-231.

Erdos P., & Rényi A., 1960, Pub. Math. Inst. Hung. Acad. Sci.,
5, 17.

Fronczak, A. Fronczak, P. Holyst, J. Phys. Rev., E 70, 2004.

Hahn O., 2014, arXiv:1412.5197

Hartigan J.A., Hartigan P.M., 1985, Ann. Statist., 13, 70.

Hong S., Coutinho B., Dey A., Barabasi A.-L., Vogelsberger M.,
Hernquist L., Gebhardt K., 2016, arXiv:1603.02285.

Hong S. & Dey A. 2015, MNRAS, 450, 1999.

Ilbert O., McCracken H. J., Le Févre O., Capak P., Dunlop J. et
al., 2013, Astron. & Astrophys., 556, 55.

Kolmogorov A., 1933, G. Ist. Ital. Attuari., 4, 83.

Kuutma T., Tamm A., Tempel E., 2017, Astron. & Astrophys.,
600, L6

Leclercq F., Lavaux G., Jasche J., Wandelt B., 2016, JCAP, 8,
027.

Lee J. & Yepes G., 2016, arXiv:1608.01422

Libeskind N.I., van de Weygaert R., Cautun M. et al., 2017,
arXiv:1705.03021

Mann H.B., Whitney D. R., 1947, Annals of Mathematical Statis-
tics, 18, 50.

McCracken H. J., Milvang-Jensen B., Dunlop J., Franx M. et al.,
2012, Astron. & Astrophys., Volume 544, id.A156, 11 pp.

Newman M., 2010, Oxford: Oxford University Press

Pace F., Manera M., Bacon D. J., Crittenden R., Percival W. J.,
2015, MNRAS, 454, 708.

Pranav P., Edelsbrunner H., van de Weygaert R., Vegter
G., Kerber M., Jones B. J. T., Wintraecken M., 2016,
arXiv:1608.04519.

Press W.H., Davis M., 1982, Astrophys. J., 259, 249.

Ramachandra N. S. & Shandarin, S. F., 2016, arXiv:1608.05469.

Scoville N., et al., 2013, ApJS, 206, 3.

Smirnov N., 1948, Ann. Math. Statist., 19, 279.

Watts D.J., Strogatz S.H., 1998, nature, 393(6684), 440-2.

Weisstein E., 2002, Wolfram Research, Inc.

Wilcoxon F., 1945, Biometrics Bulletin, 1, 80.

Zhao C., Kitaura F.-S., Chuang C.-H., Prada F., Yepes G., Tao
C., 2015, MNRAS, 451, 4266.



	De Regt coversheet
	de Regt_et_al_Network_analysis_COSMOS_galaxy_field_MNRAS
	1 Introduction
	2 COSMOS samples of galaxies
	3 Methods of network analysis
	3.1 Network construction
	3.2 Network Metrics

	4 Results and Discussion
	4.1 Degree centrality
	4.2 Betweenness centrality
	4.3 Closeness centrality
	4.4 Clustering coefficient
	4.5 Average path length
	4.6 Assortativity
	4.7 Astrophysical quantities vs topology

	5 Conclusions


