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Abstract. In the past, milling operations have been mainly considered from the 

economic and technological perspectives, while the environmental consideration 

has been becoming highly imperative nowadays. In this study, a systemic optimi-

zation approach is presented to identify the Pareto-optimal values of some key pro-

cess parameters for low-carbon milling operation. The approach consists of the fol-

lowing stages. Firstly, regression models are established to characterize the 

relationship between milling parameters and several important performance indica-

tors, i.e., material removal rate, carbon emission and surface roughness. Then, a 

multi-objective optimization model is further constructed for identifying the opti-

mal process parameters, and a hybrid NSGA-II algorithm is proposed to obtain the 

Pareto frontier of the non-dominated solutions. Based on the Taguchi design 

method, dry milling experiments on aluminum are performed to verify the proposed 

regression and optimization models. The experimental results show that a higher 

spindle speed and feed rate are more advantageous for achieving the performance 

indicators, and the depth of cut is the most critical process parameter because the 

increase of the depth of cut results in the decrease of the specific carbon emission 

but the increase of the material removal rate and surface roughness. Finally, based 

on the regression models and the optimization approach, an online platform is de-

veloped to obtain in-process information of energy consumption and carbon emis-

sion for real-time decision making, and a simulation case is conducted in three dif-
ferent scenarios to verify the proposed approach. 

Keywords: Specific carbon emission, Multi-objective optimization, Dry milling, 

NSGA-II, Online analysis platform 



 

1. Introduction 

With the aggravation of global warming and quick increase of energy cost, re-

search to develop energy-efficient and low-carbon emission technologies for the 

manufacturing industry, which consume significant raw materials and energy, has 

been becoming paramount. In the U.S., the manufacturing sector was responsible 

for 22% of energy consumption in 2006, and the associated energy costs were about 

$50 billion [1]. Manufacturing results in substantial stress on the environment con-

cerns [2]. Research has been actively carried out to improve the sustainability in 

manufacturing, such as sustainable production scheduling [3], better workshop 

management for less energy consumption, and machine parameter optimization for 

energy efficient machining processes [4]. 

For machining, research has shown that energy savings up to 6-40% could be 

obtained based on the optimum choice of cutting parameters, tools and optimum 

tool path design [4]. Therefore, machining parameters optimization leading to en-

ergy saving and minimized carbon emission in manufacturing workshops is imper-

ative. 

In machining processes, the most commonly used optimization criteria are ma-

terial removal rate (MRR), surface roughness (SR), cutting force, tool life and 

power consumption [5]. Although several optimization approaches have been pro-

posed to reduce the environmental impacts of machining processes, most of them 

are qualitative analysis methods, such as grey relational analysis [6], response sur-

face methodology (RSM) [7] and factor effect analysis [8]. Through establishing 

the regression and optimization models, a systemic approach is proposed to analyze 

and optimize machining parameters quantitatively and achieve a better eco-effi-

ciency which means lower manufacturing costs, better production rate and less car-

bon emission. Furthermore, an online platform for carbon emission analysis is de-

veloped to realize prompt decision-making during the above processes. 

The rest of this study is organized as follows. The related research is reviewed 

in Section 2. In Section 3, regression models of milling processes are constructed 

to characterize the relationship between the milling parameters and the environ-

mental/productivity/quality objectives firstly. Then a mathematical optimization 

model is constructed and a hybrid Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) is proposed to identify the optimal milling parameters. Section 4 shows 

the experimental work for establishing the regression models. The regression anal-

ysis and optimization analysis are carried out on the basis of the experimental re-

sults in Section 5. An online platform for carbon emission analysis is developed 

and a simulation case is shown to illustrate the feasibility of the method in Section 

6. Finally, some conclusions are made in Section 7. 

 

 



2. Research Background 

2.1 Energy reduction of machine tools 

Reducing the machining energy of machine tools can significantly improve the 

environmental performance of manufacturing process [9]. Therefore, several re-

searchers have focused on the energy monitoring and reduction for machine tools. 

By presenting a detailed description of different test procedures based on standard-

ized workpieces, Behrendt et al.[10] proposed a novel and coherent method to as-

sess energy consumption of machine tools. Hu et al.[11] developed a new on-line 

energy efficiency monitoring approach without using any torque sensor or dyna-

mometer to minimize the implementation cost and difficulty. Kara and Li [12] pre-

sented an empirical model to characterize the relationship between energy con-

sumption and process variables for material removal processes, and tested and 

validated the model on a number of turning and milling machine tools. In addition, 

some studies were conducted from the viewpoint of machine tool components and 

internal energy dissipation units. Through measuring the power consumption of a 

machining center under different conditions, a new acceleration control method was 

developed to reduce energy consumption by synchronizing spindle acceleration 

with the feed system [13]. Newman et al.[4] presented a framework to validate the 

introduction of energy consumption in the objectives of process planning for Com-

puter Numerical Control (CNC) machining on the basis of the state-of-the-art in 

process planning and energy consumption in manufacturing research. In addition, 

a model for the optimization of machining parameters was presented for the mini-

mum energy consumption in a multi-pass turning operation [14], and the model 

takes into account finishing and roughing passes separately for the energy optimi-

zation followed by the dual optimization of the energy functions for a combination 

of one finishing pass and multiple roughing passes. In order to obtain the optimum 

machining parameters, Kant and Sangwan [15] provided a multi-objective predic-

tive model for the minimization of power consumption and surface roughness in 

machining, using grey relational analysis coupled with principal component analy-

sis and response surface methodology. From the above literature, it can be seen that 

energy modeling and qualitative analysis of machine tools from different view-

points have drawn much attention, while another important aspect, i.e., the optimi-

zation of cutting parameters and quantitative analysis for energy consumption re-

duction, has not well researched. Therefore, more efforts need to be made to search 

quantitative methods for the energy conservation and carbon emission reduction of 

machine tools. 



 

2.2 Low-carbon oriented modeling of machining processes 

With the purpose of analyzing machining process and reducing its environmen-

tal impact, models have been developed to reveal the relationship between machin-

ing parameters and some performances indicators, as shown in Table 1. Choudhury 

and Appa Rao [16] established a tool life estimation equation from experimental 

data and the adhesion wear model. Lalwani et al.[17] established a linear model to 

fit the variation of cutting forces with feed rate and depth of cut by conducting 

machining experiments based on RSM and the sequential approach. Moreover, 

Zain et al.[18] established a predicted model of the SR to show its relationship with 

the decision variables (cutting speed, the feed per tooth, the axial depth of cut, the 

radial depth of cut and machining tolerance). 

In addition, some researchers conducted machining experiment and regression 

analysis to minimize energy consumption and carbon emission. Campatelli et 

al.[19] focused on the efficiency of the machining centers and developed a quad-

ratic regression model through an experimental approach to evaluate and optimize 

the process parameters in order to minimize the power consumption in a milling 

process performed on a modern CNC machine. An orthogonal array, signal to noise 

(S/N) ratio and analysis of variance (ANOVA) were employed to analyze the ef-

fects and contributions of depth of cut, feed rate and cutting speed on the energy 

consumption[20]. Bhattacharya et al.[21] outlined an experimental study to inves-

tigate the effects of cutting parameters on surface finish and power consumption 

during high speed machining of AISI 1045 steel by employing the Taguchi tech-

niques and ANOVA. Winter et al.[22] presented a generic regression model to de-

scribe and analyze the influence of grinding process parameters in conjunction with 

different cutting fluids on SR, cost and carbon footprint, and applied the sensitivity 

analysis to reveal the trends of each process parameter in relation to the preference 

of technological, economic and environmental objectives. Bhushan[23] conducted 

experimental investigations to establish relationships between cutting speed, feed 

rate, depth of cut and nose radius and power consumption and tool life in CNC 

turning of 7075 Al alloy 15 wt% SiC composite by using the RSM. However, these 

works considered the power consumption as environmental target which didn’t re-

flect the real energy consumption of machining process directly because the energy 

consumption is also related to processing time except power consumption. Alt-

hough Rajemi et al.[24] modelled the total energy of machining a component by a 

turning process and optimized it to derive a minimum carbon footprint requirement, 

the carbon emission of cutting tools and cutting fluids were not considered [25]. 

 
Table 1: Modeling methods of machining processes. 

Focus Authors (Year) 
Machine perfor-

mances 

Machining 

process 
Model or methodology 

Technical per-

formance 

Choudhury and Appa 

Rao (1999)[16] 
Tool life milling Experimental methods 



Lalwani et al. 

(2008)[17] 
Cutting forces turning 

RSM, the sequential ap-

proach 

Zain et al. (2010)[18] SR milling Artificial Neural Network 

Power or energy 

consumption 

Campatelli et al., 

(2013)[19] 
Power consumption milling RSM 

Camposeco-Negrete 

(2013)[20] 

Energy consump-

tion and SR 
turning 

Orthogonal array, S/N 

and ANOVA 

Bhattacharya et al., 

(2009)[21] 

Surface finish and 

power consumption 
turning 

Taguchi technique, 

ANOVA 

Winter et al. 

(2013)[22] 

SR, cost and carbon 

footprint 
grinding 

Regression analysis and 

sensitivity analysis  

Bhushan (2013)[23] 
Power consumption 

and tool life 
turning 

RSM, desirability func-

tion approach 

Rajemi et al. 

(2010)[24] 

Energy footprint 

and tool life 
turning 
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2.3 Mathematical optimization of machining processes 

To obtain the optimal cutting parameters and reduce the carbon emission, math-

ematical optimization approaches were used to identify the optimal or close to the 

optimal solution of a given task regarding constraints and a set of given functions. 

The tasks can be generally classified as single-objective or multi-objective optimi-

zation, as shown in Table 2. For the former, the aim is to solve a single-objective 

function by identifying the minimum or maximum value. Nalbant et al.[26] used 

the Taguchi method to find optimal cutting parameters for SR in turning. Wibowo 

and Desa[27] presented a technique by using the hybridization of kernel principal 

component analysis (KPCA) based nonlinear regression and Genetic Algorithms 

(GAs) to estimate the optimum values of the three parameters (namely radial rake 

angle, speed and feed rate) such that the estimated SR was as low as possible. In 

order to get the minimum energy consumption, an experimental study to optimize 

cutting parameters during turning of AISI 6061 T6 under roughing conditions was 

presented [20]. 

However, single objective approaches are limited in identifying the optimal cut-

ting parameters, because several objectives are sometimes contradictory and must 

be simultaneously optimized. Hence, multi-objective approaches for cutting param-

eters optimization, which consider multi-objectives were developed. Quiza Sardi-

ñas et al.[28] constructed a multi-objective optimization model to obtain the opti-

mal tool life and operation time, and used a micro GAs to obtain the non-dominated 

points. Pawade and Joshi [29] applied a new effective approach, named the Taguchi 

grey relational analysis to experimental results in order to optimize the high-speed 

turning of Inconel 718 with consideration to multiple performance measures. A new 

approach for the optimization of the micro wire electric discharge machining pro-

cess with multiple performance characteristics is attempted based on the statistical-

based ANOVA and grey relational analysis [6]. Kuram et al.[30] investigated the 

effects of cutting fluid types as a function of three milling factors (cutting speed, 

depth of cut and feed rate) on process responses (specific energy, tool life and SR). 

Yan and Li[8] presented a multi-objective optimization method based on the 



 

weighted grey relational analysis and RSM, and optimized the cutting parameters 

in milling process by using the sequential quadratic programming (SQP) algorithm. 

Winter et al.[22] presented an approach to identify the process parameters and de-

veloped Pareto-optimal solutions for advancing the eco-efficiency of grinding op-

erations, including SR, cost and carbon footprint. Based on the contour plot meth-

odology, a multi-objective statistical optimization was performed for improving the 

machining productivity and surface quality of laser milling [7]. It is the fact that 

most of these studies are limited to qualitative analysis of some optimization objec-

tives by using grey relational analysis, desirability function analysis, sensitivity 

analysis, RSM, etc. Moreover, many studies transformed multi-objective problems 

into single-objective problems and employed traditional mathematical program-

ming methods to solve the problems. However, few researchers have used Pareto-

optimal methods or intelligent algorithms to optimize machining parameters which 

are more effective. 

  
Table 2: Mathematical optimization comparison of machining processes. 

Focus Authors (Year) Objectives Optimization methods 

Single-objec-

tive optimiza-

tion 

Nalbant et al. (2007)[26] SR Taguchi method 

Wibowo and Desa 

(2012)[27] 

SR KPCA, nonlinear re-

gression and GA 

Camposeco-Negrete 

(2013)[20] 

Energy consumption RSM 

Multi-objective 

optimization 

Quiza Sardiñas et al. 

(2006)[28] 

Tool life and opera-

tion time 

micro GAs 

Pawade and Joshi 

(2011)[29] 

SR and cutting forces Taguchi grey relational 

analysis 

Somashekhar et al. 

(2011) [6] 

MRR, overcut, SR ANOVA, grey rela-

tional analysis 

Kuram et al., (2013)[30] Specific energy, tool 

life and SR 

D-optimal method 

Yan and Li, (2013)[8] Cutting energy, 

MRR, SR 

Weighted grey rela-

tional analysis, RSM 

and SQP 

Winter et al., (2013)[22] SR, cost and carbon 

footprint 

Geometric program-

ming algorithm 

Bhushan, (2013)[23] Power consumption 

and tool life 

Desirability function 

analysis  

Campanelli et al.(2013) 

[7] 

Ablation depth, 

MRR, SR 

RSM (contour plot 

methodology) 



3. Approach 

3.1 Workflow of the approach 

Figure 1 presents the approach to identify the optimal milling parameters for 

better quality, higher productivity and lower carbon emission. Firstly, owing to the 

stochastic nature of milling process, regression models are constructed to charac-

terize the relationship between the milling parameters and the respective objectives. 

Secondly, based on the regression models, an optimization model is established and 

a hybrid NSGA-II is adopted to identify the optimal milling parameters. Thirdly, 

experiments based on the Taguchi design method are designed to identify the levels 

of experimental variables with the minimal amount of experiments. Fourthly, the 

milling experiments are performed according to the experimental plan and the re-

gression models are derived from the experimental results with the statistical anal-

yses software SPSS®, and single-objective analysis and multi-objective optimiza-

tion is carried out to obtain the Pareto-frontier of milling parameters. Finally, an 

online platform is developed to obtain in-process information about the energy con-

sumption and carbon emission to support above real-time decision making, and a 

simulation case is conducted in three different scenarios to verify the proposed 

method. Although Palanikumar et al.[31] applied similar statistical models and 

NSGA-II to optimize the cutting conditions of glass fiber reinforced plastic com-

posites, they didn’t consider the energy consumption and carbon emission. 

 

Figure 1: Schematic of the solving approach. 
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3.2 Regression models of milling process 

1. Production rate 

The MRR (in mm3/min), which is the most commonly used optimization crite-

rion of production rate in milling processes, can be computed by the following Eq. 

1. 

𝑀𝑅𝑅 = 𝑑 ∗ 𝑓 ∗ 𝑎𝑝 (1) 

where d is the cutting tool diameter in mm, f means feed rate in mm/min, and ap 

represents the depth of cut in mm. 

2. Environmental impact 

The power of a milling process is determined by the milling force and milling 

velocity of machines [32], which can be calculated by Eq.5-2. 

𝑃𝑐 = 42.4 ∗ 10−5𝑘𝑝𝑑0
−0.3𝑎𝑠𝑒𝑓𝑧

0.75𝑎𝑠𝑝
1.1𝑧𝑛0

0.8 (2) 

where kp, d0, ase(asp), fz, z, and n0 represent correction factor, cutter diameter in 

mm, cutting depth in mm, feed rate in mm/min, number of teeth and spindle speed 

in r/min, respectively. 

 

According to the above Eq.2, a generic regression model is developed to de-

scribe the relationship between the process parameters and the environmental im-

pact, as shown in Eq.3. 

𝑓(𝑥1 ,𝑥2 , 𝑥3)= 𝛼1 ∗ 𝑥1
𝛼2 ∗ 𝑥2

𝛼3 ∗ 𝑥3
𝛼4 (3) 

where f(x1, x2, x3) denotes an environmental impact such as cutting power, en-

ergy consumption, carbon emission, etc., which will be described in detail later. αi 

(i=1,2,3,4) is the regression coefficient and xi (i=1,2,3) represents one of machining 

parameters including spindle speed (n), feed rate (f) and cutting depth (ap). The 

model accuracy or model quality can be ascertained using the coefficient of deter-

mination, also known as the R2 value. The R2 value describes the consistency be-

tween the measurements and the statistical model. The higher R2 value, the higher 

degree of consistency. 

 

According to the spindle power profile of a machine, a machining process 

mainly contains five states, that is, the startup state, idle state, cutting state, tool 

changing state and the shutdown state. Since the power of the startup state, tool 

changing state and the shutdown state has nothing to do with the milling parame-

ters, only the cutting power (Pc) and air-cutting power (Pa) were chosen to analyze 



the relationship between machining power and milling parameters, as illustrated in 

Eq.4 and Eq.5. 

𝑃𝑐 = 𝛽1 ∗ 𝑛
𝛽2 ∗ 𝑓𝛽3 ∗ 𝑎𝑝

𝛽4  (4) 

𝑃𝑎 = 𝜃1 ∗ 𝑛
𝜃2 ∗ 𝑓𝜃3  (5) 

where βi (i=1,2,3,4) and θi (i=1,2,3) denote regression coefficients. 

 

In addition, the specific carbon emission (SCE [kgCO2-e/cm3]) was used to eval-

uate the environmental impact of different machining processes, as shown in Eq.6. 

Here, the carbon emission contains two parts: one from machine tools (SCEenergy) 

and another one from cutting tools (SCEtool) [25]. For the former, only the carbon 

emission of a machine tool due to the electrical energy consumption was taken in 

account, while the carbon emission from the production and procurement of the 

machine tool was not considered because this part of carbon emission cannot be 

influenced by the machining parameters. For the latter, the carbon emission of cut-

ting tools is calculated by comparing machining time with tool life as the production 

of cutting tools consumes energy and each cutting tool has a lifetime. Notably, these 

life cycle analysis of cutting tools only considered the production of cutting tools 

and the disposal phase was excluded due to the absent data, thus the carbon emis-

sion due to cutting tools shown in this study may be underestimated. In order to 

improve the quality of the analysis, the entire life cycle of the cutting tools was 

suggested to be considered in the future research. 

𝑆𝐶𝐸 = 𝑆𝐶𝐸𝑒𝑛𝑒𝑟𝑔𝑦+ 𝑆𝐶𝐸𝑡𝑜𝑜𝑙 = 𝜂1 ∗ 𝑛
𝜂2 ∗ 𝑓𝜂3 ∗ 𝑎𝑝

𝜂4 (6) 

where ηi (i=1,2,3,4) denotes regression coefficients. 

3. Product quality 

The SR (Ra [um]), which was widely used to assess product quality, was se-

lected to evaluate the production quality target. It was found that the cutting param-

eters n, f and ap have a strong effect on SR [33].  

In order to characterize the relationships between the SR and the above process 

parameters, the RSM method was chosen due to its adaptability in applications 

where several input variables (independent variables) are potentially influence 

some performance measure or quality characteristic of products or processes [8]. 

Usually the first-order model of RSM is ineffective because it includes only the 

main effect of the variables. Here, the second-order model of RSM was adopted 

based on its flexibility. A general form is shown in Eq.7. 

𝑅𝑎 = 𝛾0 +∑ 𝛾𝑖 ∗ 𝑥𝑖
3
𝑖=1 +∑ ∑𝛾𝑖𝑗 ∗ 𝑥𝑖 ∗ 𝑥𝑗𝑖≤𝑗  (7) 

where γi (i=0,1,2,3) and γij are the regression coefficients and xi (i=1,2,3) repre-

sents one of machining parameters. 



 

3.3 Mathematical optimization model 

Considering the eco-efficiency of milling processes, an optimization model is 

established in which the production rate MRR, specific carbon emission SCEtotal and 

surface roughness Ra are chosen to represent the production target, environmental 

target and quality target, respectively, as shown in Eq.8. In addition, the total cut-

ting power Pc stands for the real-time machining power reflecting the state of 

runtime machine. High cutting power can incur the greater vibration of machine 

tools, or bigger cutting tool wear, so there should be an upper bound limit for the 

cutting power. Based on the above regression models, the optimization model is 

shown as follows: 

Objectives: 

{

𝑆𝐶𝐸 = 𝜂1 ∗ 𝑛
𝜂2 ∗ 𝑓𝜂3 ∗ 𝑎𝑝

𝜂4

𝑀𝑅𝑅 = 𝑑 ∗ 𝑓 ∗ 𝑎𝑝
𝑅𝑎 = 𝛾0 +∑ 𝛾𝑖 ∗ 𝑥𝑖

3
𝑖=1 + ∑ ∑𝛾𝑖𝑗 ∗ 𝑥𝑖 ∗ 𝑥𝑗𝑖≤𝑗

 (8) 

Constraints: 

𝛽1 ∗ 𝑛
𝛽2 ∗ 𝑓𝛽3 ∗ 𝑎𝑝

𝛽4 ≤ 𝑃𝑐 (9) 

0 < 𝑛 ≤ 𝑛𝑚𝑎𝑥 (10) 

0 < 𝑓 ≤ 𝑓𝑚𝑎𝑥 (11) 

0 < 𝑎𝑝 ≤ 𝑎𝑝
𝑚𝑎𝑥 (12) 

𝑑 > 0, 𝑥𝑖 > 0, 𝑥𝑗 > 0,𝛽1 > 0, 𝜂1 > 0, 𝛾0 > 0 (13) 

where cP  denotes the upper limit of the cutting power which can ensure the ma-

chine tool in normal operation state. According to the actual processing capacity of 

a machine tool, maxn , 
maxf  and 

max

pa  represent the maximum of spindle speed, feed 

rate and depth of cut, respectively. 



 

Figure 2: The flow chart of the hybrid NSGA-II. 

 

To solve the above multi-objective optimization problem, a hybrid NSGA-II al-

gorithm is proposed to identify the optimal milling parameters, as shown in Figure 

2. NSGA-II can get the Pareto frontier of solutions through non-domination sorting 

and crowding distance calculation, which allows the operator to choose the appro-

priate solution according to specific needs. The main components of the proposed 

algorithm are summarized below: 

 

Step 1: Set the algorithm parameters like number of population, maximum num-

ber of generations, crossover and mutation probabilities; 

Step 2: Generate the initial population P0 randomly within the range of parame-

ters; 

Step 3: Evaluate the objective functions (i.e. SCE, Ra, MRR), and regard the con-

straint (Pc) as an additional objective function to conduct the non-dominated sort-

ing, as shown in Figure 3. Then, sort them with the assigned non-domination level 

number and the value of crowding distance; 

Start 

Set the algorithm 

parameters

Initiate the 

population

Evaluate and sort the new 

population

Select individuals based on non-

domination rank and crowding 

distance 

Crossover and 

mutation operator Termination 

criteria

Get the non-dominated 

scheduling schemes

N

Y

End  

Binary tournament 

selection operation

Obtain the offspring 

population and combine it 

with the parent population

Last rank=1

Local search based on 

SQP algorithm

N

Y

Combine the parent and new 

local population

Sort the new population and 

Generate the offspring 

population 



 

 

Figure 3: Non-dominated sorting of the constrained NSGA-II algorithm. 

 

Step 4-6: Perform selection, crossover and mutation operation [34]. 

Step 7: When ranks of all chromosomes in the parent population equal one, di-

vide the population into three sub populations and perform local search for each 

sub population based on SQP algorithm. For example, for the first population, the 

SQP algorithm is used to obtain the best chromosome with the lowest SCE and form 

a new sub population. Similarly, the best chromosome with highest MRR is selected 

for the second sub population and the one with the best Ra is found for the third sub 

population. Then, combine the parent and new population, and sort them based on 

non-domination rank and crowding distance. 

4. Experimental Work for Establishing the Regression 

Models 

4.1 Experimental setup 

The experimental environment and measurement equipment are shown in Figure 

4. The experiments were performed on a CNC micromachining center (Manix CNC 

MM-250S3, Figure 4a) with 1.2 kW motor rated power and maximum spindle 

speed of 6400 rpm. The power demand of the milling process was acquired by using 

the Janitza power analyzer UMG 604 (Figure 4b) and SR was measured by the 

surface roughness tester TR300 (Figure 4c). Since the main propose of this experi-

ment was to obtain the total power consumption of the micromachining center, the 

power analyzer was connected with the main input wire of the machine. The used 

power analyzer with a temporal resolution of 10ms was configured to record the 

total active power of the MM-250S3. The real-time power data from the power 

analyzer was recorded through an online platform for energy consumption analysis 

and process planning, which will be introduced in Section 6.1. Since many prob-

lems such as health and environment issues are identified with the use of flood 

// Non-dominated sorting of the constrained NSGA-II algorithm 

Choose any chromosome C1 and C2; 

If (Pc of chromosome C1) ≤ cP  and (Pc of chromosome C2) > cP  

C1 dominates C2; 

Else if (Pc of C1) ≤ cP  and (Pc of C2) ≤ cP  

If SCE, Ra, MRR of C1 are all better than that of C2 

    C1 dominates C2; 

End if 

End if 

 



cutting fluids in machining processes, considerable attention has been given to re-

duce or completely omit the cutting fluids, and meet the demands for environment-

friendly cutting processes[35]. Therefore, the dry milling of aluminum is re-

searched in this study. A 7.8mm diameter, 4 flutes carbide tool was employed for 

the dry cutting of an 80mm×80mm×80mm aluminum block. 

 

Figure 4: The experimental environment and measurement equipment. 

 

4.2 Design of experiments 

Taking the actual processing capacity of the MM-250S3 into consideration, the 

milling parameters were set up in the recommended ranges and the tool wear didn’t 

deteriorate significantly according to preliminary tests. As mentioned before, the 

spindle speed n (r/min), feed rate f (mm/min) and depth of cut ap (mm) were chosen 

due to their major influence on the milling process. The variances of n, f and ap 

were customized according to the machine tool’s parameter range. The cutting pa-

rameters and their levels are shown in Table 3. In order to reduce the times of ex-

periments, the Taguchi design method of experiments was adopted. Since each pa-

rameter had four levels, the standard orthogonal array L16(4^5) was chosen. But 

only three columns in the L16(4^5) were used to obtain the experimental data be-

cause there were only three parameters in this experiment. As mentioned before, 

multiple independent experimental data was measured throughout the experiments, 

including processing time, air-cutting power, machining power, energy consump-

tion, and SR. Each measurement was taken after removing unit volume of material, 

Spindle

Face milling cutter

Aluminium block

Fixture

(a) Manix CNC MM-250S3

Air switch Power analyzer
Network cable

(b) Janitza UMG-604 power analyser

Aluminium block Surface roughness 
tester

(c) Surface roughness tester TR300



 

namely 1 cm3, and each experiment was replicated twice in order to reduce the in-

fluence of the system errors. For SR, each measurement was taken from three dif-

ferent locations using the surface roughness tester, and the average values were 

recorded as the final result. 

 
Table 3: Design of experiments. 

Parameters Range Level 1 Level 2 Level 3 Level 4 

n[r/min] 1000-4000 1000 2200 3000 4000 

f[mm/min] 4-16 4 8 12 16 

ap[mm] 0.4-1.6 0.4 0.8 1.2 1.6 

5. Regression Analysis and Optimization 

5.1 Regression analysis based on experimental results 

After carrying out the above experiments, all results of different combinations 

of milling parameter are shown in Table 4. As aforementioned, the objectives of 

the mathematical optimization can be expressed as productivity, environmental and 

quality target functions. Based on the experimental results, a non-linear regression 

analysis was performed to derive each target function via the IBM SPSS Statistics 

19. The regression coefficients and R2 values of machining power and SCE are 

listed in Table 5. A summary of ANOVA results for the regression models has been 

presented in Table 6, and it can be clearly seen that the models achieve a great 

accuracy because of a high R2 value. 

 

Table 4: Experimental results of different milling parameter combination. 

No. n f ap Pa Pc MRR SCE Ra 

1 1000 4 0.4 381.756 474.95 12.48 2.931 0.134 

2 1000 8 0.8 382.3 502.39 49.92 0.755 0.189 

3 1000 12 1.2 384.397 532.73 112.32 0.346 0.234 

4 1000 16 1.6 387.319 559.13 199.68 0.200 0.318 

5 2200 4 1.2 504.056 661.4 37.44 1.177 0.181 

6 2200 8 1.6 506.442 687.93 99.84 0.452 0.21 

7 2200 12 0.4 504.63 615.73 37.44 1.128 0.152 

8 2200 16 0.8 498.654 656.9 99.84 0.440 0.231 

9 3000 4 1.6 578.283 793.03 49.92 0.989 0.231 

10 3000 8 1.2 581.997 759.16 74.88 0.641 0.277 

11 3000 12 0.8 583.974 733.53 74.88 0.627 0.275 



12 3000 16 0.4 585.892 696.65 49.92 0.911 0.216 

13 4000 4 0.8 687.115 832.69 24.96 2.041 0.239 

14 4000 8 0.4 681.655 797.86 24.96 1.985 0.241 

15 4000 12 1.6 686.775 922.19 149.76 0.364 0.292 

16 4000 16 1.2 699.73 894.15 149.76 0.357 0.295 

 

Table 5: The regression coefficients of Pa, Pc and SCE. 

Pa Pc SCE 

β1 18.46 θ1 36.421 η1 1.0577 

β2
 

0.432 θ2
 

0.375 η2
 

0.222 

β3
 

0.007 θ3
 

0.021 η3
 

-1.01 

β4
 

/ θ4
 

0.099 η4
 

-0.965 

 

Table 6: Analysis of variance for Pa, Pc and SCE. 

Pa 

Factor DOF SS MS F Sig. F 

Regression model 2 0.7250 0.3625 387.13 2.6E-12 

Error 13 0.0122 0.0009 - - 

Total 15 0.7372 - - - 

S=0.0306 R-Sq=98.35% R-Sq(adj)=98.09% 

Pc 

Factor DOF SS MS F Sig. F 

Regression model 3 0.5969 0.1990 246.68 4.81E-11 

Error 12 0.0097 0.0008 - - 

Total 15 0.6065 - - - 

S=0.028 R-Sq=98.40% R-Sq(adj)=98.01% 

SCE 

Factor DOF SS MS F Sig. F 

Regression model 3 8.2985 2.7662 6118.44 2.28E-19 

Error 12 0.0054 0.0005 - - 

Total 15 8.3039 - - - 

S=0.021 R-Sq=99.93% R-Sq(adj)=99.92% 

 

Based on the experimental data in Table 4, the second-order polynomial regres-

sion model of the SR was developed by using the IBM SPSS Statistics 19 software, 

as shown in Eq.14. The ANOVA for Ra is presented in Table 7, and it can be ob-

served that the coefficient of determination R-Sq (adj) for the regression model of 

Ra is equal to 0.885, which indicates that the model has good compatibility to the 

experimental data. Therefore, this regression model based on the Taguchi method 

and RSM is suitable for establishing prediction models. 

𝑅𝑎 = 0.04 + 4.615 ∗ 10−5 ∗ 𝑛− 0.003 ∗ 𝑓 + 0.147 ∗ 𝑎 − 2.417 ∗ 10−5 ∗ 𝑛 ∗
𝑎 + 0.007 ∗ 𝑓 ∗ 𝑎 − 0.05 ∗ 𝑎2                                        (14) 



 

 

Table 7: The ANOVA for Ra. 

Ra 

Factor DOF SS MS F Sig. F 

Regression model 6 0.0349 0.0058 59.27 1.56E-5 

Error 9 0.0053 0.0006 - - 

Total 15 0.0402 - - - 

S=0.024 R-Sq=93.11% R-Sq(adj)=88.52% 

5.2 Single-objective analysis 

In order to investigate the contribution and effects of milling parameters on the 

different objectives including SCE, Ra, Pa and Pc, the surface plots and contour plots 

were created to perform single objective analysis. 

1. Environmental impact analysis 

 

(a) n=1000r/min (b) n=2200r/min (c) n=3000r/min (d) n=4000r/min and ap=1.0mm 
sectional view 

Figure 5: Specific carbon emission analysis. 

Energy consumption

Cutting tool wear

(a) (b)

(c) (d)



The environmental impact is presented in Figure 5 and shows that the SCE 

changes over the depth of cut ap and the feed rate f, with four fixed value for the 

cutting speed n, namely, 1000r/min, 2200r/min, 3000r/min and 4000r/min. 

It can be observed that the SCE decreases with the increase of f and ap simulta-

neously, and f and ap have an similar effect on the SCE. In particular, the SCE de-

clines obviously when f and ap are small relatively. If f >11mm/min and ap > 1.1mm, 

the SCE changes very little, which means that f =11mm/min and ap = 1.1mm are the 

critical points for carbon emission reduction. The influence of n on SCE is not ob-

vious, especially when f and ap are large relatively. Therefore, compared with the 

cutting speed, the feed rate and depth of cutting are more important for SCE. From 

the specific carbon emission sectional view in Figure 5d, the carbon emission of 

energy consumption decreases significantly due to the reduction of processing time; 

however, the carbon emission of cutting tools decreases not obviously, which 

shows that the reduction of carbon emission mainly comes from the energy con-

sumption for the chosen parameters. 

2. Product quality analysis 

 

(a) n=1000r/min (b) n=2200r/min (c) n=3000r/min (d) n=4000r/min 

Figure 6: Surface roughness analysis. 

(a) (b)

(c) (d)



 

Figure 6 presents the response surfaces of the empirical regression model for the 

product quality impact, i.e., SR of the milling process. The impact is also presented 

over the depth of cut ap and the feed rate f, with four fixed value for the cutting 

speed n, namely, 1000r/min, 2200r/min, 3000r/min and 4000r/min. 

From Figure 6, it can be clearly seen that the increase of ap and f leads to the 

increase of the measured SR, and ap has a more significant impact due to the super-

position of geometrical and kinematical effects on the milling process. In particular, 

the influence of f is not obvious when ap is small, and the increase of f will cause 

the changing of SR if ap > 0.8mm. Similarly, when f < 6mm/min, the increase of ap 

will cause little change of SR, which means there is a critical region (f <6mm/min 

or ap <0.8mm) in which the part has a good quality and the SR changes little due to 

the increase of f and ap. Conversely, the influence of the cutting speed is obvious 

only within the critical region. Overall, when f and ap are small (f <6mm/min or ap 

<0.8mm), the cutting speed will have more influence on the SR; but f and ap will 

affect the SR obviously beyond the critical region. 

Moreover, by comparing SR and MRR, ap and f have an opposite effect on them, 

so that the optimal SR and MRR cannot be obtained simultaneously. 

3. Other measurands 

 

Figure 7: Air-cutting power analysis (left side response surface and right side contour plot). 



 
(a) n=1000r/min; (b) n=2200r/min; (c) n=3000r/min; (d) n=4000r/min 

Figure 8: Cutting power analysis. 

Based on the aforementioned experimental results, some other measurands were 

also analyzed in this research. First, the air-cutting power is presented in Figure 7. 

The impact is shown over the cutting speed n and the feed rate f. The air-cutting 

power is mainly related to the cutting speed, and increases apparently with the in-

crease of n. For feed rate, the change of air-cutting power is little since the selected 

feed rates are relatively small and have a little change in the experiment. 

In addition, the total cutting power analysis is presented in Figure 8. The impact 

is shown over the depth of cut ap and the feed rate f, with four fixed value for the 

cutting speed n, that is, 1000r/min, 2200r/min, 3000r/min and 4000r/min. 

In Figure 8, the increase of f and ap results in a higher cutting power, and ap plays 

a main role because they will increase the cutting force which is directly related to 

the cutting power. In particular, the cutting power increases obviously when f and 

ap are small. Through the comparison of Figure 8(a) – Figure 8(d), the cutting speed 

has a same effect on the cutting power whether it is small or large relatively. Com-

paring the MRR with cutting power, they have the same variation trend with the 

changing of the feed rate and depth of cut. 

(a) (b)

(c) (d)



 

5.3 Multi-objective optimization result 

In this study, since there is a trade-off between MRR, SCE and SR, a multi-ob-

jective optimization becomes necessary. Finding the optimal process parameters to 

achieve the desired level of response (maximum MRR, minimum SCE or minimum 

SR) can be performed. 

The multi-objective optimization model has been described in Section 3.3. Ac-

cording to the actual operation of the milling machine, the total power is constrained 

to be less than or equal to 530W. The simulations were run by using the hybrid 

NSGA-II with a population of 80 chromosomes and a maximum number of 500 

iterations. After obtaining the best milling parameter combinations, the Pareto fron-

tier was plotted in a three-dimensional objective space for viewing (shown in Figure 

9a). The simulations usually took less than 20 minutes in a PC with an Intel Dual-

Core 2.40 GHz processor.  

 
 (a) Pareto front of optimal objective values;   (b) Optimal solutions in variable domain  

Figure 9: Results of the multi-objective optimization. 

The Pareto frontier of the non-dominated solutions for maximum MRR, mini-

mum SR and minimum SCE is presented in Figure 9. Three distinct regions are 

identified along the Pareto frontier of the non-dominated solution set in Figure 9a. 

These regions are marked as “Min SCE and max MRR”, “Balance Ra, SCE and 

MRR” and “Min Ra”. Corresponding regions in the solution (decision variable) 

space are also indicated in Figure 9b. Milling process parameters that maximize 

MRR, minimize SR and minimize SCE are identified in the variable domain at a 

lower spindle speed 1002.93r/min and at a higher feed rate 15.75-16.00mm/min (see 

Figure 9b). However, the depth of cut ap varies hugely from 0.4mm to 1.28mm, 

which means ap has the most important influence on the optimal results. 
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Table 8: A set of non-domination solutions. 

No. n f ap MRR SCE Ra 

1 1002.93 15.99 0.40 49.92 0.722 0.124 

2 1002.93 15.99 1.32 164.99 0.228 0.261 

3 1002.93 15.99 1.02 127.48 0.292 0.226 

4 1002.93 15.81 0.95 116.62 0.319 0.215 

5 1002.93 15.86 0.51 62.74 0.579 0.144 

6 1002.93 15.81 0.79 97.91 0.377 0.193 

7 1002.93 15.99 1.11 138.79 0.269 0.238 

8 1002.93 15.99 1.29 160.80 0.233 0.258 

9 1002.93 15.99 1.09 135.52 0.275 0.234 

10 1002.93 15.86 0.66 81.70 0.449 0.171 

11 1002.93 15.99 0.41 51.76 0.697 0.127 

12 1002.93 15.86 1.14 140.48 0.266 0.240 

13 1002.93 15.99 0.64 79.96 0.458 0.168 

14 1002.93 15.86 0.63 77.89 0.470 0.166 

15 1002.93 15.99 0.42 52.91 0.682 0.129 

 

Furthermore, a feasible solution set with 15 combinations of milling process pa-

rameters is provided for the operator to achieve desired MRR, SCE and SR, as 

shown in Table 8. From Table 8, it can be seen that the No.1 solution has the min-

imum Ra, and No.2 solution has the maximum MRR and minimum SCE, which have 

been marked with bold. At different times or in different scenarios, the operator can 

choose different solutions to achieve different targets. Therefore, compared to other 

traditional multi-objective optimization algorithms such as desirability analysis 

[23] and weighted grey relational analysis [8], the multi-objective optimization 

model based on the constrained NSGA-II can get a Pareto optimal set which in-

cludes all possible optimal solutions and the operator can make the final decision 

up to the practical situation and specific demands. 

In addition, since convergence performance is an important criterion to evaluate 

optimization algorithms, many methods are proposed to assess it. Generational dis-

tance (GD) is widely used for the assessment [36] which has the following repre-

sentation: 

𝐺𝐷 = √∑ 𝑑𝑖
2/𝑛𝑛

𝑖=1  (15) 

where n is the number of the solutions in the current Pareto front, di stands for 

the Euclidean distance between ith solution in the current Pareto front and the near-

est solution in the reference set. And the GD with higher value means worse con-

vergence performance to the reference set. 



 

In order to compare the performance of original NSGA-II and the proposed hy-

brid approach, both approaches are implemented 10 times for the low-carbon opti-

mization model which is discussed in Section 3.3, and the results are listed in Table 

9. The simulation results show that the proposed hybrid NSGA-II algorithm has 

better convergence performance than the original NSGA-II. 

 

Table 9: The generational distance of the original NSGA-II and this approach. 

/ 
Generational distance 

1 2 3 4 5 6 7 8 9 10 

Original NSGA-II 0.047 0.048 0.055 0.060 0.056 0.053 0.060 0.058 0.042 0.060 

Proposed algorithm 0.037 0.034 0.050 0.050 0.044 0.041 0.058 0.039 0.029 0.046 

6. Online Platform Development and Simulation Case 

6.1 Online platform for carbon emission analysis and optimization 

Since there are many kinds of data about carbon emission which need to be an-

alyzed, such as machining power, air-cutting power, energy consumption, we re-

quire a platform to satisfy the demand of data collection and analysis. Meanwhile, 

the real-time data need to be gathered to validate and amend the proposed models 

because different parts and processes may influence the regression models and op-

timization results. Therefore, an online platform for carbon emission analysis  was 

developed to analyze the carbon emission and optimize the process parameters. 

Moreover, it can provide the function of early warning of fault through the moni-

toring and simple analysis of the processing power, which can reduce accidents 

during machining processes. Also, it is simple and convenient for field operation 

since mobile devices such as smart phones can access the platform. 

The schematic diagram of the online platform is shown in Figure 10. Firstly, the 

power sensor receives the data of power of the milling process in real time. The 

platform can analyze the original power data for making statistics related to ma-

chining power, air-cutting power, energy consumption and total carbon emission, 

and further optimize process parameters. Then it deposits the results into the data-

base which will be passed to the operator through the Internet. The operator can 

monitor the carbon emission information and process planning results via his/her 

hand-held tablets or PCs. 



 

Figure 10: Schematic diagram of the online platform. 

 

Based on the above schematic diagram, the operation procedure of the platform 

mainly contains five steps, as shown in Figure 11: 

(1) Machine configuration: mount sensors to machines for performance monitor-

ing; 

(2) Real-time power curve: when the machine starts, the real-time power curve 

will be plotted and the frequency of data collection is three in one second; 

(3) Breakpoint energy consumption statistics: when the machining process is fin-

ished and the sensor is stopped, the real-time power curve will end and several 

parameters will be calculated automatically, such as processing time, total en-

ergy consumption/carbon emission, average energy consumption, the average 

power, and so on; 

(4) Machine carbon emission analysis: based on the statistics, the analysis module 

can analyze the relationship between cutting power, energy consumption, car-

bon emission, MRR, etc. and milling parameters, namely, the regression mod-

els; 

(5) Optimization and real-time decision making: based on the analysis of the new 

data, the regression models will be amended to reduce the error. Then, the 

optimization process will be performed again to obtain the new and accurate 

parameters. In accordance with the new Pareto-optimal results, the operator 

will change the machining parameters according to their specific requirement. 

For example, if jobs are urgently demanded and the laws and regulations are 

strict with carbon emission of the plant, solutions with the higher MRR and 

lower SCE will be chosen; and if jobs are in finishing stage, the solutions with 

smaller SR will be adopted. Considering diverse production occasions, there 

different scenarios are considered in Section 6.2. 
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Figure 11: Operation procedures of the online platform. 

6.2 A simulation case 

To verify the rationality and availability of the proposed methods, a simulation 

case with two parts is simulated. Part 1, Part 2 and their manufacturing features are 

shown in Figure 12 and Figure 13, respectively. The main dimensions of the raw 

material of Part 1 are illustrated in Figure 12a, and the raw material of Part 2 is a 

bar material with the dimension of D34mm * 30mm. The relevant removal volume 

of each feature can be obtained through calculating the difference between the raw 

material and the machined part, as shown in Table 5.10. Since the proposed model 

mainly takes the milling process into account, the features of holes are not consid-

ered in this study, i.e., feature 10 of Part 1, feature 10/11 and feature 12/13 of Part 

2. The parts will be machined on the CNC MM-250S3 milling machine. Consider-

ing the different importance of MRR, SR, and SCE under diverse production con-

ditions, three different scenarios are considered as follows: 

Scenario 1: MRR and SCE are the main concern; 

Scenario 2: SR is mainly concerned; 

Scenario 3: MRR, SCE and SR are equally important; 

For the Scenario 1 and Scenario 2, the No.2 and No.1 processing schemes in 

Table 8 are appropriate respectively, while the No.6 is suitable for the Scenario 3 

since its MRR, SCE and Ra are 97.91mm3/min, 0.377kgCO2-e/cm3 and 0.193um 

which are all medium. The operator can browse the optimization schemes through 

accessing the online platform. 

1. The machine 
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>>最优加工方案

参数 值
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切削深度ap： 1.32

MRR： 164.99
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Ra： 0.2615. The optimal process 

scheme



 

Figure 12: The raw material and features of Part 1. 

 

 

Figure 13: Features of Part 2. 

 

Table 10: Removal volume of each feature of Part 1 and Part 2. 

Part 1 Part 2 

Features Volume (mm3) Features Volume (mm3) 

1 760.3 1 960.0 

2 8906.0 2/3 2900.0 

3 3562.4 4 802.4 

4 1022.5 x 2 5 1245.3 

5 917.6 x 2 6 1102.8 

6 2968.7 7 960.0 

7 55.8 8/9 2780.5 

8 235.9   

9 502.7   

11 760.3   

12 14925.0   

 

Through the proposed empirical modelling and optimization methodology, the 

processing results of Part 1 can be predicted without the actual processing, as shown 

in Table 11. Except the completion time, the carbon emission, the SR and further 

(a) Raw material of Part 1
(b) Features of Part 1



 

measurands are presented to describe the influence of the process parameters on the 

energy consumption factors, including air-cutting power and cutting power. Also 

these empirical modelling methods and processing results are beneficial to the low-

carbon design of products. 

 

Table 11: The simulation results of Part 1. 

Results Scenario 1 Scenario 2 Scenario 3 
Traditional 

optimization 

Another 

scheme[8] 

Cutting speed(r/min) 1002.93 1002.93 1002.93 1002.28 1000 

Feed rate(mm/min) 15.99 15.99 15.81 15.78 16 

Depth of cut(mm) 1.32 0.40 0.79 1.05 1.6 

Completion time(min) 221.57 732.32 373.38 282.31 183.08 

Carbon emission(kgCO
2
-e) 8.34 26.39 13.78 10.6 6.92 

SR(um) 0.261 0.124 0.193 0.228 0.286 

Air-cutting power(W) 372.6 372.6 372.5 372.4 372.1 

Cutting power(W) 529.7 470.7 503.4 517.7 539.3 

 

After analyzing the results, it can be clearly seen that the completion time of 

Scenario 1 is the shortest, and its carbon emission is also less than other scenarios. 

However, its product quality is poorer, whose SR is 0.261um. If the machining 

scheme of Scenario 2 is adopted, Part 1 can obtain the best machining quality, but 

its completion time is the longest and its carbon emission is 26.67kgCO2-e, which 

is the highest. Comparing with Scenario 1 and Scenario 2, Scenario 3 is a compro-

mise choice, whose results of completion time, carbon emission and SR are all me-

dium. Overall, the increase of depth of cut will lead to the decrease of completion 

time and carbon emission, but will result in a clear opposing impact on the SR. 

In addition, for the three scenarios, the difference of their air-cutting power is 

very small, while the cutting power will decrease with the increase of the depth of 

cut. Due to the constraint of the maximum cutting power, the cutting powers in 

these three scenarios are all less than 530W. 

In order to highlight the difference between traditional optimization method and 

this eco-efficiency method, the optimal milling parameters determined by tradi-

tional method was also obtained, as shown in Table 11. As previously mentioned, 

the traditional optimization problem means cutting parameter optimization based 

on traditional optimization objectives such as MRR, SR, and cutting force, which 

doesn’t take environmental impact into consideration. In this study, the traditional 

objective optimization of milling parameters was executed using the similar algo-

rithm. Moreover, MRR and SR were employed as the traditional optimization ob-

jectives, and it is assumed that the two objectives are equally important (i.e. 

weight=1:1). As noted from Table 11, the results of the traditional method are sim-

ilar to that of the Scenario 1, but the total carbon emission of the latter decreased 



21.3%. It is obvious that the results of the proposed method is obtained after the 

trade-offs between MRR, SR and carbon emission. Since considering environmen-

tal impact shifts the balance to the carbon emission optimization, the SR becomes 

a little larger when the carbon emission decreases compared to the traditional opti-

mization result. However, this problem could be solved if the constraint of SR is 

considered. 

Furthermore, referring to Yan and Li [8], the machining result by using their 

optimal milling parameters is also listed in Table 11. Although its completion time 

and carbon emission are optimal, its SR increases from 0.261 to 0.286 comparing 

to the result of Scenario 1. Meanwhile it doesn’t consider the cutting power con-

straint. In a word, their method only considered one situation, but the actual require-

ment may be varying, and this developed methodology can provide many alterna-

tives for the operator. In other words, the operator can adopt different processing 

parameters from the non-dominated solutions according to various processing re-

quirements and different processing stages which fit for dynamic manufacturing. 

 

Table 12: The simulation results of Part 2. 

 
Scenario 1 Scenario 2 Scenario 3 

Completion time(min) 65.16 215.36 109.80 

Carbon emission(kgCO2-e) 2.45 7.76 4.05 

SR(um) 0.261 0.124 0.193 

 

The simulation results of Part 2 are shown in Table 12. The similar conclusion 

can be drawn from Part 2. Comparing Part 2 with Part 1, it can be seen that the total 

completion time of Part 2 is shorter, so as for its carbon emission. The main reason 

is that the total volume of Part 2 is much smaller than Part 1. 

6.3 Discussions 

As summarized in Section 2.3, there are many multi-objective optimization 

methodologies in manufacturing technologies, such as the Taguchi grey relational 

analysis for high-speed turning [29], grey relational analysis for micro wire electric 

discharge machining [6] and contour plot methodology for laser milling [7]. 

Through the analysis above, it can be observed that the proposed systemic optimi-

zation method has two advantages respect to other multi-objective optimization 

models: 

 

(1) Most of these optimization methodologies focus on the qualitative analysis of 

some optimization objectives, which can only reflect the influence trend of 

the different parameter combinations on the objectives. The proposed method 

in this study is an accurate method for the parameter optimization; 



 

(2) Considering the conflict among multiple objectives, the proposed optimiza-

tion method can generate different Pareto-optimal results, and the operator can 

choose the suitable parameters according to different requirements. 

However, there are also some drawbacks in the proposed method if applied in 

other manufacturing technologies. Firstly, the universality of the method needs to 

be validated in different machine tools and different manufacturing technologies 

because only a simulation case was studied. So various experiments and applica-

tions need to be performed in the future work to improve the universality of the 

proposed method. Then, the multi-objective decision method needs to be estab-

lished to help the operator to choose a better parameter combination. 

7. Conclusions 

Carbon emission reduction in manufacturing industry is imperative. In this study 

a systemic optimization approach is presented to identify the values of some key 

process parameters leading to low-carbon milling operation. By considering pro-

duction rate, carbon emission and product quality concurrently, regression models 

are constructed to characterize the relationship between environmental/productiv-

ity/quality objectives and milling parameters. Then, a multi-objective optimization 

model is further constructed for identifying the optimal process parameters, where 

the MRR is maximized, and the carbon emission and SR are minimized simultane-

ously. After several dry milling experiments of different combinations of milling 

parameters, the regression models are derived and they have a great reliability for 

depicting behavior of tested milling processes because of a high R2 value. The hy-

brid NSGA-II is adopted to solve the optimization model and the Pareto frontier of 

the non-dominated solutions are obtained. Finally, based on the regression models 

and the optimization approach, an online platform is developed to obtain in-process 

information about the energy consumption and carbon emission for real-time deci-

sion making. 

Some conclusions are drawn as follows: 

 

(1) The Pareto frontier of non-dominated solutions show that when the optimal 

spindle speed is 1002.93r/min, feed rate is 15.99mm/min, and depth of cut 

ranges from 0.4 mm to 1.28mm, the biggest effect on the objectives is 

achieved. The increase of depth of cut results in the decrease of SCE and the 

increase of MRR and SR; 

(2) The simulation case shows that in the optimal solutions MRR has a positive 

correlation with carbon emission, and there is an oppose relationship between 

MRR and SR;  

(3) Comparing to other existing methods, the results of the simulation case indi-

cates that the proposed method can obtain multiple eco-efficient milling 



schemes through only one calculation which is more efficient for dynamic 

manufacturing. 

 

Comparing to existing process models and optimization methods for manufac-

turing process, this research derives some regression models for characterizing 

milling processes. As a general recommendation, empirical process models need to 

be developed for other cutting tools, workpiece materials, cutting fluids and ma-

chine tools. The analysis of cutting tools impact also requires improvements by 

considering its entire life cycle, since it is one of the main contributors regarding 

the environmental impacts. Therefore, a more accurate analysis can be achieved in 

the future. 
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