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Abstract: The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) 

scale and the mean inter-beat interval (IBI) of successive heart beats, as measures 

of pilot mental workload (MWL), were evaluated in a flight training device 

(FTD). Operational F/A-18C pilots flew instrument approaches with varying task 

loads. Pilots’ performance, subjective MWL ratings and IBI were measured. 

Based on the pilots’ performance, three performance categories were formed; 

high-, medium- and low-performance. Values of the subjective rating scales and 

IBI were compared between categories. It was found that all measures were able 

to differentiate most task conditions and there was a strong, positive correlation 

between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, 

MCH and performance was demonstrated. While NASA-TLX, MCH and IBI 

have all been previously used to measure MWL, this study is the first one to 

investigate their association in a modern FTD, using a realistic flying mission and 

operational pilots.

Keywords: pilot mental workload; NASA-TLX scale; modified Cooper-Harper 

scale; inter-beat interval



Practitioner summary: NASA-TLX scale, Modified Cooper-Harper (MCH) 

scale and the inter-beat interval (IBI) were evaluated in a flight training device. 

All measures were able to differentiate most task conditions and there was a 

positive correlation between NASA-TLX and MCH scale. An explicit link 

between IBI, NASA-TLX, MCH and performance was demonstrated.

1. Introduction

Pilot mental workload (MWL) characterises the demands imposed by tasks on limited 

mental resources when a desired level of performance is to be maintained (Wickens 

2008; Vicente, Thornton, and Moray 1987). Based on this rather common definition, the 

expenditure of the mental resources is considered to vary for three reasons. First, 

variations in the task demand cause variations in the amount of mental resources 

required to satisfy the demand (Wickens 1991). Second, the available mental resources 

define the portion of the overall mental resources required to achieve a desired level of 

performance (Norman and Bobrow 1975). Third, the level of desired or acceptable 

performance dictates the amount of the voluntary mental resource investment or effort 

(Hockey 1997). For example, performance variations between two fighter pilots 

conducting the same flying task may result from unequal cognitive resources or 

different levels of effort. Likewise, if the same pilots generate equal levels of 

performance, they may need to invest different levels of effort and may have to expend 

different proportions of their mental resources. When the task demands are kept similar 

for both pilots and they are equally willing to invest effort on the tasks, the resulting 

performance differences result from differences in their information processing capacity 

(Mulder 1986; Kahneman 1973). However, when pilots are exposed to high or extreme 

task demands, some will deplete their mental resources sooner than others. Once there is 

no more mental capacity left to compensate for the increasing task demand, 

performance will begin to degrade regardless of the level of effort applied (Hockey 



1997; Williges and Wierwille 1979). When the performance degradation becomes 

significant, flight safety and operational effectiveness are at risk of being compromised. 

When new aircraft systems are designed or new tactics, techniques and procedures 

(TTPs) are developed, it is necessary to evaluate both the human-machine performance 

and MWL.  Measuring task performance without evaluating MWL provides an 

incomplete understanding of the effectiveness and the safety margin of a human-

machine system or TTP.

A variety of measures are available to assess MWL. Most empirical measures 

can be categorised either as behavioral, subjective or physiological. Not all measures 

are applicable for all purposes. When the different techniques for MWL measurement 

are considered for a particular application, five major criteria should be considered; 

sensitivity, diagnosticity, intrusiveness, implementation requirements and operator 

acceptance (for a more detailed discussion, see Wierwille and Eggemeier, [1993]; 

O’Donnell, Eggemeier, and Thomas [1986]). The different characteristics of the 

measures make some of them more suitable for the fighter aviation environment than 

others. 

The subjective MWL measures utilise the operator’s subjectively experienced 

MWL, i.e. how a person feels when doing a task (Johanssen et al. 1979). The non-

intrusiveness, ease of use and low-cost implementation of the subjective MWL 

measures are some of the features that motivate their usage (see e.g., Fallahi et al., 

[2016]; Gabriel, Ramallo, and Cervantes [2016],  Akyeampong [2014]; Prichard., Bizo, 

and Stratford., [2011]; DiDomenico and Nussbaum [2008];  Newell and Mansfield 

[2008]; Sato et al., [1999]) For subjective MWL measuring, there are many different 

methods to choose from. These include, but are not limited to, methods such as NASA 

Task Load index (NASA-TLX) (Hart and Staveland 1988) and Modified Cooper-



Harper scale (MCH) (Wierwille and Casali 1983), which are both widely used in an 

aviation domain (Zhang et al. 2009; Di Nocera, Camilli, and Terenzi 2007; Dennis and 

Harris 1998; van Westrenen 1996; Moroney et al. 1992; Hill et al. 1992; Battiste and 

Bortolussi 1988; Skipper, Rieger, and Wierwille, 1986; Casali and Wierwille 1984; 

Casali and Wierwille 1983). 

Some techniques, like NASA-TLX, are multidimensional measuring scales, 

which use several different dimensions to assess MWL. NASA-TLX consists of six 

subscales that represent different dimensions of MWL: mental demand, physical 

demand, temporal demand, frustration, effort,  and performance (Hart and Staveland 

1988). The unidimensional scales, such as MCH, utilize just one dimension and their 

overall sensitivity are sometimes questioned as they ignore the multidimensional nature 

of the human information processing and don’t even attempt to distinguish the task 

processing demands on different cognitive modalities or stages (Wickens 2008; Hill et 

al. 1992). The basic assumption of the subjective MWL measures is that if a person 

experiences high MWL, stress or frustration, then s/he has high MWL, stress or 

frustration – regardless of the indications of the other measures. 

Variations in arousal, effort and general activation level cause physiological 

changes. This has motivated the use of various physiological measures as indices of 

MWL. The major advantage of physiological measures is their ability to provide 

continuous, real time monitoring of the operator state (Jorna 1993). Another advantage 

is their objectivity, which also increases their utility in scenarios where it is reasonable 

to expect that subjective opinions are not accurate (Gopher and Donchin 1986). 

Although MWL cannot be measured directly, the heart’s responses to the neurological 

modulation provide an indirect method for its measurement; nerve activity causes 

electronic impulse transmissions in and around the heart, which can be recorded and 



interpreted with an electrocardiograph (ECG). A normal ECG consists of a P-wave, a 

QRS complex, followed by a T-wave and U-wave, each representing different de- and 

repolarization phases within the heart’s muscular cells. Once the QRS complexes are 

detected from the ECG, the normal-to-normal (NN) inter-beat interval and differences 

between the NN intervals can be determined. When NN intervals are analysed, a 

decreased NN interval or a lowered mean of the inter-beat intervals between successive 

heart beats (IBI) can be used as indirect indicators of increased MWL. IBI and IBI 

interval differences have been successfully used to measure task demand variations both 

in a flight simulator and in actual flight (Mansikka et al. 2016a, 2016b; Dahlstrom and 

Nahlinder 2009; Svensson and Wilson 2002; Svensson, Angelborg-Thanderz, and 

Wilson 1999; Veltman and Gaillard 1998; Svensson et al. 1997; Ylönen et al. 1997; 

Wilson 1993; Roscoe 1993; Jorna 1993; Aasman, Mulder, and Mulder 1987; Roscoe 

1975). It is a common practice to use the R-wave peak as a reference point in 

measurements as it is typically the strongest wave and can therefore be easily detected 

even in noisy conditions. To emphasize the reference point used, the literature typically 

uses terms R-wave to R-wave (RR) interval and RR interval difference (or IBI and IBI 

difference) (ChuDuc, NguyenPhan, and NguyenViet 2013; Opmeer 1973). Out of the 

different methods available, this study used time domain methods to analyse RR 

intervals and RR interval differences. The time domain analysis techniques are based on 

the statistical analysis of the series of successive RR intervals. In its simplest form, the 

statistical analysis is used to determine IBI. It was expected that the simplicity of the 

method would encourage a broader audience to utilise the methods used in this study.

Unfortunately, while the physiological measures allow objective, continuous and 

real time monitoring of the pilot’s state, their sensitivity may become limited if utilised 

in real flying missions. The bodily interactions and physiological responses to external 



stimuli may make it difficult or impossible to use the physiological measures of MWL 

during real flight. For example, pupillary diameter may be affected not only by 

variations in the information processing demands, but also by the variations in the eye’s 

fixation distance or ambient lightning. In a similar fashion, cardiological responses can 

be affected by the blood pressure variations, body temperature and arterial pressure. In 

fighter aviation, factors like extreme cockpit temperatures, exposure to direct sunlight 

and high G-loads can generate physiological responses which can, if not properly 

controlled, be falsely interpreted as MWL responses. Subjective measures, on the other 

hand, are easy to employ in simulated and real fighter missions, and they generally 

enjoy high face validity and broad operator acceptance. These measures, however, have 

been criticised for their inherent tendency to generate time error as the data collection is 

typically conducted after the activity, and for the fact that the subjects must compare 

and arrange their past sensations to a rating scale (Annett 2002). In addition, the number 

of different task features and the phasing of high and low task demand events can affect 

the subjective perception of workload (Wierwille, Rahimi, and Casali 1985). The 

accuracy of subjective measures is therefore reliant of the participants’ ability to 

memorize their perceived workload in retrospect. The nature of the subjective 

measures’ scales has also been criticised. While the operator’s inner sensations may be 

represented on a numerical scale, the scale itself is ordinal. All subjective workload 

measuring scales lack the interval and ratio properties and there are no universal units 

for the scales. That is, even if the subjective feelings or sensations are given numeric 

values, the distance between the values may not be equal (Casner and Gore 2010; 

Annett 2002; Michell 1997). More importantly, the unreliability of their main 

instrument – the human operator – has been questioned. The potential operator bias is 

especially problematic if the amount of MWL is used as a personnel evaluation or 



selection criteria. If that is the case, it is possible that while a person reports acceptable 

MWL, stress or frustration, s/he may still experience excessive MWL, stress or 

frustration. In such a context, the operator is a highly unreliable and insensitive 

measuring instrument (Gopher and Donchin 1986). In summary, both subjective and 

physiological MWL measures may be effective and sensitive in certain situations and 

highly ineffective or unreliable in others. Luckily, when MWL is measured in a flight 

training device (FTD), most of the potentially disruptive external stimuli discussed 

above can be ruled out. In addition, the non-punitive context used in this study greatly 

reduces the risk of potential pilot biases when subjective MWL measures are used.

This study investigated if both subjective and physiological measures are 

sensitive to varying task demands when fighter pilots’ MWL is measured during a 

simulated flying mission. Should this be the case, system designers and TTP developers 

would have more MWL measures to choose from and could select the most appropriate 

one for each test setting. Also, if the different measures of MWL provide similar results, 

it enables the utilisation of multiple MWL measures. This is essential as the complexity 

of the human information processing system may require multiple MWL measures to be 

used to reveal the demands of a single human-machine system (Wickens 2008). 

Furthermore, the use of multiple measures allows them to be cross validated.

As discussed by Carayon et al. (2015, 2006), Dekker (2012) and Verwey and 

Veltman (1996), complex human-machine systems should be assessed in their context. 

The complexity and uniqueness of many human-machine systems make it difficult to 

generalise the task demands of one system to other systems. While NASA-TLX, MCH 

and IBI have all been previously used to measure MWL, this study is the first one to 

investigate their association in a modern FTD, using a realistic flying mission and 

operational fighter pilots. Hence, the objective of this study was to investigate if there 



are differences between NASA-TLX, MCH and IBI, as measures of MWL, when the 

fighter pilots’ MWL is measured during the simulated flying mission.  

2. Method

2.1 Participants

Workload and performance data were collected from Finnish Air Force McDonnell-

Douglas F/A-18C pilots. Limited by the available FTD time to run the trials and the 

volunteering pilots’ operational assignments at the time of the study, the subsequent 

number of participants was 27. The participants’ qualifications and experience levels on 

the aircraft type varied from a wingman to an experienced instructor pilot. As a result, 

the participants’ average flying experience on the aircraft type was 627 flight hours 

(SD= 476). Participants were declared medically fit to fly. Relevant nutrition and 

activity data was collected from each participant for the 12 hours prior to participating. 

A written, informed consent was obtained from each participant. 

2.2 Test Design

A weapon tactics and situational awareness trainer (WTSAT) was used for the flight 

task. WTSAT is a non-motion FTD with a 135 degree field of view and a fully 

functional cockpit, which allow it to be used for basic and advanced flight training. For 

this study, a cross wind of 80 degrees, 10 knots (5.14 m/s) with moderate gusts was set. 

Full instrument meteorological conditions were set at and above 200 ft (60 m). Below 

200 ft (60 m) the meteorological conditions were set in order to satisfy the minimum 

meteorological conditions required for a visual landing. 

The flying task consisted of number of instrument landing system (ILS) 

approaches. All participants were highly familiar with the flying task as they had been 



routinely flying ILS approaches both with F/A-18 and with their earlier aircraft types. 

ILS is a precision approach procedure, which provides a pilot with both horizontal and 

vertical control cues throughout the approach profile. The participants’ task was to fly 

the approach profile with minimal horizontal and vertical errors while completing 

normal, self-paced approach and landing preparations, e.g., using the radios, 

configuring the aircraft for landing and cross checking the flight instruments. In 

addition to the self-paced tasks, set of additional tasks were triggered in each trial at 

predefined, randomised ranges. These tasks included ten warnings or cautions requiring 

immediate pilot action, seven radio calls requiring pilot acknowledgement and three 

requests to change frequencies or altimeter settings. Figure 1 summarises the triggering 

ranges of the additional tasks. 

For each trial, the simulated aircraft was initially set to 2,000 ft (607 m) above 

ground level. The participants were briefed to maintain a constant airspeed throughout 

the trials.  The temporal demand of the flying task was manipulated by varying the 

trials’ starting ranges. The starting ranges varied from 8 NM (14.8 km) to 15 NM (27.8 

km) with 1 NM (1.9 km) increments. As a result, each participant flew eight trials 

where the time available for the trials varied from 6 minutes 22 seconds to 3 minutes 27 

seconds with each 1 NM (1.9 km) decrement in starting range reducing the time 

available by 25.5 seconds. The order of the starting ranges was randomised between 

subjects. Each trial ended at the ILS specific decision height of 200 ft (60 m). The trials 

were separated by a rest period lasting approximately three minutes. 

Figure 1. Triggering ranges of the additional tasks for each starting range of the trials. 

The vertical lines in each trials’ range bar indicate the additional tasks’ triggering ranges 

within that trial. Each range bar has 20 additional tasks. 
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2.3 Procedure

Like some recent studies (Mansikka et al. 2016a; Wang et al. 2016) the time available 

for each trial, or time pressure, was used as an independent variable in the test design. 

The ILS performance score, mean IBI value, NASA-TLX score and MCH score from 

each trial were used as dependent variables. 

The ILS performance was rated using an existing instrument proficiency test 

rating scale. The ILS performance rating was based on three components: the horizontal 

and vertical deviations from the optimal ILS approach profile and the deviations from 

the target airspeed. During the ILS profile, these deviations were recorded and scored 

independently at every 0.5 NM (0.9 km). The possible values of each ILS performance 

score component ranged from 5 (best performance) to 0 (worst performance). The mean 

of the component scores was used as an ILS performance score. The ILS performance 

scoring was undertaken by a qualified examiner pilot. 

ECG was recorded using Mind Media NeXus-10 MKII system. Three electrodes 



were placed below the left (negative) and right (ground) clavicle and the left costal 

cartilage (positive), respectively. Three minute samples were taken from each trial. In 

addition, a three minute pre-test rest sample was taken from each participant. ECG data 

was first analysed with Biotrace+ software (version V2012C) from where the samples 

were exported to Kubios HRV 2.2 software for further analysis and artefact removal. 

All artefacts were detected and removed manually and noisy data were excluded from 

further analysis. ECG measuring, manipulation and interpretation were done in 

accordance with the guidance in Task Force of The European Society of Cardiology and 

The North American Society of Pacing and Electrophysiology (Camm et al. 1996).

Before the trials, each participant was trained to use NASA-TLX and MCH 

scales.  After each trial, the participants gave NASA-TLX and MCH scores for the trial. 

For NASA-TLX, the scores of the scale’s six dimensions (or subscales) were summed 

and used as a unidimensional NASA-TLX score. Raw NASA-TLX scores were used, 

i.e. the scores were not weighted. The use of the raw NASA-TLX scores is a common 

modification of the original scale and makes it somewhat easier to use (Hart 2006, 

Byers et al. 1989).  

3. Results

3.1 Treatment of Data

The ILS performance scores were used to create three performance categories. A high-

performance category was formed by selecting each participant’s trial with the highest 

ILS performance score. A medium-performance category was generated by selecting 

each participant’s trial that had the average ILS performance score when compared to 

each participant’s other trials. Finally, a low-performance category was formed by 

selecting each participant’s trial with the lowest ILS performance score. The different 



performance categories were used as measurement points for MWL by retrieving mean 

IBI values as well as NASA-TLX and MCH scores for each trial in the three 

performance categories. In addition, mean IBI values for the pre-test rests were 

retrieved

The normality of the values of performance, IBI, MCH, NASA-TLX and 

NASA-TLX subscales in each performance category was tested using both the graphical 

methods and Saphiro-Wilk test. Once the approximate normality requirement was 

confirmed, the data were analysed using repeated measures ANOVA. Violation of 

sphericity was handled with a Greenhouse-Geisser correction. Pairwise comparisons 

were carried out using the paired t-test. Finally, Pearson product-moment correlation 

was run to determine the association between NASA-TLX and MCH in the different 

performance categories.

3.2 Analysis

The high-performance category had the mean ILS score of 4.73 (SD=0.11). For the 

medium-performance category the mean ILS score was 3.72 (SD=0.36), and for the 

low-performance category the mean ILS score was 2.43 (SD=0.84). The mean ILS 

performance scores between all three performance categories were significantly 

different (F(1.243,32.308)=161.382, p<0.001, partial η2=0.861). A significant 

difference between the three performance categories was found for MCH mean values 

(F(1.918,49.862)=72.938, p<0.001, partial η2=0.737) and for NASA-TLX mean values 

(F(1.962,51.024)=93.468, p<0.001, partial η2=0.782 ). Also, IBI mean values were 

significantly different between the three performance categories and pre-test rest 

(F(2.078, 54.033)=39.130, p<0.001, partial η2=0.601). Table 1 presents the descriptive 

statistics for IBI, NASA-TLX and MCH across the three measurement points. Table 1 

also shows the descriptive statistics for IBI pre-test rest values. 



Table 1. Means and standard deviations (SD) for IBI, NASA-TLX and MCH at the 

measurement points (N=27).

  Rest  
High-Performance 
Category  

Medium-
Performance 
Category  

Low-
Performance 
Category

  Mean SD  Mean SD  Mean SD  Mean SD
IBI (ms) 851.80 175.52  730.17 157.56  682.67 121.78  678.20 127.63

NASA-TLX (-) - -  14.93 6.42  33.48 9.36  39.04 7.86

MCH (-) - -  2.44 1.12  5.37 1.57  6.67 1.92

The results of the pairwise comparisons between the performance categories are 

summarised in Table 2.  Both NASA-TLX and MCH scores showed significant 

differences between the three performance categories (p<0.01).  Mean IBI values 

showed significant difference between the high-performance category and the medium-

performance category, as well as between the high-performance category and the low-

performance category (p<0.05). There was no significant IBI value difference between 

the low-performance category and the medium-performance category (p>0.05). In 

addition, the paired t-tests revealed significant differences between the mean rest IBI 

values and mean IBI values of all three performance categories (p<0.001).  

Table 2. Values of IBI, MCH and NASA-TLX test statistics and pairwise comparisons 

between the measurement points (N=27).

  

High-performance 
category -               
Medium performance 
category

High- performance category -                                 
Low performance category

Medium- performance 
category -                     
Low-performance 
category

  
Mean 
Diff

Std. 
Error t-value

Mean 
Diff

Std. 
Error t-value

Mean 
Diff

Std. 
Error t-value

IBI (ms) 47.5 13.3 3.6** 52.0 19.6 2.7* 4.5 13.1 0.3
NASA-TLX (-) -18.6 2.0 -9.4*** -24.1 1.8 -13.3*** -5.6 1.8 -3.2**
MCH (-) -3.0 0.3 -8.7*** -4.2 0.4 -10.7*** -1.3 0.3 -3.8**
***p<0.001; **p<0.01; *p<0.05 (N=27)       

NASA-TLX subscale values were further analysed. The values within each 

subscale increased as the ILS performance scores decreased. Table 3 summarises the 



descriptive statistics for NASA-TLX subscale values across the measurement points.  

Table 3. Means and standard deviations (SD) for NASA-TLX subscale values at the 

measurement points (N=27).

 
High-Performance 
Category  

Medium-
Performance 
Category  

Low-Performance 
Category

 Mean SD  Mean SD  Mean SD

Mental Demand 2.37 1.28  6.33 1.90  7.11 1.60

Physical Demand 1.93 1.14  5.70 2.03  6.26 1.70

Temporal Demand 1.81 1.11  6.00 2.24  7.19 1.62

Effort 3.19 1.90  6.81 2.00  7.52 1.81

Performance 3.30 1.17  4.81 1.80  6.37 2.19

Frustration 2.33 1.24  3.70 2.05  4.63 1.90

Repeated measures ANOVA revealed that the subscale values of NASA-TLX 

differed significantly between the measurement points: Mental Demand, 

F(1.937,50.369)=106.849, p<0.001, partial η2=0.804; Physical Demand, 

F(1.925,50.051)=88.927, p<0.001, partial η2=0.774; Temporal Demand, 

F(1.824,47.415)=87.213, p<0.001, partial η2=0.770; Effort, F(1.898,49.339)=58.416, 

p<0.001, partial η2=0.692; Performance, F(1.734,45.093)=23.075, p<0.001, partial 

η2=0.470; Frustration, F(1.998,51.938)=13.081, p<0.001, partial η2=0.335. 

Furthermore, pairwise comparisons revealed that the scores of all NASA-TLX subscales 

differed significantly between the high- and low-performance categories, as well as 

between the high- and medium-performance categories. However, only the ‘Mental 

Demand’, ‘Temporal Demand’ and ‘Performance’ values changed significantly between 

the medium- and low-performance categories. Table 4 summarises NASA-TLX 

subscales’ pairwise comparisons between the performance categories.

Table 4. Values of NASA-TLX subscale test statistics and pairwise comparisons 

between the measurement points (N=27).



 

High-performance category - 
Medium-performance 
category

High-performance category 
-                          Low 
performance category

Medium-performance 
category -                     
Low-performance category

 
Mean 
Diff

Std. 
Error t-value

Mean 
Diff

Std. 
Error t-value

Mean 
Diff

Std. 
Error t-value

Mental Demand -4.0 0.4 -10.6*** -4.7 0.3 -13.8*** -0.8 0.3 -2.4*
Physical Demand -3.8 0.4 -9.8*** -4.3 0.3 -13.2*** -0.6 0.3 -1.6
Temporal Demand -4.2 0.5 -9.1*** -5.4 0.4 -15.1*** -1.2 0.5 -2.6*
Effort -3.6 0.4 -9.1*** -4.3 0.5 -9.1*** -0.7 0.4 -1.7
Performance -1.5 0.4 -4.0*** -3.1 0.4 -7.0*** -1.6 0.5 -2.9**
Frustration -1.4 0.4 -3.1** -2.3 0.5 -5.0*** -0.9 0.5 -2.0
***p<0.001; **p<0.01; *p<0.05 (N=27)       

Pearson product-moment correlation was run to determine the relationship 

between NASA-TLX and MCH scores in the different performance categories. There 

was a significant, positive correlation between NASA-TLX and MCH scores in the 

high-performance category (r=0.897, p<0.001, N=27), the medium-performance 

category (r=0.654, p<0.001, N=27) and the low-performance category (r=0.821, 

p<0.001, N=27). NASA-TLX and MCH scores did not correlate with mean IBI values 

(p>0.05).

4. Discussion

The objective of this study was to investigate if there are differences between NASA-

TLX, MCH and IBI when the fighter pilots’ MWL was measured during the simulated 

flying mission.  NASA-TLX, MCH and IBI have all been successfully and widely used 

to (indirectly) measure MWL (Mansikka et al. 2016b; Wang et al. 2016; Zhang et al. 

2009; Di Nocera, Camilli, Terenzi 2007; Dennis and Harris 1998; van Westrenen 1996; 

Moroney et al. 1992; Hill et al. 1992; Battiste and Bortolussi 1988; Skipper, Rieger, and 

Wierwille, 1986; Casali and Wierwille 1984; Casali and Wierwille 1983). However, due 

to the complexity and uniqueness of many man-machine systems (Carayon et al. 2015; 

Dekker 2012; Carayon et al. 2006; Verwey and Veltman 1996) and human information 

processing (Wickens 2008), it was necessary to conduct a study which specifically 



investigated their association in a modern FTD, using a realistic flying mission and 

operational fighter pilots. 

As shown in Table 2, all MWL measures were able to differentiate the high-

performance category from the medium- and low-performance categories. In addition, 

NASA-TLX and MCH were able to differentiate the medium- and low-performance 

categories. IBI was able to differentiate the rest condition from all performance 

categories, but was not able to differentiate the medium-performance category from the 

low-performance category. It is possible that some participants may have found the low-

performance category trial so difficult, that they discontinued investing effort on the 

task. As a result, the expenditure of mental resources no longer increased with the 

increased task demand and the performance began to decrease (Hockey 1997; Wickens 

1991; Mulder 1986; Williges and Wierwille 1979; Norman and Bobrow 1975; 

Kahneman 1973). To examine this possibility in more detail, the values of NASA-TLX 

subscales were investigated. As shown in Table 4, all NASA-TLX subscale values 

indicated that MWL (and its sub-dimensions) in the medium-performance category 

were significantly higher than in the high-performance category. However, based on the 

NASA-TLX subscale values there was no significant difference in effort between the 

medium- and low-performance categories. The lack of increased effort may partly 

explain the IBI values in the low-performance category. More importantly, this finding 

highlights the complexity of the human information processing and the added value the 

use of multiple MWL measures and mixed methods can provide (Carayon et al. 2015).

Even when NASA-TLX and MCH scales indicated that the low-performance 

category had the highest MWL, it remains debatable if there truly was a significant 

MWL difference between the medium-performance and low-performance categories; it 

is possible that the participants have interpreted poor performance as high workload 



(Casner & Gore 2010). The strong, positive correlation between NASA-TLX and MCH 

suggests that the rating scales provide similar results. This may be a useful finding as 

the time required to fill NASA-TLX and MCH rating scales are different. As a result, 

MCH may be more appropriate option when MWL is measured in a time critical 

environment. In the light of the results, the main finding was that the subjective and 

physiological MWL measures were equally sensitive to most task demand 

manipulations in a modern fighter aviation domain. The possibility to use either 

subjective or objective MWL measures, or sometimes both, should help instructors and 

evaluators in customising and fine-tuning pilot training and system design.   

During system design and TTP development, it is often necessary to evaluate 

and compare MWL both in a FTD and in real flight.  Due to the limitations of the 

physiological MWL measures and the nature of human physiological functioning, it 

may be sometimes difficult or impossible to utilise physiological MWL measures. 

However, it is encouraging that subjective MWL measures seem to have a potential to 

fill this capability gap – at least when MWL is evaluated in a FTD and in a non-punitive 

context. The risk of potential pilot biases will still constitute a major limitation if the 

subjective MWL measures are extended beyond the test and evaluation settings (Gopher 

and Donchin 1986). 
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